
Mathematical Programming manuscript No.
(will be inserted by the editor)

Matteo Fischetti · Fred Glover ·Andrea Lodi

The feasibility pump

Revised version

Abstract. In this paper we consider the NP-hard problem of finding a feasible solution (if
any exists) for a generic MIP problem of the form min{cT x : Ax ≥ b, xj integer ∀j ∈ I}.
Trivially, a feasible solution can be defined as a point x∗ ∈ P := {x : Ax ≥ b} that is equal

to its rounding x̃, where the rounded point x̃ is defined by x̃j := [x∗j] if j ∈ I and x̃j := x∗j
otherwise, and [·] represents scalar rounding to the nearest integer. Replacing “equal” with

“as close as possible” relative to a suitable distance function ∆(x∗, x̃), suggests the following
Feasibility Pump (FP) heuristic for finding a feasible solution of a given MIP.

We start from any x∗ ∈ P , and define its rounding x̃. At each FP iteration we look
for a point x∗ ∈ P that is as close as possible to the current x̃ by solving the problem
min{∆(x, x̃) : x ∈ P}. Assuming ∆(x, x̃) is chosen appropriately, this is an easily solvable LP

problem. If ∆(x∗, x̃) = 0, then x∗ is a feasible MIP solution and we are done. Otherwise, we

replace x̃ by the rounding of x∗, and repeat.
We report computational results on a set of 83 difficult 0-1 MIPs, using the commercial

software ILOG-Cplex 8.1 as a benchmark. The outcome is that FP, in spite of its simple foun-
dation, proves competitive with ILOG-Cplex both in terms of speed and quality of the first
solution delivered. Interestingly, ILOG-Cplex could not find any feasible solution at the root
node for 19 problems in our test-bed, whereas FP was unsuccessful in just 3 cases.

1. Introduction

In this paper we address the problem of finding a feasible solution of a generic
MIP problem of the form

(MIP) min cT x (1)
Ax ≥ b (2)

xj integer ∀j ∈ I (3)

where A is an m × n matrix. This NP-hard problem can be extremely hard in
practice—in some important practical cases, state-of-the-art MIP solvers may
spend a very large computational effort before discovering their first solution.
Therefore, heuristic methods to find a feasible solution for hard MIPs are highly

Matteo Fischetti: DEI, University of Padova, Via Gradenigo 6/A, 35100 Padova, Italy,
matteo.fischetti@unipd.it

Fred Glover: Leeds School of Business, University of Colorado at Boulder, 419 UCB, Boulder,
CO 80309-0419 USA, Fred.Glover@colorado.edu

Andrea Lodi: DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy,
alodi@deis.unibo.it

Mathematics Subject Classification (1991): 90C06, 90C10, 90C11, 90C27, 90C59

2 Matteo Fischetti et al.

important in practice. This is particularly true in recent years where success-
ful local-search approaches for general MIPs such as local branching [9] and
RINS/guided dives [7] are used that can only be applied if an initial feasible
solution is known. Heuristic approaches to general MIP problems have been
proposed by several authors, including [2–4,7,9–14,18,17,20,21,24].

In this paper we propose a new approach to compute heuristic MIP solutions,
that we call the Feasibility Pump1. The paper is organized as follows. In the
remaining part of this section we first describe the FP method in more detail,
and then focus on its implementation for 0-1 MIPs2. Computational results are
presented in Section 2, where we compare the FP performance with that of the
commercial software ILOG-Cplex 8.1 on a set of 83 hard 0-1 MIPs. The possibility
of reducing the computing time involved in the various LP solutions is addressed
in Section 3, where the use of approximate LP solutions is investigated. In the
same section we also address the possibility of using the FP scheme to produce a
sequence of feasible solutions of better and better quality. Some conclusions are
finally drawn in Section 4.

Let P := {x : Ax ≥ b} denote the polyhedron associated with the LP
relaxation of the given MIP. With a little abuse of notation, we say that a point
x is integer if xj is integer for all j ∈ I (no matter the value of the other
components). Analogously, the rounding x̃ of a given x is obtained by setting
x̃j := [xj] if j ∈ I and x̃j := xj otherwise, where [·] represents scalar rounding
to the nearest integer.

Throughout this paper we will consider the L1-norm distance between a
generic point x ∈ P and a given integer point x̃, defined as

∆(x, x̃) =
∑

j∈I
|xj − x̃j |

Notice that the continuous variables xj (j 6∈ I), if any, do not contribute to this
function. Assuming without loss of generality that the MIP constraints include
the variable bounds lj ≤ xj ≤ uj for all j ∈ I, we can write

∆(x, x̃) :=
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x+
j + x−j)

where the additional variables x+
j and x−j require the introduction into the MIP

model of the additional constraints:

xj = x̃j + x+
j − x−j , x+

j ≥ 0, x−j ≥ 0, ∀j ∈ I : lj < x̃j < uj (4)

Given an integer point x̃, the closest point x∗ ∈ P can therefore be deter-
mined by solving the LP

min{∆(x, x̃) : Ax ≥ b} (5)

1 A preliminary version of the present paper was presented at the Combinatorial Optimiza-
tion meeting held in Aussois, January 4-10, 2004.

2 The code used in our experiments is available, on request, from the third author.

The feasibility pump 3

If ∆(x∗, x̃) = 0, then x∗j (= x̃j) is integer for all j ∈ I, so x∗ (but not necessarily
x̃) is a feasible MIP solution. Conversely, given a point x∗ ∈ P , the integer point
x̃ closest to x∗ is easily determined by rounding x∗. These observations suggest
the following Feasibility Pump (FP) heuristic to find a feasible MIP solution, in
which a pair of points (x∗, x̃) with x∗ ∈ P and x̃ integer is iteratively updated
with the aim of reducing as much as possible their distance ∆(x∗, x̃).

We start from any x∗ ∈ P , and initialize a typically infeasible integer point x̃
as the rounding of x∗. At each FP iteration, called a pumping cycle, we fix x̃ and
find through linear programming the point x∗ ∈ P which is as close as possible to
x̃. If ∆(x∗, x̃) = 0, then x∗ is a MIP feasible solution, and we are done. Otherwise,
we replace x̃ by the rounding of x∗ so as to further reduce ∆(x∗, x̃), and repeat.
(This basic scheme will be slightly elaborated, as we indicate subsequently, so
as to overcome possible stalling and cycling issues.)

From a geometric point of view, the FP generates two (hopefully convergent)
trajectories of points x∗ and x̃ that satisfy feasibility in a complementary but
partial way—one satisfies the linear constraints, the other the integer require-
ment. An important feature of the method is related to the infeasibility measure
used to guide x̃ towards feasibility: instead of taking a weighted combination
of the degree of violation of the single linear constraints, as customary in MIP
heuristics, we use the distance ∆(x∗, x̃) of x̃ from polyhedron P , as computed
at each pumping cycle3. This distance can be interpreted as a sort of “difference
of pressure” between the two complementary types of infeasibility of x∗ and x̃,
that we try to reduce by “pumping” the integrality of x̃ into x∗—hence the name
of the method. FP can be interpreted as a strategy for producing a sequence of
roundings that leads to a feasible MIP point.

The FP can also be viewed as modified local branching strategy [9]. Indeed,
at each pumping cycle we have an incumbent (infeasible) solution x̃ satisfying
the integer requirement, and we face the problem of finding a feasible solution
(if any exists) within a small-distance neighborhood, i.e., changing only a small
subset of its variables. In the local branching context, this subproblem would
have been modeled by the MIP

min{cT x : Ax ≥ b, xj integer ∀j ∈ I,∆(x, x̃) ≤ k}

for a suitable value of parameter k, and solved through an enumerative MIP
method. In the FP context, instead, the same subproblem is modeled in a relaxed
way through the LP (5), where the “small distance” requirement is translated
in terms of the objective function. (Notice that (5) can be viewed as a relaxed
model for the problem: “Change a minimum number of variables so as to convert
the current x̃ into a feasible MIP solution x∗”.) The working hypothesis here
is that the objective function ∆(x, x̃) will discourage the optimal solution x∗ of
the relaxation from being “too far” from the incumbent x̃, hence we expect a
large number of the integer-constrained variables in x̃ will retain their (integer)
values also in the optimal x∗.

3 A similar infeasibility measure for nonlinear problems was recently investigated in [6].

4 Matteo Fischetti et al.

In the remainder of this paper we will focus on the important case where
all integer-constrained variables are binary, i.e., we assume constraints Ax ≥ b
include the variable bounds 0 ≤ xj ≤ 1 for all j ∈ I. As a consequence, no
additional variables x+

j and x−j are required in the definition of the distance
function (4), which attains the simpler form

∆(x, x̃) :=
∑

j∈I:x̃j=0

xj +
∑

j∈I:x̃j=1

(1− xj) (6)

An outline of the FP algorithm for 0-1 MIPs is reported in Figure 1. The
algorithm receives on input two parameters: the time limit TL and the number T
of variables to be flipped (i.e., changed with respect to their current 0-1 value)
at each iteration—the use of this latter parameter will be clarified later on.

The Feasibility Pump (basic version):
1. initialize nIT := 0 and x∗ := argmin{cT x : Ax ≥ b};
2. if x∗ is integer, return(x∗);
3. let x̃ := [x∗] (= rounding of x∗);
4. while (time < TL) do
5. let nIT := nIT +1 and compute x∗ := argmin{∆(x, x̃) : Ax ≥ b};
6. if x∗ is integer, return(x∗);
7. if ∃ j ∈ I : [x∗j] 6= x̃j then

8. x̃ := [x∗]
else

9. flip the TT = rand(T/2,3T/2) entries x̃j (j ∈ I) with highest |x∗j − x̃j |
10. endif
11. enddo

Fig. 1. The basic FP implementation for 0-1 MIPs

At step 1, x∗ is initialized as a minimum-cost solution of the LP relaxation,
a choice intended to increase the chance of finding a small-cost feasible solution.
At each pumping cycle, at step 5 we redefine x∗ as a point in P with minimum
distance from the current integer point x̃. We then check whether the new x∗ ∈ P
is integer. If this is not the case, the current integer point x̃ is replaced at
step 8 by [x∗], so as to reduce even further the current distance ∆(x∗, x̃). In
order to avoid stalling issues, in case x̃ = [x∗] (with respect to the integer-
constrained components) we flip, at step 9, a random number TT ∈ { 1

2T, · · · , 3
2T}

of integer-constrained entries of x̃, chosen so as to minimize the increase in the
total distance ∆(x∗, x̃).

The procedure terminates as soon as a feasible integer solution x∗ is found,
or when the time-limit TL has been exceeded. In this latter case, the FP heuristic
has to report a failure–which is not surprising, as finding a feasible 0-1 MIP
solution is an NP-hard problem in general.

Figure 2 gives an illustration of two sample FP runs with T=20, where the
infeasibility measure ∆(x∗, x̃) is iteratively reduced to zero; note that both se-
quences are essentially monotone, except for the possibility of small irregularities
due to the flips performed at step 9.

The feasibility pump 5

A main problem with the basic FP implementation described above is the
possibility of cycling : after a certain number of iterations, the method may enter
a loop where a same sequence of points x∗ and x̃ is visited again and again. In
order to overcome this drawback, we implemented the following straightforward
perturbation mechanism. As soon as a cycle is heuristically detected by com-
paring the solutions found in the last 3 iterations, and in any case after R (say)
iterations, we skip steps 7-10 and apply a random perturbation move. To be more
specific, for each j ∈ I we generate a uniformly random value ρj ∈ [−0.3, 0.7]
and flip x̃j in case |x∗j − x̃j |+ max{ρj , 0} > 0.5.

2. Computational experiments

In this section we report computational results comparing the performance of
the proposed FP method with that of the commercial software ILOG-Cplex 8.1.
Our testbed is made by 44 0-1 MIP instances collected in MIPLIB4 2003 [1]
and described in Table 1, plus an additional set of 39 hard 0-1 MIPs described
in Table 2 and available, on request, from the third author. The two tables
report the instance names and the corresponding number of variables (n), of 0-1
variables (|I|) and of constraints (m).

Name n |I| m Name n |I| m
10teams 2025 1800 230 mod011 10958 96 4480
A1C1S1 3648 192 3312 modglob 422 98 291
aflow30a 842 421 479 momentum1 5174 2349 42680
aflow40b 2728 1364 1442 net12 14115 1603 14021
air04 8904 8904 823 nsrand ipx 6621 6620 735
air05 7195 7195 426 nw04 87482 87482 36
cap6000 6000 6000 2176 opt1217 769 768 64
dano3mip 13873 552 3202 p2756 2756 2756 755
danoint 521 56 664 pk1 86 55 45
ds 67732 67732 656 pp08a 240 64 136
fast0507 63009 63009 507 pp08aCUTS 240 64 246
fiber 1298 1254 363 protfold 1835 1835 2112
fixnet6 878 378 478 qiu 840 48 1192
glass4 322 302 396 rd-rplusc-21 622 457 125899
harp2 2993 2993 112 set1ch 712 240 492
liu 1156 1089 2178 seymour 1372 1372 4944
markshare1 62 50 6 sp97ar 14101 14101 1761
markshare2 74 60 7 swath 6805 6724 884
mas74 151 150 13 t1717 73885 73885 551
mas76 151 150 12 tr12-30 1080 360 750
misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411 vpm2 378 168 234

Table 1. The 44 0-1 MIP instances collected in MIPLIB 2003 [1]

The results of the initial FP implementation described above are reported
in Tables 3 and 4, with a comparison with the state-of–the-art MIP solver

4 Another 0-1 MIP included in the library, namely stp3d, was not considered since the
computing time required for the first LP relaxation is larger than 1 hour.

6 Matteo Fischetti et al.

Name n |I| m source Name n |I| m source
biella1 7328 6110 1203 [9] blp-ar98 16021 15806 1128 [18]
NSR8K 38356 32040 6284 [9] blp-ic97 9845 9753 923 [18]
dc1c 10039 8380 1649 [8] blp-ic98 13640 13550 717 [18]
dc1l 37297 35638 1653 [8] blp-ir98 6097 6031 486 [18]
dolom1 11612 9720 1803 [8] CMS750 4 11697 7196 16381 [15]
siena1 13741 11775 2220 [8] berlin 5 8 0 1083 794 1532 [15]
trento1 7687 6415 1265 [8] railway 8 1 0 1796 1177 2527 [15]
rail507 63019 63009 509 [9] usAbbrv.8.25 70 2312 1681 3291 [15]
rail2536c 15293 15284 2539 [9] manpower1 10565 10564 25199 [22]
rail2586c 13226 13215 2589 [9] manpower2 10009 10008 23881 [22]
rail4284c 21714 21705 4284 [9] manpower3 10009 10008 23915 [22]
rail4872c 24656 24645 4875 [9] manpower3a 10009 10008 23865 [22]
A2C1S1 3648 192 3312 [9] manpower4 10009 10008 23914 [22]
B1C1S1 3872 288 3904 [9] manpower4a 10009 10008 23866 [22]
B2C1S1 3872 288 3904 [9] ljb2 771 681 1482 [7]
sp97ic 12497 12497 1033 [9] ljb7 4163 3920 8133 [7]
sp98ar 15085 15085 1435 [9] ljb9 4721 4460 9231 [7]
sp98ic 10894 10894 825 [9] ljb10 5496 5196 10742 [7]
bg512142 792 240 1307 [19] ljb12 4913 4633 9596 [7]
dg012142 2080 640 6310 [19]

Table 2. The additional set of 39 0-1 MIP instances

ILOG-Cplex 8.1. The focus of this experiment was to measure the capability
of the compared methods to converge to an initial feasible solution, hence both
FP and ILOG-Cplex were stopped as soon as the first feasible solution was found.
Computing times are expressed in CPU seconds, and refer to a Pentium M 1.6
Ghz notebook with 512 MByte of main memory. Parameters T and TL were set
to 20 and 1,800 CPU seconds, respectively, while the perturbation-frequency
parameter R was set to 100.

In the FP implementation, we use the ILOG-Cplex function CPXoptimize to
solve each LP (thus leaving to ILOG-Cplex the choice of the actual LP algorithm
to invoke) with the default parameter setting.

As to ILOG-Cplex, after extensive experiments and contacts with ILOG-Cplex
staff [23] we found that, as far as the time and quality of the root node solu-
tion is concerned, the best results are obtained (perhaps surprisingly) when the
MIP preprocessing/presolve is not invoked, and the default “balance optimality
and integer feasibility” strategy for the exploration of the search tree is used.
Indeed, the number of root-node failures for ILOG-Cplex was 19 with the setting
we used in our experiments. By contrast, when the preprocessing/presolve was
activated ILOG-Cplex could not find any feasible solution at the root node in 25
cases (with the default “balance optimality and integer feasibility” strategy) or
in 41 cases (with the “emphasize integrality” strategy). In case the preprocess-
ing/presolve is deactivated but the “emphasize integrality” strategy was used,
instead, no solution was found at the root node in 33 cases.

Tables 3 and 4 report the results for the instances in Tables 1 and 2, re-
spectively. For each instance and for each algorithm (FP and ILOG-Cplex) we
report the value of the first feasible solution found (“value” for FP, and “root
value/first value” for ILOG-Cplex) and the corresponding computing time, in
Pentium M-1.6 CPU seconds (“time”). In case of failure, “N/A” is reported.

The feasibility pump 7

feasibility pump ILOG-Cplex 8.1
name value nIT time root value first value nodes time
10teams 992.00 53 7.5 N/A 924.00 14 5.2
A1C1S1 18,377.24 5 3.8 N/A 14,264.61 120 8.6
aflow30a 4,545.00 18 0.1 N/A 1,574.00 40 1.4
aflow40b 6,859.00 7 0.5 1,786.00 0 1.8
air04 58,278.00 4 12.5 57,640.00 0 6.2
air05 29,937.00 2 3.4 29,590.00 0 2.0
cap6000 -2,354,320.00 2 0.6 -2,445,344.00 0 0.6
dano3mip 756.62 4 77.7 768.37 0 161.2
danoint 77.00 3 0.2 73.00 0 1.7
ds N/A 81 1,800.0 5,418.56 0 81.6
fast0507 181.00 4 34.0 209.00 0 33.1
fiber 1,911,617.79 2 0.0 570,936.07 0 0.0
fixnet6 9,131.00 4 0.0 12,163.00 0 0.0
glass4 4,650,037,150.00 23 0.1 N/A 3,500,034,900.00 162 0.3
harp2 -43,856,974.00 654 4.5 -73,296,664.00 0 0.1
liu 6,262.00 0 0.0 6,262.00 0 0.0
markshare1 1,064.00 11 0.0 710.00 0 0.0
markshare2 1,738.00 7 0.0 1,735.00 0 0.0
mas74 52,429,700.59 1 0.0 19,197.47 0 0.0
mas76 194,527,859.06 1 0.0 44,877.42 0 0.0
misc07 4,515.00 123 0.5 3,060.00 0 0.0
mkc -164.56 2 0.3 -195.97 0 0.5
mod011 -49,370,141.17 0 1.0 -42,902,314.08 0 1.9
modglob 35,147,088.88 0 0.0 20,786,787.02 0 0.0
momentum1 455,740.91 520 1478.4 N/A N/A 75 1,800.0
net12 337.00 346 55.4 N/A 214.00 480 1,593.7
nsrand ipx 340,800.00 3 0.7 699,200.00 0 0.3
nw04 19,882.00 1 2.9 17,306.00 0 5.1
opt1217 -12.00 0 0.0 -14.00 0 0.0
p2756 N/A 163435 1,800.0 3,485.00 0 0.1
pk1 57.00 1 0.0 89.00 0 0.0
pp08a 11,150.00 2 0.0 14,800.00 0 0.0
pp08aCUTS 10,940.00 2 0.0 13,540.00 0 0.0
protfold -10.00 367 493.8 N/A N/A 637 1,800.0
qiu 389.36 3 0.3 1,691.14 0 0.1
rd-rplusc-21 N/A 900 1,800.0 N/A N/A 372 1,800.0
set1ch 76,951.50 2 0.0 109,759.00 0 0.0
seymour 452.00 9 3.4 469.00 0 5.1
sp97ar 1,398,705,728.00 6 4.3 734,171,023.04 0 2.6
swath 18,416.00 109 4.7 N/A 826.66 1609 38.6
t1717 826,848.00 42 644.9 N/A N/A 1397 1,800.0
tr12-30 277,218.00 9 0.1 N/A 143,586.00 200 2.1
van 8.21 4 245.0 6.59 0 100.3
vpm2 19.25 3 0.0 15.25 0 0.0

Table 3. Convergence to a first feasible solution

Moreover, for FP we report the number of iterations performed by the algorithm
(“nIT”), while for ILOG-Cplex we give the number of branch-and-bound nodes
(“nodes”) needed to initialize the incumbent solution.

Our first order of business here was to evaluate the percentage of success in
finding a feasible MIP solution without resorting to branching. In this respect,
the FP performance is very satisfactory: whereas ILOG-Cplex could not find any
feasible solution at the root node in 19 cases (and in 10 cases even allowing for
1,800 seconds of branching), FP was unsuccessful only 3 times.

8 Matteo Fischetti et al.

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15

’railway 8 1 0’
3

3 3

3

3

3 3

3

3

3

3
3

3 3

3

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36

’usAbbrv.8.25 70’

Fig. 2. Plot of the infeasibility measure ∆(x∗, x̃) at each pumping cycle

feasibility pump ILOG-Cplex 8.1
name value nIT time root value first value nodes time
biella1 3,537,959.54 5 7.9 3,682,135.10 0 8.4
NSR8K 5,111,376,832.18 5 1,751.4 4,923,673,379.32 0 1,478.6
dc1c 27,348,312.19 4 19.3 33,458,468.26 0 15.3
dc1l 8,256,022.49 5 94.4 752,840,672.81 0 67.6
dolom1 298,684,615.17 7 32.1 584,923,856.01 0 29.2
siena1 104,004,996.99 5 91.8 591,385,634.57 0 66.4
trento1 356,179,003.01 2 17.8 621,044,078.07 0 18.1
rail507 178.00 2 41.1 205.00 0 32.9
rail2536c 715.00 4 26.7 771.00 0 27.1
rail2586c 1,007.00 5 81.6 1,072.00 0 68.6
rail4284c 1,124.00 3 1095.8 1,218.00 0 273.1
rail4872c 1,614.00 5 311.9 1,737.00 0 305.6
A2C1S1 19,879.93 5 3.7 20,865.33 0 0.0
B1C1S1 38,530.65 7 5.2 69,933.52 0 0.1
B2C1S1 48,279.95 6 4.5 70,625.52 0 0.1
sp97ic 1,280,793,707.52 3 2.7 515,786,416.96 0 1.7
sp98ar 988,402,511.36 4 4.4 599,527,422.56 0 2.4
sp98ic 959,924,716.00 3 2.1 550,157,878.72 0 1.5
blp-ar98 25,094.03 161 23.6 N/A 9,473.66 50 37.2
blp-ic97 7,874.87 4 0.7 6,408.43 0 0.4
blp-ic98 14,848.96 6 1.4 9,080.53 0 0.6
blp-ir98 5,388.84 3 0.3 2,927.29 0 1.2
CMS750 4 606.00 131 18.9 803.00 0 13.9
berlin 5 8 0 79.00 10 0.1 89.00 0 0.4
railway 8 1 0 440.00 13 0.3 478.00 0 0.4
usAbbrv.8.25 70 164.00 34 0.8 N/A 130.00 6036 46.8
bg512142 120,738,665.00 0 0.1 120,670,203.50 0 0.3
dg012142 153,406,945.50 0 0.8 153,392,273.00 0 1.7
manpower1 8.00 66 38.5 N/A N/A 34 1,800.0
manpower2 7.00 148 157.9 N/A N/A 10 1,800.0
manpower3 6.00 49 56.9 N/A N/A 10 1,800.0
manpower3a 6.00 73 67.4 N/A N/A 10 1,800.0
manpower4 7.00 192 107.7 N/A N/A 17 1,800.0
manpower4a 7.00 53 85.1 N/A N/A 16 1,800.0
ljb2 7.24 0 0.0 1.63 0 0.4
ljb7 8.61 0 0.5 0.81 0 3.9
ljb9 9.48 0 0.8 9.48 0 6.2
ljb10 7.31 0 1.0 7.31 0 6.9
ljb12 6.20 0 0.7 3.21 0 6.4

Table 4. Convergence to a first feasible solution (cont.d)

The feasibility pump 9

Also interesting is the comparison of the quality of the FP solution with that
found by the root-node ILOG-Cplex heuristics: the latter delivered a strictly-
better solution in 33 cases, whereas the solution found by FP was strictly better
in 46 cases. The computing times to get to the first feasible solution appear
comparable: excluding the instances for which both methods required less than
1 second, ILOG-Cplex was faster in 26 cases, and FP was faster in 31 cases.
Finally, column nIT (FP iterations) shows that the number of LPs solved by
FP for finding its first feasible solution is typically very small, which confirms
the effectiveness of the distance function used at step 5 in driving x∗ towards
integrality.

Quite surprisingly, sometimes FP requires just a few iterations but takes much
more time than expected. E.g., for problem rail4284c in Table 4 the root node
of ILOG-Cplex took only 273.1 seconds—including the application of the inter-
nal heuristics. FP found a feasible solution after just 3 iterations but the overall
computing time was 1095.8 seconds—about 4 times larger. This can be partly
explained by observing that FP requires the initial solution of two LPs with
different objective functions: the initialization LP at step 1 (which uses the orig-
inal objective function), and the LP at the first execution of step 5 (using the
distance-related objective function). Hence we take for granted that no effective
parametrization between these two LPs can be obtained. However, a better inte-
gration of FP with the LP solver is likely to produce improved results in several
cases.

As already stated, in our experiments we deliberately avoided any problem-
dependent fine tuning of the LP parameters, and used for both FP and ILOG-Cplex
their default values. However, some knowledge of the type of instance to be solved
can improve both the FP and ILOG-Cplex performance considerably, especially
for highly degenerate cases. For instance, we found that the choice of the LP
algorithm used for re-optimization at step 5 may have a strong impact on the
overall FP computing times. E.g., if we force the use of the dual simplex, the
overall computing time for rail4284c decreases from 1095.8 to just 311.1 sec-
onds. This is of course true also for ILOG-Cplex. E.g., for manpower instances
Bixby [5] suggested an ad-hoc tuning consisting of (a) avoiding the generation of
cuts (set mip cut all -1), and (b) activating a specific dual-simplex pricing
algorithm (set simp dg 2). This choice considerably reduces the time spent by
the LP solver at each branching node, and allows ILOG-Cplex to find a first
feasible solution (of value 6.0) for instances manpower1, manpower2, manpower3,
manpower3a, manpower4 and manpower4a after 111, 150, 107, 156, 202 and 197
branching nodes, and after 28.4, 115.4, 99.7, 70.7, 100.2, and 84.7 CPU seconds,
respectively.

A pathological case for FP is instance p2756, which can instead be solved very
easily by ILOG-Cplex. This is due to the particular structure of this problem,
which involves a large number of big-M coefficients. More specifically, several
constraints in this model are of the type αT

i y ≤ βi + Mizi, where Mi is a very
large positive value, y is a binary vector, and zi is a binary variable whose value
1 is used to actually deactivate the constraint. Feasible solutions of this model
can obtained quite easily by setting zi = 1 so as to deactivate these constraints.

10 Matteo Fischetti et al.

However, this choice turns out to be very expensive in terms of the LP objective
function, where variables zi are associated with large costs. Therefore, the LP
solutions (y∗, z∗) tend to associate very small values to all variables z∗i , namely
z∗i = max{0, (αT

i y∗ − βi)/Mi}, which are then systematically rounded down by
our scheme. As a consequence, FP is actually looking for a feasible y that fulfills
all the constraints αT

i x ≤ βi—an almost impossible task. This consideration
would suggest that a more elaborated FP scheme should introduce a mechanism
that, in some specific cases, allows some variables to be rounded up no matter
their value in the LP solution—a topic that is left to future research.

3. FP variants

The basic FP scheme will next be elaborated in the attempt of improving (a)
the required computing time, and/or (b) the quality of the heuristic solution
delivered by the method.

3.1. Reducing the computing time

We have evaluated the following two simple FP variants:

1. FP1: At step 1, the LP relaxation of the original MIP (i.e., the one with the
original objective function cT x) is solved approximately through a primal-
dual method (e.g., the ILOG-Cplex barrier algorithm), and as soon as a pre-
fixed primal-dual gap γ is reached the execution is stopped and no crossover
is performed. The almost-optimal dual variables are then used as Lagrangian
multipliers to compute a mathematically-correct lower bound on the optimal
LP value. Moreover, at step 5 each LP relaxation is solved approximately via
the primal simplex method with a limit of SIL simplex pivots (if this limit is
reached within the simplex phase 1, the approximate LP solution x∗ is not
guaranteed to be primal feasible, hence we skip step 6).

2. FP2: The same as FP1, but at step 1 the first x̃ is obtained by just rounding
a random initial solution x∗ ∈ [0, 1]n (no LP solution is required).

3.2. Improving the solution quality

As stated, the FP method is designed to provide a feasible solution to hard
MIPs—no particular attention is paid to the quality of this solution. In fact,
the original MIP objective function is only used for the initialization of x̃ in
step 1—while it is completely ignored in variant FP2 above. On the other hand,
FP proved quite fast in practice, and one may think of simple modifications
to provide a sequence of feasible solutions of better and better quality.5 We

5 A possible way to improve the quality of the first solution found by FP is of course to
exploit local-search methods based on enumeration of a suitable solution neighborhood of the
first feasible solution found, such as the recently-proposed local branching [9], RINS or guided
dives [7] schemes.

The feasibility pump 11

have therefore investigated a natural extension of our method, based on the
idea of adding the upper-bound constraint cT x ≤ UB to the LPs solved at
step 5, where UB is updated dynamically each time a new feasible solution
is found. To be more specific, right after step 1 we initialize z∗LP = cT x∗ (=
LP relaxation value) and UB = +∞. Each time a new feasible solution x∗ of
value zH = cT x∗ is found at step 5, we update UB = αz∗LP + (1 − α)zH for
α ∈ (0, 1), and continue the while-do loop. Furthermore, in the test at step 4
we add the condition nIT-nIT0 < IL, where nIT0 gives the value of nIT when
the first feasible solution is found (nIT0=0 if none is available), and the input
parameter IL gives the maximum number of additional FP iterations allowed
after the initialization of the incumbent solution.

The above scheme can also be applied to variant FP1, where the LP at step
1 is solved approximately. As to FP2, where no bound is computed, z∗LP is left
undefined and the upper bound UB is heuristically reduced after each solution
updating as UB = zH − β|zH | (assuming zH 6= 0).

A final comment is in order. Due to the additional constraint cT x ≤ UB,
it is often the case that the integer components of x̃ computed at step 8 define
a feasible point for the original system Ax ≥ b, but not for the current one.
In order to improve the chances of updating the incumbent solution, right after
step 8 we therefore apply a simple post-processing of x̃, consisting in solving
the LP min{cT x : Ax ≥ b, xj = x̃j ∀j ∈ I} and comparing the corresponding
solution (if any exists) with the incumbent one.

3.3. Computational results

Table 5 reports the results of the feasibility pump variants FP1 and FP2. For this
experiment we selected 26 instances out of the 83 in our testbed, chosen as those
for which (a) both FP and ILOG-Cplex were able to find a solution within the
time limit of 1,800 CPU seconds, and (b) the computing time required by either
ILOG-Cplex or FP was at least 10 CPU seconds. We also included the manpower
instances, and ran ILOG-Cplex with the ad-hoc tuning described in the previous
section.

For this reduced testbed, we evaluated the capability of FP1 and FP2 to
converge quickly to an initial solution (even if worse than that produced by FP)
and to improve it in a given amount of additional iterations. The underlying
idea is that, for problems in which the LP solution is very time consuming, it
may be better to solve the LPs approximately, while trying to improve the first
(possibly poor) solutions at a later time.

For the experiments reported in Table 5 the parameters were set as follows:
α = 0.50, β = 0.25, γ = 0.20, SIL = 1, 000, and IL = 250.

In the table, the ILOG-Cplex columns are taken from the previous experi-
ments. For both FP1 and FP2 we report the time and value of the first solution
found, and the time and value of the best solution found after IL=250 additional
FP iterations. Moreover, for FP1 we report the extra computing time spent for

12 Matteo Fischetti et al.

computing the initial lower bound through the (approximate use of) ILOG-Cplex
barrier method (“LB time”).

According to the table, FP2 is able to deliver its first feasible solution within
an extremely short computing time—often 1-2 orders of magnitude shorter
than ILOG-Cplex and FP. E.g., FP2 took only 1.5 seconds for NSR8K, whereas
ILOG-Cplex and FP required 1,478.6 and 1,751.4 seconds, respectively. In three
cases however the method did not find any solution within the 1,800-second time
limit. The quality of the first solution is of course poor (remember that the MIP
objective function is completely disregarded until the first feasible solution is
found), but it improves considerably during subsequent iterations. At the end
of its execution, FP2 was faster than ILOG-Cplex in 12 out of the 26 cases, and
returned a better (or equal) solution in 11 cases.

FP1 performs somewhat better than this. Its first solution is much better
than that of FP2 and strictly better than the ILOG-Cplex solution in 4 cases;
the corresponding computing time (increased by the LB time) is shorter than
that of ILOG-Cplex in 22 out of the 26 cases. After 250 more FP iterations, the
quality of the FP1 solution is equal to that of ILOG-Cplex in 6 cases, strictly
better in 12 cases, and worse in 8 cases; the corresponding computing time
compares favorably with that of ILOG-Cplex in 12 cases.

4. Conclusions

We have proposed and analyzed computationally a new heuristic method for
finding a feasible solution to general MIP problems. The approach, called the
Feasibility Pump (FP), generates two trajectories of points x∗ and x̃ that satisfy
MIP feasibility in a complementary but partial way—one satisfies the linear con-
straints, the other the integer requirement. The method can also be interpreted
as a strategy for making a heuristic sequence of roundings that yields a feasible
MIP point.

We report computational results on a set of 83 difficult 0-1 MIPs, using
the commercial software ILOG-Cplex 8.1 as a benchmark. FP, even in its basic
version, compares favorably with the ILOG-Cplex heuristics applied at the root
node: though FP and ILOG-Cplex (root node) require a comparable computing
time, the percentage of success in finding a feasible solution is 96.3% for FP,
and 77.1% for ILOG-Cplex (in its best-tuned version). In this respect, the FP
performance is very satisfactory: whereas ILOG-Cplex could not find any feasible
solution at the root node in 19 cases (and in 4 cases even allowing for 1,800
seconds of branching), FP was unsuccessful only 3 times. Also interesting is
the comparison of the quality of the FP solution with that found by the root-
node ILOG-Cplex heuristics: the latter delivered a strictly-better solution in
33 cases, whereas the solution found by FP was strictly better in 46 cases. The
computing times to get to the first feasible solution appear comparable: excluding
the instances for which both methods required less than 1 second, ILOG-Cplex
was faster in 26 cases, and FP was faster in 31 cases.

The feasibility pump 13

IL
O

G
-C

p
le

x
8
.1

F
P
2
:
n
o

b
o
u
n
d
,
ra

n
d
o
m

in
it

ia
l
so

lu
ti

o
n

F
P
1
:
a
p
p
ro

x
im

a
te

so
lu

ti
o
n

o
f
L
P

s
n
a
m

e
fi
rs

t
v
a
lu

e
ti

m
e

fi
rs

t
v
a
lu

e
n
IT

ti
m

e
b
es

t
v
a
lu

e
ti

m
e

L
B

ti
m

e
fi
rs

t
v
a
lu

e
n
IT

ti
m

e
b
es

t
v
a
lu

e
ti

m
e

a
ir

0
4

5
7
,6

4
0
.0

0
6
.2

N
/
A

5
2
1
0

1
,8

0
0

N
/
A

1
,8

0
0

1
.3

6
2
,3

9
8
.0

0
5
9
9

4
4
1
.8

5
9
,8

0
7
.0

0
9
7
3
.8

d
a
n
o
3
m

ip
7
6
8
.3

7
1
6
1
.2

N
/
A

5
5
3
1

1
,8

0
0

N
/
A

1
,8

0
0

1
2
.1

2
,6

4
9
,9

9
9
.8

0
2
4
1

6
4
.2

1
5
5
,5

9
7
.1

3
1
4
3
.1

fa
st

0
5
0
7

2
0
9
.0

0
3
3
.1

6
0
,7

7
0
.0

0
1

0
.6

1
9
8
.0

0
6
3
.7

4
.2

2
0
5
.0

0
2

1
.2

1
8
8
.0

0
2
5
.7

n
et

1
2

2
1
4
.0

0
1
5
9
3
.7

3
3
7
.0

0
1
2
5
9

1
1
6
.4

3
3
7
.0

0
1
3
6
.7

4
2
.9

3
3
7
.0

0
6
3

6
.4

3
3
7
.0

0
2
6
.3

sw
a
th

8
2
6
.6

6
3
8
.6

4
6
,2

7
7
.7

3
3
9

2
.1

1
,5

1
2
.2

1
1
7
.1

0
.3

4
5
,0

2
3
.4

7
3
8
2

1
5
.8

4
5
,0

2
3
.4

7
1
7
.1

v
a
n

6
.5

9
1
0
0
.3

N
/
A

5
1
7

1
,8

0
0

N
/
A

1
,8

0
0

7
2
.5

2
2
.7

5
1
5
9

6
4
9
.7

2
2
.7

5
1
,7

3
0
.2

N
S
R

8
K

4
,9

2
3
,6

7
3
,3

7
9
.3

2
1
4
7
8
.6

3
,4

3
1
,6

4
5
,5

0
1
.7

1
2

1
.5

2
7
9
,9

0
1
,6

5
8
.5

5
1
0
8
.4

2
1
8
.4

3
,5

6
8
,3

8
0
,0

6
3
.6

5
3

2
.0

2
6
8
,6

6
1
,6

6
0
.3

9
3
4
0
.5

d
c1

c
3
3
,4

5
8
,4

6
8
.2

6
1
5
.3

1
9
5
,9

7
7
,0

5
4
.5

0
4

0
.8

1
0
,7

3
2
,5

3
2
.9

2
8
7
.3

1
2
.6

8
,6

4
4
,4

9
8
,4

8
0
.2

8
2

0
.4

5
,0

7
4
,7

1
9
.0

2
9
7
.8

d
c1

l
7
5
2
,8

4
0
,6

7
2
.8

1
6
7
.6

4
1
,5

7
7
,0

9
7
,2

7
5
.1

9
0

0
.3

2
7
,8

6
5
,0

9
4
.8

1
1
6
7
.2

1
1
.7

1
2
6
,0

3
5
,9

1
3
.1

1
2

1
.7

1
1
,4

9
8
,0

3
8
.8

4
1
7
2
.4

d
o
lo

m
1

5
8
4
,9

2
3
,8

5
6
.0

1
2
9
.2

4
3
1
,9

9
2
,8

0
1
.0

0
2
8

1
3
.3

1
4
9
,8

5
4
,9

5
6
.1

1
1
1
6
.3

1
2
.4

4
7
5
,9

5
2
,4

6
5
.0

7
2
4

1
0
.8

1
5
5
,0

7
7
,5

3
8
.1

5
1
3
0
.3

si
en

a
1

5
9
1
,3

8
5
,6

3
4
.5

7
6
6
.4

8
,8

8
3
,5

6
4
,9

1
8
.8

9
1

0
.6

1
3
9
,1

2
2
,5

5
4
.8

3
3
6
0
.9

4
4
.6

9
5
3
,5

7
0
,6

7
9
.9

8
3

1
.3

4
3
0
,1

1
6
,2

0
4
.9

0
3
4
0
.5

tr
en

to
1

6
2
1
,0

4
4
,0

7
8
.0

7
1
8
.1

1
,2

9
6
,4

7
0
,1

8
4
.0

1
1
5

3
.0

6
5
,7

4
6
,9

1
0
.0

0
1
3
7
.4

8
.4

1
,2

9
6
,4

7
0
,1

8
4
.0

1
1
5

3
.0

8
6
,0

1
1
,2

3
1
.0

1
3
8
.9

ra
il
5
0
7

2
0
5
.0

0
3
2
.9

2
0
,2

5
1
.0

0
1

0
.8

2
2
0
.0

0
4
1
.9

5
.2

2
4
7
.0

0
2

1
.8

1
8
7
.0

0
8
9
.9

ra
il
2
5
3
6
c

7
7
1
.0

0
2
7
.1

2
,4

3
0
.0

0
1

0
.3

7
1
7
.0

0
5
5
3
.3

1
4
.5

9
1
9
.0

0
1

0
.3

7
1
8
.0

0
4
5
0
.1

ra
il
2
5
8
6
c

1
,0

7
2
.0

0
6
8
.6

2
,9

0
0
.0

0
1

0
.2

1
,1

2
2
.0

0
1
3
4
.8

5
.1

1
,3

7
6
.0

0
1

0
.3

1
,0

2
8
.0

0
7
3
5
.4

ra
il
4
2
8
4
c

1
,2

1
8
.0

0
2
7
3
.1

4
,5

3
1
.0

0
1

0
.5

2
,0

6
7
.0

0
1
1
3
.3

5
0
.7

1
,5

5
4
.0

0
2

0
.8

1
,1

7
4
.0

0
1
2
1
.2

ra
il
4
8
7
2
c

1
,7

3
7
.0

0
3
0
5
.6

4
,5

1
3
.0

0
2

0
.8

3
,3

8
5
.0

0
1
0
8
.1

1
7
.7

2
,1

3
2
.0

0
2

1
.1

1
,6

1
1
.0

0
1
9
7
.7

b
lp

-a
r9

8
9
,4

7
3
.6

6
3
7
.2

2
5
,4

5
9
.1

8
5
6
2

6
4
.5

2
5
,4

5
9
.1

8
8
4
.5

1
.6

2
4
,8

7
6
.8

7
9
5
9

1
0
6
.7

2
4
,8

7
6
.8

7
1
1
1
.5

C
M

S
7
5
0

4
8
0
3
.0

0
1
3
.9

1
,0

0
0
.0

0
4

2
.9

7
4
8
.0

0
3
4
.9

1
.0

1
,0

0
0
.0

0
3

1
.9

7
4
2
.0

0
3
3
.1

u
sA

b
b
rv

.8
.2

5
7
0

1
3
0
.0

0
4
6
.8

1
9
5
.0

0
3

0
.1

1
9
5
.0

0
4
.8

0
.1

1
8
9
.0

0
8

0
.2

1
8
0
.0

0
4
.1

m
a
n
p
o
w

er
1

6
.0

0
∗

2
8
.4

9
.0

0
1
3

3
.3

7
.0

0
1
2
.7

3
8
.8

1
2
.0

0
2
1

4
.5

6
.0

0
1
4
.1

m
a
n
p
o
w

er
2

6
.0

0
∗

1
1
5
.4

8
.0

0
5
3

1
1
.5

6
.0

0
2
0
.5

5
5
.6

8
.0

0
2
4

6
.0

6
.0

0
1
4
.7

m
a
n
p
o
w

er
3

6
.0

0
∗

9
9
.7

7
.0

0
2
1

5
.1

7
.0

0
1
3
.7

5
0
.4

1
1
.0

0
8
5

1
7
.4

6
.0

0
2
6
.3

m
a
n
p
o
w

er
3
a

6
.0

0
∗

7
0
.7

1
0
.0

0
1
2
0

2
5
.9

6
.0

0
3
5
.0

5
2
.6

9
.0

0
6
4

1
4
.7

6
.0

0
2
3
.6

m
a
n
p
o
w

er
4

6
.0

0
∗

1
0
0
.2

6
.0

0
1
6
9

3
6
.6

6
.0

0
4
5
.1

4
9
.6

1
0
.0

0
4
3

9
.4

6
.0

0
1
8
.0

m
a
n
p
o
w

er
4
a

6
.0

0
∗

8
4
.7

7
.0

0
2
4

6
.3

7
.0

0
1
4
.7

5
2
.1

9
.0

0
2
1

6
.0

6
.0

0
1
4
.7

T
a
b
le

5
.

P
er

fo
rm

a
n
ce

o
f
tw

o
F
P

v
a
ri

a
n
ts

(∗
I
L
O
G
-
C
p
l
e
x

w
a
s

ru
n

w
it

h
a
n

a
d
-h

o
c

tu
n
in

g
)

14 Matteo Fischetti et al.

Future directions of research should address the application of FP to MIP
problems with general integer variables, for which preliminary experiments seem
to indicate an increased probability of stalling. Another interesting topic is how
to exploit the considerable amount of information provided by the FP method.
Indeed, even in case of failure, the infeasible point x∗ ∈ P with minimum distance
from its rounding (chosen among those generated by the FP procedure) is likely
to be well suited to start a “feasibility recovery” procedure based on enumerative
local-search methods in the spirit of local branching [9], or RINS/guided dives
[7].

5. Acknowledgements

The work of the first and last authors was supported by MIUR and CNR, Italy,
and by the EU project ADONET. The work of the second author was supported
by the Center for Disease Control of the U.S. National Center for Health Statis-
tics. The authors are grateful to Dimitris Bertsimas for interesting discussions on
the role of randomness in rounding. Thanks are due to the anonymous referees
for useful comments.

References

1. T. Achterberg, T. Koch, A. Martin. The mixed integer programming library: MIPLIB
2003. http://miplib.zib.de.

2. E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki. OCTANE: A New Heuristic For
Pure 0-1 Programs. Operations Research 49, 207–225, 2001.

3. E. Balas and C.H. Martin. Pivot-And-Complement: A Heuristic For 0-1 Programming.
Management Science 26, 86–96, 1980.

4. E. Balas, S. Schmieta, C. Wallace. Pivot and Shift-A Mixed Integer Programming Heuris-
tic. Discrete Optimization 1, 3–12, 2004.

5. R.E. Bixby. Personal communication, 2003.
6. J.W. Chinneck. The constraint consesus method for finding approximately feasible points

in nonlinear programs. Technical Report Carleton University, Ottawa, Ontario, Canada,
October 2002.

7. E. Danna, E. Rothberg, C. Le Paper. Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Mathematical Programming DOI 10.1007/s10107-004-0518-7, 2004.

8. Double-Click sas. Personal communication, 2001.
9. M. Fischetti and A. Lodi. Local Branching. Mathematical Programming 98, 23–47, 2003.

10. F. Glover and M. Laguna. General Purpose Heuristics For Integer Programming: Part I.
Journal of Heuristics 2, 343–358, 1997.

11. F. Glover and M. Laguna. General Purpose Heuristics For Integer Programming: Part II.
Journal of Heuristics 3, 161–179, 1997.

12. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston, Dordrecht,
London, 1997.

13. F.S. Hillier. Effcient Heuristic Procedures For Integer Linear Programming With An
Interior. Operations Research 17, 600–637, 1969.

14. T. Ibaraki, T. Ohashi and H. Mine. A Heuristic Algorithm For Mixed-Integer Programming
Problems. Mathematical Programming Study 2, 115–136, 1974.

15. G.W. Klau. Personal communication, 2002.

The feasibility pump 15

16. A. Løkketangen. Heuristics for 0-1 Mixed-Integer Programming. In P.M. Pardalos and
M.G.C. Resende (ed.s) Handbook of Applied Optimization, Oxford University Press, 474–
477, 2002.

17. A. Løkketangen and F. Glover. Solving Zero/One Mixed Integer Programming Problems
Using Tabu Search. European Journal of Operational Research 106, 624-658, 1998.

18. M. Lübbecke. Personal communication, 2002.
19. A.J. Miller. Personal communication, 2003.
20. M. Nediak and J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed Integer

Programming. Research Report RRR 53-2001, RUTCOR, Rutgers University, October
2001.

21. J. Patel and J.W. Chinneck. Active-Constraint Variable Ordering for Faster Feasibility of
Mixed Integer Linear Programs. Technical Report Carleton University, Ottawa, Ontario,
Canada, November 2003.

22. E. Rothberg. Personal communication, 2002.
23. E. Rothberg. Personal communication, 2003.
24. K. Spielberg, M. Guignard. Sequential (Quasi) Hot Start Method for BB (0,1) Mixed

Integer Programming. Wharton School Research Report, 2002.

