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1 Introduction

Multidimensional (nD) signal processing and transmission constitute important topics in today’s com-
munication and control systems. This kind of signals is encountered, for instance, in the discretization
of partial differential equations which represent industrial or environmental processes, simultaneously
depending on space and time, or in image coding and processing. Many different techniques are avail-
able for the representation and the analysis of multidimensional signals, each of them suitable within a
particular range of applications and for achieving certain goals.

A very powerful tool is constituted by “behavior theory”, which provides a general framework for
the study of the trajectories a dynamical system produces according to its evolution laws. It originated
in the analysis of 1D systems, and was developed in a complete and useful form by J.C.Willems in the
last two decades. In a series of landmark papers [12, 13, 14], Willems provided a thorough description of
the ways a system interacts with its environment, as well as a clear conceptual apparatus for analysing
and identifying the attributes a family of trajectories possibly exhibits.

A second stage in the development of behavior theory initiated by P.Rocha and J.C.Willems at the
end of the eighties [8, 9], resulted in the absorption of two-dimensional (2D) signals into the theory.
The analysis of 2D behaviors has led to new insights in the classical theory of 2D systems and to
new investigations of Laurent polynomial operators, centering around the algebra of matrix pairs and
various primeness notions for polynomial matrices.
Another major development in behavior theory is G.D.Forney’s work on the behavioral approach to
group systems [4]. Like the original work on minimal bases of rational spaces [3], Forney’s papers find
significant applications in the theory of convolutional codes. At the same time, however, they draw on
duality theory, and suggest new problems on observability and memory span.

In the last few years, there has been an increasing interest in convolutional coding of multidimen-
sional (nD) data [1, 11], motivated to large extent by the possibility of investigating code performances
and properties in a behavior context. Also, multidimensional convolutional codes have been a fruitful
source of problems and conjectures, both in polynomial modules algebra and in signal processing of
discrete data arrays [10].

Basing on the theory of multidimensional behaviors, this paper aims to present a unifying approach
to the description of nD signals which allows for concise statements and analytic solutions of many
problems arising in different areas of communications and control.
Particular attention has been devoted to the support structure of multidimensional signals, and to
certain elementary operations (restriction, extension and concatenation) which have a concrete meaning
from the signal processing standpoint. These provide a strong link between the parity checks description
of nD behaviors and the concepts of observability and extendability; indeed, the support of the parity
check matrix “measures” the range of action of the system laws and provides useful bounds on the
region where parity checks apply when detecting if some sequence is a legal behavior trajectory.
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A point of view somewhat complementary to detection calls for an input/output analysis of the
trajectories generation, and of the way the supports of the trajectories are related to the corresponding
inputs. This problem appears particularly relevant when the behavior sequences have to be injectively
generated, as it always happens in coding theory. Although no general statement can be made, specific
assumptions on the structure of the generating matrices allow to uniformly confine the support of each
input signal into a suitable extension of the support of the associated output trajectory.

The paper is organized as follows. The first part introduces the basic definitions and properties of nD
finite behaviors; in particular, operations which involve only the supports allow to define the notions of
(external) controllability and observability. While controllability is well-estabilished [4, 9], and in the
context of finite support signals it follows from linearity and shift invariance, the observability definition
we will adopt comes from duality issues, and is fully justified when a parity checks description of the
behavior trajectories is adopted. Actually, as shown in Section 3, an observable behavior is characterized
by a finite set of parity checks one has to apply in order to recognize its trajectories, and hence it is
the kernel of a polynomial matrix operator.

Extendability is introduced in the same section as a significant strengthening of observability; the
binding requirement that the sequences involved in the definition have to be behavior elements is
replaced - when defining extendability - by weaker conditions on the parity checks applied to the
signals. As a consequence, extendable behaviors prove to be kernels of very particular polynomial
operators.

In the last part of the paper we develop the theory of input-output generation of nD behaviors, and
present some relevant connections between support conditions on the input-output pairs and primeness
requirements on the generator matrices.

2 Controllability and observability of finite support behaviors

Let F be an arbitrary field and denote by z the n-tuple (z1, z2, ..., zn), so that F[z] and F[z, z−1]
are shorthand notations for the polynomial and the Laurent polynomial (L-polynomial) rings in the
indeterminates z1, ..., zn, respectively.
For any sequence w = {w(h)}h∈Zn , taking values in Fp, the support of w is the set of points where w
is nonzero, i.e. supp(w) := {h = (h1, h2, ..., hn) ∈ Zn : w(h) 6= 0}. Also, w can be represented via a
formal power series ∑

hi∈Z
w(h1, h2, ..., hn) zh1

1 zh2
2 · · · zhn

n =
∑

h∈Zn

w(h) zh,

where h stands for the n-tuple (h1, h2, ..., hn) and zh for the term zh1
1 zh2

2 ...zhn
n .

On the other hand, power series can be viewed as representing vectors with entries in F∞ := FZn

,
thus setting a bijective map between nD sequences taking values in Fp and formal power series with
coefficients in Fp. This allows us to identify nD sequences with the associated power series, in particular,
finite support nD signals, with L-polynomial vectors, and to denote both of them with the same symbol
w. Sometimes, mostly when a power series w is obtained as a Cauchy product, it will be useful to
denote the coefficient of zh in w as (w, zh).

Linear operators on the sequence space are represented by appropriate matrices with elements
in F[z, z−1], whose primeness features have an immediate counterpart in terms of properties of the
associated operators. The main primeness notions which arise in the nD context are the following:

Definition An L-polynomial matrix G ∈ F[z, z−1]p×m, p ≥ m, is

• unimodular if p = m and detG is a unit in F[z, z−1], i.e. detG = czh for some nonzero
c ∈ F and some h ∈ Zn

;
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• right factor prime (rFP) if in every factorization G = ḠT , with Ḡ ∈ F[z, z−1]p×m and
T ∈ F[z, z−1]m×m, T is a unimodular matrix;

• right zero prime (rZP) if the ideal IG, generated by its maximal order minors, is the
ring F[z, z−1] itself.

The support of a matrix G ∈ F[z, z−1]p×m is the union of the supports of its elements.
An nD (finite) behavior B with p components is a set of finite support signals (trajectories) taking

values in Fp and endowed with the following properties:

(L) [Linearity] If w1 and w2 belong to B, then αw1 + βw2 ∈ B, for all α, β in F;

(SI) [Shift-Invariance] w ∈ B implies v = zhw ∈ B for every h ∈ Zn
, i.e. B is invariant

w.r.t. the shifts along the coordinate axes in Zn
.

As every nD behavior B can be viewed as an F[z, z−1]-submodule of F[z, z−1]p, which is a Noetherian
module [6], B is finitely generated, i.e. there exists a finite set of column vectors, g1,g2, ...,gm in
F[z, z−1]p, such that

B ≡
{ m∑
i=1

giui : ui ∈ F[z, z−1]
}

= {w = Gu : u ∈ F[z, z−1]m} =: ImG. (2.1)

The L-polynomial matrix G := row{g1,g2, ...,gm} is a generator matrix of B.

G1 ∈ F[z, z−1]p×m1 and G2 ∈ F[z, z−1]p×m2 are generator matrices of the same behavior if and
only if there exist P1 ∈ F[z, z−1]m1×m2 and P2 ∈ F[z, z−1]m2×m1 such that G1P1 = G2 and G2P2 =
G1. Consequently, G1 and G2 have the same rank r over the field of rational functions F(z). Being
an invariant w.r.t. all generator matrices of B, r is called the rank of B. It somehow represents a
complexity index of the behavior, as r independent trajectories can be found in B, while r+1 trajectories
(w1,w2, ...,wr+1) always satisfy an autoregressive equation w1p1 + w2p2 + ... + wr+1pr+1 = 0, with
pi ∈ F[z, z−1] not all zero.
A behavior B of rank r is free if it admits a full column rank generator matrix, that is a generator
matrix G with r columns. This amounts to say that each trajectory w in B is uniquely expressed as a
linear combination w = g1u1 + g2u2 + · · ·+ grur, ui ∈ F[z, z−1], of the columns of G.

The main properties of a finite behavior B are connected with certain elementary operations we can
perform on the system trajectories. These operations essentially reduce to “paste” pieces of different
trajectories into legal elements of B, or to “cut” a set of samples out of a given trajectory, so as to
obtain a new behavior sequence.

One of the pillars of Willems behavior theory is the notion of (external) controllability. For 1D
controllable behaviors the past has no lasting implications about the far future [13], which means
that the restriction of a 1D trajectory to (−∞, t] does not provide any information on the values the
trajectory takes on [t + δ,+∞), when δ > 0 is properly chosen. In a multidimensional context the
notions of “past” and “future” are quite elusive and, in many cases, unsuitable for classifying and
processing the available data. What seems more reasonable, instead, is to investigate to what extent
the values a trajectory w assumes on a subset S1 ⊂ Zn influence the values on the subset S2, disjoint
from S1, and to check if there exists a lower bound on the distance

d(S1,S2) := min

{
n∑
i=1

|hi − ki|, (h1, h2, ..., hn) ∈ S1, (k1, k2, ..., kn) ∈ S2

}
, (2.2)

which guarantees that w|S2, the restriction to S2 of the sequence w, is independent of w|S1. This point
of view led to the following definition [8].



4 E.FORNASINI and M.E.VALCHER

(C1) [Controllability] A finite behavior B is controllable if there exists an integer δ > 0
such that, for any pair of nonempty subsets S1,S2 of Zn

, with d(S1,S2) ≥ δ, and any pair
of trajectories w1 and w2 ∈ B , there exists v ∈ B such that

v|S1 = w1|S1 and v|S2 = w2|S2. (2.3)

While definition (C1) requires to paste together different signals into a new one, the following
statement refers to the possibility of finding a legal extension for every portion w|S of a behavior
trajectory w, by adjusting the sample values in a small area surrounding S. More precisely, once
introduced for ε ≥ 0 the ε-extension of the set S

Sε := {(h1, h2, ..., hn) ∈ Zn : d((h1, h2, ..., hn),S) ≤ ε},

one can give the following definition.

(C2) [Zero-controllability] A finite behavior B is zero-controllable if there exists an
integer ε > 0 such that, for any nonempty set S of Zn

and any w ∈ B, there exists v ∈ B
satisfying

v|S = w|S and supp(v) ⊆ Sε. (2.4)

Properties (C1) and (C2) make sense both for finite and infinite support behaviors, and the proof
of their equivalence given below holds for both of them. However, while conditions (C1) and (C2) are
always met by a finite behavior B, and essentially follow from the module structure B is endowed with,
for an infinite behavior controllability constitutes an additional constraint w.r.t. linearity and shift
invariance [8, 9].

Proposition 2.1 Controllability and zero controllability are equivalent.

Proof (C1) ⇒ (C2) Assume that B meets condition (C1). Given w ∈ B and S ⊂ Zn
, take in

(C1) w1 = w, w2 = 0, S1 = S, S2 = CSδ, where CS denotes the complementary set of S. Then the
trajectory v which fulfills (2.3), satisfies (2.4) with ε = δ.
(C2) ⇒ (C1) Assume that B satisfies condition (C2). Given w1 and w2 ∈ B and S1,S2 ⊂ Zn

, with
d(S1,S2) > ε, by (C2) there exist v1 and v2 ∈ B such that

vi|Si = wi|Si, supp(vi) ⊂ Sεi , i = 1, 2.

Thus v := v1 + v2 ∈ B satisfies v|Si = wi|Si, i = 1, 2, and (C1) holds for δ = ε.

Proposition 2.2 Any finite behavior B is controllable.

Proof Suppose that G ∈ F[z, z−1]p×m is a generator matrix of B and let η be a positive integer such
that B(0, η), the ball of radius η and center in the origin, includes supp(G). Consider any set S ⊂ Zn

and w = Gu ∈ B. If ū is the sequence which coincides with u on S and is zero elsewhere, the trajectory
v := Gū satisfies v|S = w|S, and has support which does not exceed S2η. So (C2) is met with ε = 2η.

Given two disjoint sets S1 and S2 which are far enough apart, controllability expresses the possibility
of steering any behavioral sequence, known in S1, into another element of B assigned on S2, meanwhile
producing a legal trajectory. Like controllability, also observability will be introduced without reference
to the concept of state, according to some recent works of Forney et al. [4, 7]. Observability formalizes
the possibility of pasting into a legal sequence any pair of trajectories that take the same values on a
sufficiently large subset of Zn. This is equivalent to say that, however chosen a sequence w ∈ B and a
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subset S ⊂ Zn, the possible extensions of w|S only depend on the values of w on a boundary region
of S.

Under this viewpoint, observability endows a behavior with a “separation property” that allows to
take into account only a small amount of data in order to extend a portion of behavior sequence.
Furthermore, once we think of the samples in S as the information about the past dynamics of the
system, observability enables us to design the “future” evolution by considering only the most “recent”
data (those on the boundary), somehow reminding of the notion of state.

(O1) [Observability] A finite behavior B is observable if there exists an integer δ > 0
such that, for any pair of nonempty subsets S1,S2 of Zn

, with d(S1,S2) ≥ δ, and any pair
of trajectories w1, w2 ∈ B , satisfying w1|C(S1 ∪ S2) = w2|C(S1 ∪ S2), the trajectory

v(h) =

w1(h) h ∈ S1

w1(h) = w2(h) h ∈ C(S1 ∪ S2)
w2(h) h ∈ S2

(2.5)

is an element of B.

-
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Fig. 2.1

Observability can be equivalently restated as follows: if the support of a behavior sequence w can
be partitioned into a pair of disjoint subsets, which are far enough apart, the restrictions of w to each
subset represent legal trajectories.

(O2) [Zero-observability] A finite behavior B is zero-observable if there exists an integer
ε > 0 such that for any w ∈ B satisfying w|(Sε \ S) = 0, S a nonempty set in Zn

, the
sequence

v(h) =
{

w(h) h ∈ S
0 elsewhere

(2.6)

belongs to B.
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Proposition 2.3 Observability and zero observability are equivalent.

Proof (O1) ⇒ (O2) Assume that B fulfills condition (O1). Given S ⊂ Zn and w ∈ B such that
w|(Sδ \ S) = 0, take in (O1) w1 = w, w2 = 0, S1 = S, S2 = CSδ. The trajectory v ∈ B satisfying
(2.5), satisfies also (2.6) with ε = δ.

(O2) ⇒ (O1) Assume that B fulfills condition (O2). Given S1,S2 ⊂ Zn
, with d(S1,S2) > ε, and w1,

w2 ∈ B satisfying w1|C(S1∪S2) = w2|C(S1∪S2), the sequence w1−w2 ∈ B satisfies (w1−w2)|C(S1∪
S2) = 0. As a consequence, the signal w given by

w(h) =
{

w1(h)−w2(h) h ∈ S1

0 elsewhere

is in B , and v := w + w2 ∈ B fulfills (2.5). So, (O1) holds for δ = ε.

3 Trajectories recognition and error detection

Underlying the definition of controllability is the idea of driving a portion of trajectory into another
one, provided that there is room enough for adjustements. In rough terms, the objective one has in
mind is that of manipulating the control variables in order to make the system behave in S2 in a more
desirable manner than it is expected by watching the system trajectory on S1. So, controllability is
naturally connected with the generation of B as the image of some matrix G, acting on the input space.

Observability is somehow related with the “dual” issue of recognizing whether a given sequence
v ∈ F[z, z−1]p is an element of B. This problem, that tipically arises in fault detection and convolutional
encoding contexts, can be managed by resorting to a linear filter (residual generator or syndrome former)
that produces an identically zero output signal when the input is an admissible trajectory of B. From
a mathematical point of view, this requires to find a set of sequences (parity checks) endowed with the
property that their convolution with the elements of B is zero.

So, for a given behavior B ⊆ F[z, z−1]p, a (finite) parity check is a column vector s ∈ F[z, z−1]p that
satisfies sTw = 0, for all w ∈ B. The set B⊥ of all finite parity checks of B is the orthogonal behavior,
and as a submodule of F[z, z−1]p, it is generated by the columns of some matrix H ∈ F[z, z−1]p×q, that
is

B⊥ = {s ∈ F[z, z−1]p : s = Hx,x ∈ F[z, z−1]q}. (3.1)

Condition sTw = 0, ∀ s ∈ B⊥, however, needs not imply w ∈ B. In general

B⊥⊥ := {w ∈ F[z, z−1]p : sTw = 0,∀ s ∈ B⊥} (3.2)
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properly includes B, and is the set of all L-polynomial vectors obtained by combining the columns of
G over the field of rational functions F(z). It is clear that B can be identified via a finite set of parity
checks if and only if B = B ⊥⊥ or, equivalently,

B ≡ kerHT := {w ∈ F[z, z−1]p : HTw = 0}. (3.3)

In this setting, observability finds a somewhat more substantial interpretation. Actually, if B = kerHT ,
the restriction of a trajectory to some set S still provides a legal signal whenever the distance between
S and the remaining support of the trajectory exceeds the range of action of the parity check matrix
H.
Proposition 3.1 below shows that kernel representations exactly correspond, as it can be expected, to
observable behaviors, and makes it clear that observability induces further constraints on the structure
of B, in addition to linearity and shift invariance.

Proposition 3.1 A behavior B ⊆ F[z, z−1]p is observable if and only if there exist an
integer h > 0 and an L-polynomial matrix HT ∈ F[z, z−1]h×p such that B = kerHT .

Proof Assume that B = ImG, G ∈ F[z, z−1]p×m, is an observable behavior, and let B ⊥ = Im H,
H ∈ F[z, z−1]p×q, denote the orthogonal behavior introduced in (3.1). We will show that B ≡ kerHT .
SinceHTG = 0, it is clear that kerHT ⊇ B. To prove the converse, express w ∈ kerHT as w = Gn/d(z),
d ∈ F[z],n ∈ F[z, z−1]m×1. For every integer ρ > 0 there is a suitable polynomial p(z) [2] such that
p(z)d(z) ∈ F[zρ1 , . . . , , z

ρ
n]. If property (O2) holds w.r.t. ε > 0, and r > 0 is an integer such that

supp(w) ⊆ B(0, r), we choose ρ > 2r + ε. So, the behavior sequence p(z)d(z)w = Gnp(z) can be
written as ∑

i1,i2,...,in

ci1,i2,...,inz
ρi1
1 zρi22 · · · zρinn w,

and thus is the sum of disjoint shifted copies of w, and the distance between two arbitrary copies
exceeds ε. So, by (O2), each copy of w, and hence w itself, is in B.
Conversely, let B = kerHT , and set ε = 2s, with s > 0 an integer s.t. B(0, s) ⊇ supp(HT ). If S is a
subset of Zn and w ∈ B satisfies w|(Sε \ S) = 0, the sequence

v(h) =
{

w(h) h ∈ S
0 elsewhere

is in kerHT and hence in B. Consequently, B is zero-observable.

The kernel description given in Proposition 3.1 leads to new insights into the internal structure of
an observable behavior. Observability, indeed, expresses a sort of “localization” of the system laws
or, equivalently, the existence of a bound on the size of all windows (in Zn) we have to look at when
deciding whether a signal belongs to B . Denoting by B|S := {w|S : w ∈ B} the set of all restrictions
to S of behavior trajectories, the above localization property finds a formal statement as follows:

(O3) [Local-detectability] A finite behavior B is locally-detectable if there is an integer
ν > 0 such that every signal w satisfying w|S ∈ B|S for every S ⊂ Zn

with diam(S) ≤ ν,
is in B.

Proposition 3.2 Local detectability and observability are equivalent.

Proof Assume that B satisfies (O3) for a certain ν > 0. Given S ⊂ Zn and w ∈ B such that
w|(Sν \ S) = 0, define v as follows

v(h) =
{

w(h) h ∈ Sν
0 elsewhere.

(3.4)
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Consider any window W, with diam(W) ≤ ν. If W is included in Sν , then v|W = w|W ∈ B|W,
otherwise we have W ∩ S = ∅, and therefore

v|W = 0|W ∈ B|W. (3.5)

So, by (O3), v is a legal trajectory, and (O2) holds for ε = ν.
Conversely, assume that B is observable. By Proposition 3.1, there exists an L-polynomial matrix

H ∈ F[z, z−1]p×q such that B = kerHT . Let ν > 0 be an integer such that supp(HT ) ⊆ B(0, ν),
and suppose that v is any signal satisfying v|S ∈ B|S for every S ⊂ Zn with diam(S) ≤ 2ν. If
S̄ := −supp(HT ), the computation of the coefficient of zk in HTv involves only samples of v indexed
in

k + S̄ := {h ∈ Zn : h− k ∈ S̄} = −supp(zkHT ). (3.6)

On the other hand, since diam(k+ S̄) ≤ 2ν, there exists wk ∈ B which satisfies v|(k+ S̄) = wk|(k+ S̄),
and this result holds for every k ∈ Zn. So, the coefficient of zk in HTv is the same as in HTwk ≡ 0,
and hence v ∈ kerHT = B.

We may intuitively view Proposition 3.1 as claiming that the trajectories of an observable behavior
are recognized by a finite family of parity checks, which involve only a finite number of samples at
every step of the testing procedure. When no a priori information on the support of a trajectory is
available, however, a positive outcome of the parity checks, performed on some finite window S, does
not guarantee that a behavior sequence can be found interpolating the available data on S. So, in
general, the checking procedure should be extended to the whole space Zn.

A noteworthy exception is represented by the case when S is surrounded by a sufficiently large
boundary region where the signal is zero. If so, extending the data out of S via the identically zero
sequence leads to a signal which satisfies the parity checks all over Zn. Clearly, it would be highly
desirable if the extension into a legal trajectory could be accomplished without any particular assump-
tion on the data values in the boundary region. A thorough discussion of this problem is based on the
definition of what we precisely mean by “ satisfying the parity checks” on a set S ⊂ Zn.

Definition Let B = kerHT be an observable behavior. A sequence v ∈ F[z, z−1]p satisfies
the parity checks of B in h ∈ Zn

if(
HTv, zi

)
= 0, ∀ i ∈ h + supp(HT ), (3.7)

where h + supp(HT ) := {h + j : j ∈ supp(HT )}. More generally, if S is any subset of Zn
,

v satisfies the parity checks of B on S if it satisfies them in each point of S, i.e.(
HTv, zi

)
= 0, ∀ i ∈ S + supp(HT ) :=

⋃
h∈S

(
h + supp(HT )

)
. (3.8)

Letting HT :=
∑

jH
T
j zj, (3.7) reduces to the following system of linear equations∑
j ∈ supp(HT )

HT
j v(i− j) = 0, ∀ i ∈ h + supp(HT ), (3.9)

and hence to the system of all difference equations which involve the sample v(h).
Analogously, v meets condition (3.8) if all difference equations involving the samples v(h), with h in
S, are satisfied. Fig.3.1 below describes the two-dimensional case; each dashed polygon intersecting S
represents the coordinates (i1 − j1, i2 − j2) of the samples which appear in a system like (3.9). As it is
suggested by Fig. 3.1, and clearly implied by the convolutional nature of the system laws expressed by
condition HTv = 0, knowing the data on a finite window W allows to check the signal only on those
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subsets S of W satisfying the inclusion Sν ⊆ W, ν > 0 being an integer selected according to the size
of the support of HT .
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Once the parity checks have been successfully performed on a sequence v in a subset S which fulfills
the above inclusion, the natural question arises whether the data on S can be extended into a legal
trajectory, namely if there exists a behavior signal that fits on S the available data. In general, even
under the observability assumption, the answer is negative. When the hypotheses on B are properly
strengthened, however, an integer ε > 0 can be found, such that a positive check on Sε guarantees the
existence of some w ∈ B which coincides with v in S. Note that the amount of data we need may far
exceed the part of them we interpolate. Actually, checking v on Sε requires to know the samples of v
on a superset, say Sν+ε, of Sε, whereas the data we are able to fit are those belonging to the set S.
The formal definition of this property is the following.

(E1) [Extendability] An observable behavior B = kerHT is extendable if there is an
integer ε > 0 such that, for every subset S ⊂ Zn

and every v ∈ F[z, z−1]p, which satisfies
on Sε the parity checks of B, a trajectory w ∈ B can be found s.t. w|S = v|S.

An alternative definition of extendability, provided by (E2) below, refers to pairs of sequences and
pairs of sets. It clarifies in which sense we can view extendability as a strengthening of controllability:
indeed, the assumption that the sequences in (C1) belong to B is replaced in (E2) by the weaker
condition that they locally fulfill the parity checks. The proof of (E1) ⇔ (E2) strictly reminds that of
Proposition 2.3.

(E2) [Twin-extendability] An observable behavior B = kerHT is twin-extendable if
there exists an integer δ > 0 such that, for every pair of sets S1,S2 ⊂ Zn

and every pair of
signals v1,v2 ∈ F[z, z−1]p, which satisfy the parity checks of B on Sδ1 and Sδ2 , respectively,
w ∈ B can be found such that w|S1 = v1|S1, and w|S2 = v2|S2.

Extendable behaviors turn out to be described by ZP parity check matrices. As a consequence,
properties (E1) and (E2) constitute stronger versions of observability.

Proposition 3.3 [2] A finite behavior B with p components is extendable if and only if
B = kerHT , for some left zero-prime (`ZP) matrix HT .
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4 Signals generation

The analysis we carried out in the previous sections essentially focused on the properties of behavior
trajectories, without concern for the way they are generated. Once a behavior B is represented via a
finite set of generators g1,g2, ...,gm, however, it is natural to look at G := [g1 g2 ... gm] as a transfer
matrix, and hence to consider B as the image of an input-output map acting on F[z, z−1]m. This point
of view seems particularly appropriate when B is a convolutional code, as it is customary to regard
it as the result of an encoding process, and, consequently, its trajectories (codewords) as the outputs
of a dynamical encoder. In a wider context, the trajectories of B are obtained either from certain
processing operations applied to multidimensional data, or from different transformations (desired or
not) performed on the original signal. In both cases the analysis of the algebraic properties of the
generator matrices makes it possible a detailed knowledge of the behavior structure.

When an input/output description is adopted, it is often imperative to associate trajectories of
B and input sequences bijectively. In data transmission the meaning of this requirement is clear,
as input signals represent information messages to be retrieved from the received codewords, and
an unambiguous decision at the decoding stage is possible when each codeword encodes a unique
information sequence. This amounts to say that the encoder G induces a 1-1 map.
If B is a free module, every full column rank generator matrix G has (possibly infinitely many) rational
left inverses G−1. Each of them, when applied to a behavior trajectory w = Gu, allows to uniquely
retrieve the (finite) input sequence u. However, when G−1 is applied to a finite support sequence
v 6∈ B, coming, for instance, from a noisy measurement of w, we may obtain an infinite support
sequence, which differs from u in infinitely many points. Clearly, this drawback can be avoided when
G−1 is an L-polynomial matrix, which requires G to be a rZP L-polynomial matrix.

Also, when resorting to a right zero-prime generator matrix G, a uniform bound can be found
on the support of the input sequences which correspond to behavior trajectories. Actually, if G−1

is an L-polynomial inverse of G, w ∈ B is generated by the input signal u = G−1w whose support
cannot exceed “too much” that of w. This feature, we will refer to as wrapping input property, is quite
appealing, as the mere recognition of the support of a trajectory allows to derive a uniformly tight
bound on the support of the corresponding input sequence.
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Fig. 4.1

(WI) [Wrapping input property] A finite behavior B has the wrapping input property
if there exist a full column rank generator matrix G and a positive integer δ such that
w = Gu implies

supp(u) ⊆
(
supp(w)

)δ
. (4.1)

Property (WI) does not depend on the particular generator matrix of B, provided that it has full
column rank. Furthermore, when noninjective generator matrices are considered, and the uniqueness
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of the input sequence producing a given trajectory is lost, a particular input can be found, however,
whose support satisfies (4.1).

Proposition 4.1 Assume that B has the (WI) property for some full column rank matrix
G and some integer δ > 0. Then for every generator matrix Ḡ ∈ F[z, z−1]p×q an integer
δ̄ > 0 can be found s.t. each trajectory w ∈ B can be expressed as w = Ḡū for some input

ū with supp(ū) ⊆
(
supp(w)

)δ̄
.

Proof Since G and Ḡ are generator matrices of the same behavior, there exists a full column rank
L-polynomial matrix Q, such that G = ḠQ. Let τ be the radius of a ball, with center in the origin,
including supp(Q), and consider w ∈ B. By property (WI), there is u such that w = Gu and supp(u) ⊆(
supp(w)

)δ. So, ū := Qu satisfies w = Gu = ḠQu = Gū, and supp(ū) = supp(Qu) ⊆
(
supp(u)

)τ ⊆(
supp(w)

)τ+δ
. Consequently, the proposition holds for δ̄ = τ + δ.

Interestingly enough, the zero primeness of G is not only sufficient but also necessary for property
(WI). So, free behaviors satisfying property (WI) can be identified with behaviors that are generated
by `ZP matrices, and hence are extendable.

Proposition 4.2 [2] A finite behavior B has the (WI) property if and only if it admits a
right zero-prime generator matrix.

5 Conclusions

In this paper several internal properties of finite support n-D behaviors have been investigated, and
connected with the algebraic structure of the corresponding generator matrices.

Further researches, aiming to clarify certain connections with infinite support behaviors, are cur-
rently in progress. Although mathematical tools borrowed from duality theory have already proved to
be useful in convolutional coding theory [1, 11], yet an nD extension is far from trivial.

Looking to the future, a satisfactory interpretation of polynomial matrix properties, like factor
primeness and column independence, in terms of intrinsic features of the system trajectories, would
constitute an important step for subsequent developments of the theory. On the other hand, various
topics connected with the specific structure of the ground field remain rather unexplored: in particular,
the role played by the field characteristic, and the periodical patterns possibly induced by a finiteness
assumption on F could eventually lead to a better understanding of the structure of nD convolutional
codes.
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