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Abstract

Bilinear systems in input/output form are introduced, and represented by
means of suitable rational functions in two indeterminates. Necessary and suf-
ficient conditions for BIBO stability are derived, and compared with analogous
results on 2D systems stability.
Several features of the output evolutions, corresponding to finite support as well
as to periodic input sequences, are discussed, and related to the polar structure of
the rational functions that characterize the input-output maps.
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1 Introduction

In many problems of system analysis and control the physical process is described
by means of an input-output (i/o) map, that assigns, to each input, a corresponding
output. This situation typically takes place when either the internal complexity of the
process is very high or the information available on it is too poor for building up a
reliable mathematical model from first principles.

In most cases, a linear time invariant i/o description is adopted. Indeed, identifi-
cation techniques often produce linear models, and a large number of efficient control
algorithms are based on the transfer function approach. On the other hand, when im-
portant deviations from linearity and wide excursions of the variables have to be taken
into account, nonlinear i/o models could allow for a better fit of the actual behavior.
The nonlinear identification problem, however, can be solved satisfactorily only if the
class of assumed models is both analytically manageable and large enough to provide
a good approximation to the physical process.

An extremely broad catalogue of nonlinear mathematical models is provided by the
discrete time version of Volterra series and other related series expansion techniques,
that have been investigated by several researchers [1, 2, 3, 4, 5, 11]. In this context,
bilinear maps, and the corresponding quadratic maps, represent the simplest instance of
nonlinear i/o maps, arising when only the second term of a Volterra series is considered.
Actually, several features of the linear case still remain discernable: in particular, when
a bilinear map can be realized by finitely many adders, multipliers and delays, a modal
analysis of its structure can be performed, that is reminiscent of the classical approach
to finite dimensional linear systems. On the other hand, due to the fact that, like
2D systems in i/o form [6, 7], bilinear maps are expressed by power series in two
variables, useful insights are also provided by some more unconventional topics of linear
multidimensional theory.

The aim of this contribution is to discuss some issues connected with bilinear maps
that admit a realization with a finite number of basic elements. We investigate, first,
the stability problem and derive necessary and sufficient conditions guaranteeing that
bounded inputs always produce bounded outputs. These conditions refer to the polar
structure of the rational function that expresses the i/o map, and enlighten some con-
nections among i/o stability of bilinear maps, i/o stability of 2D transfer functions and
the approximately finite memory property. We analyse, next, the free system dynam-
ics, namely the output evolution determined by finite support input sequences. As we
shall see, the evolution can be expressed as a linear combination of elementary modes
associated with the zeros of suitable polynomials.

Finally, assuming BIBO stability, we consider the asymptotic behavior of the output
corresponding to periodic inputs pairs. It turns out that, except for some special
cases, the output sequence is eventually periodic, and its permanent component can be
determined by resorting to certain diophantine equations.
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2 The structure of bilinear input-output maps

In this paper we consider discrete, time invariant, scalar-inputs/scalar-output bilinear
system in input/output form. More precisely, we assume that input and output se-
quences are defined on N and take values over the real field R, and the output sequence
y(·) causally depends on the input pair (u1(·), u2(·)) according to a map f(·, ·) that
satisfies the following properties:

f(αu1, u2) = αf(u1, u2) f(u1, βu2) = βf(u1, u2)
f(u1 + v1, u2) = f(u1, u2) + f(v1, u2) f(u1, u2 + v2) = f(u1, u2) + f(u1, v2),

where α and β are in R and u1, u2, v1 and v2 are arbitrary sequences.
In order to get a concrete representation of f , it is convenient to introduce the elemen-
tary input pairs δij(·) defined by

δij(t) =


(1, 0), if t = i;
(0, 1), if t = j:
(0, 0), otherwise,

and to consider the output sequences sk0(·) and s0k(·) corresponding to the input pairs
δk0(·) and δ0k(·), k = 0, 1, . . ., respectively. Upon arranging the output sequences in
the infinite matrix

Mf =



s00(0) s01(0) s02(0) s03(0)

s10(0) s00(1) s01(1) s02(1)
. . .

s20(0) s10(1) s00(2) s01(2)
. . .

s30(0) s20(1) s10(2) s00(3)
. . .

. . . . . . . . . . . .


,

the causality and invariance assumptions imply that the output value at time t, corre-
sponding to a generic input pair (u1, u2), is given by

y(t) = [u2(t) u2(t− 1) · · · u2(0) ]


s00(0) s01(0) . . . s0t(0)
s10(0) s00(1) . . . s0,t−1(1)
. . . . . . . . . . . .
st0(0) st−1,0(1) . . . s00(t)




u1(t)
u1(t− 1)

...
u1(0)


Vice versa, every infinite matrix M induces, via the above construction, a bilinear i/o
map.

It is worthwhile to remark that single input/single output quadratic maps can be
reduced to the above framework just by associating with a bilinear map f the map
Qf : u 7→ f(u, u). The output value at time t induced by an input sequence u(·) is then
given by the quadratic form

y(t) = (Qf (u))(t) = [u(t) u(t− 1) · · · u(0) ]


s00(0) s01(0) . . . s0t(0)
s10(0) s00(1) . . . s0,t−1(1)

. . . . . . . . .
st0(0) st−1,0(1) . . . s00(t)




u(t)
u(t− 1)

...
u(0)
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On the other hand, Qf allows to uniquely retrieve the underlying bilinear map f , once
the infinite matrix Mf is assumed to be symmetric.

As in the case of linear maps, input and output sequences can be represented by
means of formal power series in suitable indeterminates. More precisely, we associate
with {u1(t)}t∈N, {u2(t)}t∈N and {y(t)}t∈N the formal z−1-transforms

U1(z) :=
+∞∑
t=0

u1(t)zt U2(z) :=
+∞∑
t=0

u2(t)zt, and Y (z) :=
+∞∑
t=0

y(t)zt

respectively. Under this assumption, the bilinear i/o map f : RN × RN → RN :
(u1, u2) 7→ y can be described as follows [8]

Y (z1z2) =
(
M(z1, z2)U1(z1)U2(z2)

)
�

+∞∑
t=0

(z1z2)t, (1)

where M(z1, z2) :=
∑+∞
i,j=0m(i, j)zi1z

j
2 is the power series in two indeterminates whose

coefficient m(i, j) coincides with s(i−j)∨0,(j−i)∨0(i ∧ j), the (i, j)th entry of Mf , and �
denotes the Hadamard product of power series.

From a computational point of view, this amounts to saying that the output se-
quence {y(t)}t∈N coincides with the sequence of “diagonal coefficients” of the Cauchy
product

Z(z1, z2) := M(z1, z2)U1(z1)U2(z2),

which represents the output generated by a 2D system with transfer function M(z1, z2),
when excited by the input U1(z1)U2(z2). In other words, for every t ∈ N, y(t) coin-
cides with the diagonal element z(t, t). Notice that, according to our notation , the
“diagonal series”

∑+∞
i=0 m(i, i + k)(z1z2)i+k, k ∈ N, can be identified with the output

of (1) corresponding to the canonical inputs U1(z) = zh and U2(z) = 1, and similarly∑+∞
j=0 m(j + h, j)(z1 · z2)j+h, h ∈ N, with the output sequence produced by U1(z) = 1

and U2(z) = zh.

A bilinear map (1) can be synthesized by means of a finite number of delay elements,
adders and multipliers, namely is ”realizable” by interconnecting via multipliers a finite
number of time-invariant linear state models, if and only if [8] M(z1, z2) is a rational
power series endowed with the following structure

M(z1, z2) =
n(z1, z2)

h0(z1z2)h1(z1)h2(z2)
, (2)

where h0(z1z2), h1(z1) and h2(z2) are 1D polynomials with nonzero constant terms,
while n(z1, z2) is a 2D polynomial. Throughout the paper we will assume, without
loss of generality, that h0(z1z2), h1(z1) and h2(z2) have unitary constant terms and no
common factors with n(z1, z2).
The structure of (2) is particularly attractive in that it produces a class of bilinear sys-
tems that exhibit an autoregressive behavior. Actually, if one rewrites the polynomials
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as

h0(z) = 1 + α1z + . . .+ αm0z
m0 h1(z) = 1 + β1z + . . .+ βm1z

m1

h2(z) = 1 + γ1z + . . .+ γm2z
m2 n(z1, z2) = ν00 + ν10z1 + ν01z2 + . . .+ νrsz

r
1z
s
2,

the bilinear map can be expressed by means of the following equations

y1(t) +
m1∑
i=1

βiy1(t− i) = u1(t)

y2(t) +
m2∑
j=1

γjy2(t− j) = u2(t)

y(t) +
m0∑
h=1

αiy(t− h) =
∑
i,j

νijy1(t− i)y2(t− j).

and therefore the bilinear system consists of
- two moving average linear systems, driven by u1 and u2 and producing two aux-

iliary outputs y1 and y2, and
- a linear system, autoregressive in the output y of the bilinear map, and driven by

a combination of products of y1 and y2 taken at different time instants.

3 BIBO stability

Consider the bilinear i/o map

f : R[[z1]]×R[[z2]]→ R[[z1z2]]

: (U1(z1), U2(z2)) 7→
(
n(z1, z2)U1(z1)U2(z2)
h0(z1z2)h1(z1)h2(z2)

)
�
∞∑
t=0

(z1z2)t. (3)

The map (3) is said to be bounded input-bounded output (BIBO) stable if for every
pair of series, U1(z1) and U2(z2), with bounded coefficients, f(U1, U2) has bounded
coefficients, too. BIBO stability of (3) is strictly related to the polar structure of
M(z1, z2) = n(z1, z2)/[h0(z1z2)h1(z1)h2(z2)], and, furthermore, it turns out that the
above map is BIBO stable if and only if the 2D i/o map associated with M(z1, z2) is
endowed with this property.

Proposition 1 The bilinear map (3) is BIBO stable if and only if h0(z), h1(z) and
h2(z) have no zero in the closed unit disk D1 := {z ∈ C : |z| ≤ 1}.

Proof If h0(z), h1(z) and h2(z) have no zero in D1, the 2D transfer function M(z1, z2)
has no singularities in the closed unit polydisk D2 := {(z1, z2) ∈ C2 : |z1| ≤ 1, |z2| ≤ 1}
and hence is BIBO stable [9]. Consequently, every pair of bounded inputs (U1(z1), U2(z2))
produces a 2D bounded output M(z1, z2)U1(z1)U2(z2), whose diagonal, i.e., the output
y, is obviously bounded.

Suppose, now, that (3) is BIBO stable.
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• We prove, first, that h2(z) has no zero in D1. If not, we would have (1−αz2) | h2(z2),
for some α ∈ C, |α| ≥ 1. Consider the following power series

U1(z1) = h1(z1)Ū1(z1) (4)

U2(z2) =


1 if |α| > 1,

1
1− αz2 if α = ±1

1
(1− αz2)(1− α∗z2) if α ∈ C \R and |α| = 1

,

where α∗ is the conjugate of α and Ū1(z1) is a series, with bounded coefficients, to be
determined. Both U1(z1) and U2(z2) have bounded coefficients and the corresponding
output is given by

Y (z1z2) =
(
n(z1, z2)
h0(z1z2)

Ū1(z1)
U2(z2)
h2(z2)

)
�
∞∑
t=0

(z1z2)t. (5)

If we express n(z1, z2) as

n(z1, z2) = zT−1
1 ñT−1(z2) + zT−2

1 ñT−2(z2) + . . .+ ñ0(z2), (6)

with T ∈ N, ñi(z2) ∈ R[z2], i = 0, 1, . . . , T − 1, by the coprimality assumption on the
pair (n(z1, z2), h2(z2)), it follows that there exists j such that (1−αz2) does not divide
ñj(z2). Consequently, the coefficients of the power series expansion of

W (z2) :=
ñj(z2)U2(z2)

h2(z2)

constitute an unbounded sequence, and one at least of the subsequences

{w(kT )}k, {w(kT + 1)}k, . . . , {w(kT + T − 1)}k

diverges. So, there exists P ∈ N such that(
zP1

1− zT1
n(z1, z2)U2(z2)

h2(z2)

)
�
∑
t

(z1z2)t

corresponds to an unbounded sequence. It is now clear that, if we assume in (4)

Ū1(z1) :=
zP1

1− zT1
,

the output series in (5) represents an unbounded output.
• The proof that h1(z) has no zero in D1 follows the same lines.
• To show that h0(z) has no zero in D1, suppose, by contradiction, that there exists
α ∈ C, |α| ≥ 1, such that (1− αz) | h0(z) and express n(z1, z2) as follows

n(z1, z2) = zN1 nN (z1z2)+zN−1
1 nN−1(z1z2)+ . . .+n0(z1z2)+ . . .+zM2 n−M (z1z2), (7)
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with ni(z1z2) ∈ R[z1z2] and N,M ∈ N. As n(z1, z2) and h0(z1z2) have no common
factor, there exists i ∈ {−M,−M + 1, . . . , N} such that ni(z1z2) is not a multiple of
1− αz1z2.
If |α| > 1 or |α| = 1 and its multiplicity is greater than 1, the power series associated
with ni(z1z2)/h0(z1z2) corresponds to an unbounded sequence, and the output sequence
corresponding to the bounded inputs{
U1(z1) = h1(z1)
U2(z2) = h2(z2)zi2

for i ≥ 0, or

{
U1(z1) = h1(z1)z−i1

U2(z2) = h2(z2)
for i < 0

is unbounded.
Assume, now, that the only zeros of h0(z) in D1 are simple and of unitary modulus,
and let 1/α be one of them. By the coprimality of n(z1, z2) and h0(z1z2), it follows
that there exists j such that (1 − αz1z2) does not divide nj(z1z2). Consequently, the
coefficients of the series ∑

t

w(t)(z1z2)t =
nj(z1z2)
h0(z1z2)

do not constitute an `1 sequence.
Set T := N+M+1. If we assume j ≥ 0, for instance, and consider the pair of (possibly
complex) bounded inputs associated with

U1(z1) =
h1(z1)

1− (αz1)T
U2(z2) =

h2(z2)zj2
1− zT2

, (8)

we have that the output sequence corresponding to the series

Y (z1z2) =

(
n(z1, z2)

h0(z1z2)h1(z1)h2(z2)
h1(z1)

1− (αz1)T
h2(z2)zj2
1− zT2

)
�
∑
t

(z1z2)t

=

(
nj(z1, z2)zj1z

j
2

h0(z1z2)
1

1− (αz1)T
1

1− zT2

)
�
∑
t

(z1z2)t =
nj(z1, z2)zj1z

j
2

h0(z1z2)[1− (αz1z2)T ]

is unbounded. If α belongs to R we have obtained in this way a pair of real valued
bounded inputs producing an unbounded real output. If α is complex, it is sufficient
to assume in (8)

U1(z1) =
h1(z1)

[1− (αz1)T ][1− (α∗z1)T ]
,

and proceed as before.

Given a 2D transfer function N(z1, z2) = n(z1, z2)/h(z1, z2), with n(z1, z2) and h(z1, z2)
factor coprime, if h(z1, z2) is devoid of zeros in D2 the function M(z1, z2) is 2D BIBO
stable. As it has been proved by D.Goodman [9], however, the converse is not true.
Indeed, M(z1, z2) can be BIBO stable even if it has nonessential singularities of the
second kind on the distinguished boundary T2 := {(z1, z2) ∈ C2 : |z1| = 1, |z2| = 1} of
D2, namely if n(α, β) = h(α, β) = 0 for some (α, β) ∈ T2. When restricting ourselves
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to the class of 2D transfer functions described as in (2), namely to rational functions
which are adopted for representing i/o bilinear maps, 2D BIBO stability is equivalent
to assuming that h0(z), h1(z) and h2(z) have no zeros in the closed unit disk D1. In
fact, if h1(α) = 0, |α| = 1, then (α, β) is a zero of the denominator of M(z1, z2) for
every β ∈ C and hence M(z1, z2) has nonessential singularities in D2 \ T2, which rules
out 2D BIBO stability. The same reasoning obviously applies to h2(z). On the other
hand, if h0(α) = 0, |α| = 1, then all pairs (αeiθ, e−iθ) ∈ T2, θ ∈ R, are zeros of h0(z1z2),
viewed as a 2D polynomial. As n(z1, z2) and h0(z1z2) are factor coprime, and hence
have a finite number of common zeros, one at least of the pairs (αeiθ, e−iθ) is a pole of
M(z1, z2). Consequently, the rational function (2) is 2D BIBO stable if and only if it
represents a BIBO stable bilinear i/o map.

It is also worth to remark that BIBO stable bilinear maps are endowed with the
“approximately finite memory” (AFM) property introduced by Sandberg in his papers
on nonlinear systems [10, 11]. A bilinear i/o map f has the AFM property if, assuming
that u1(·) and u2(·) take values in some finite interval [−α, α] of R, for all ε > 0 there
exists a positive integer T such that |f(u1, u2)(t)− f(Wt,Tu1,Wt,Tu2)(t)| < ε, where

(Wt,Tui)(τ) :=
{
ui(τ), if τ ∈ [t− T, t];
0, otherwise.

i = 1, 2. When f is BIBO stable, the series M(z1, z2) corresponds to a BIBO stable
2D system [9], which implies

∑+∞
i,j=0 |m(i, j)| < ∞. Consequently, given ε′ > 0, an

integer N(ε′) can be found such that
∑
i,j /∈[0,N(ε′)] |m(i, j)| < ε′. As the output values

y(t) and ỹ(t), produced at time t by the pairs (u1, u2) and (Wt,Tu1,Wt,Tu2), are given
by
∑t
i,j=0 u1(i)u2(j)m(t− i, t− j) and

∑t
i,j=t−N(ε′) u1(i)u2(j)m(t− i, t− j) respectively,

when |u1(i)| and |u2(i)| are both in [−α, α] for all i ∈ N one gets

|y(t)− ỹ(t)| = |
∑

i,j /∈[t−N(ε′),t]

u1(i)u2(j)m(t− i, t− j)|

≤ α2
∑

i,j /∈[0,N(ε′)]

|m(i, j)| ≤ α2ε′,

which proves the AFM property.

4 Free and periodic dynamics

Once a bilinear i/o map f is given, one can exploit shift-invariance to extend f to pairs
of inputs with left compact supports, or, equivalently, to pairs of Laurent series. If we
consider the space U1 × U2 of all pairs of inputs whose supports are finite subsets of
(−∞, 0], i.e. the set of trajectories whose power series are elements of R[z−1

1 ]×R[z−1
2 ],

we can introduce the Nerode equivalence [12] as follows. Two elements (u1, u2) and
(v1, v2) of U1 × U2 are said to be Nerode equivalent if for every positive integer N
and every pair (w1, w2), whose support is included in [1, N ], the output sequences
f(u1 + w1, u2 + w2) and f(v1 + w1, v2 + w2) coincide in [N + 1,+∞). The classes
induced by this equivalence relation are naturally viewed as the states of a “canonical
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realization”, and we can identify the outputs of (3) corresponding to finite support
input sequences as “free evolutions” corresponding to initial states of the canonical
realization.

Let n(z1, z2)/[h0(z1z2)h1(z1)h2(z2)] be an irreducible representation of M(z1, z2)
and suppose that h0(z), h1(z) and h2(z) factorize over the complex field in the following
way

h0(z) =
r0∏
i=1

(1− γiz)ρi h1(z) =
r1∏
i=1

(1− αiz)µi h2(z) =
r2∏
i=1

(1− βiz)νi , (9)

with αi 6= αj , βi 6= βj , γi 6= γj for i 6= j, and r0, r1, r2, ρi, µi, νi positive integers. We
aim to explicitly relate the elementary modes describing the free evolution of (3) to
the parameters αi, βi and γi appearing in (9). To reach this goal, we need a couple of
technical lemmas.

Lemma 2 For every choice of the nonnegative integers n, p and q the following identity
holds (

n+ p

p

)(
n+ q

q

)
=

p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)(
n+ p+ q − k
p+ q − k

)
. (10)

Proof Rewrite the Vandermonde convolutional formula [13] in the form(
x

y

)
=
∑
k=0

(−1)k
(
x+ q − k
y − k

)(
q

k

)
, (11)

and note that with x replaced by n+ p and y by p, (11) becomes(
n+ p

p

)
=
∑
k=0

(−1)k
(
q

k

)(
n+ p+ q − k

p− k

)
.

Consequently, we have(
n+ p

p

)(
n+ q

q

)
=
∑
k=0

(−1)k
(
q

k

)(
n+ p+ q − k

p− k

)(
n+ q

q

)
. (12)

It is a matter of straightforward computation to check the identity(
n+ p+ q − k

p− k

)(
n+ q

q

)
=

(
p+ q − k

q

)(
n+ p+ q − k
p+ q − k

)
, (13)

and the proof of the lemma is complete upon replacing (13) in (12).

As it is well-known, the power series expansions of the rational functions 1/(1 −
δz)k+1, k ∈ N, are given by

1
(1− δz)k+1

=
∞∑
n=0

(
n+ k

k

)
(δz)n. (14)
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The following lemma shows that the Hadamard product of 1
(1−αz)p+1 and 1

(1−βz)q+1 is
a linear combination of power series expansions with similar structure, involving the
powers of αβ.

Lemma 3 For every α and β in C and every pair (p, q) of nonnegative integers, we
have

1
(1− αz)p+1

� 1
(1− βz)q+1

=
p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)
1

(1− αβz)p+q−k+1
, (15)

or, in more compact form,

1
(1− αz)p+1

� 1
(1− βz)q+1

=
1
q!

dq

dzq

[
zq

(1− αβz)p+1

]
=

1
p!

dp

dzp

[
zp

(1− αβz)q+1

]
. (16)

Proof By applying the previous lemma and the power series expansion in (14), we
get

1
(1− αz)p+1

� 1
(1− βz)q+1

=
∞∑
n=0

(
n+ p

p

)(
n+ q

q

)
(αβz)n

=
p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

) ∞∑
n=0

(
p+ q + n− k
p+ q − k

)
(αβz)n

=
p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)
1

(1− αβz)p+q−k+1
.

On the other hand,

p∧q∑
k=0

(−1)k
(
q

k

)(
p+ q − k

q

)
1

(1− αβz)p+q−k+1
=

=
1
q!

p∧q∑
k=0

(−1)k
(
q

k

)
(p− k + 1)(p− k + 2) . . . (p− k + q)

(1− αβz)p+q−k+1

=
1

(αβ)qq!
dq

dzq

[
1

(1− αβz)p+1

p∧q∑
k=0

(
q

k

)
(αβz − 1)k

]
. (17)

If q = p ∧ q, the summation in (17) gives (αβz)q, thus proving (16); otherwise, when
p = p ∧ q, then

1
(1− αβz)p+1

p∧q∑
k=0

(
q

k

)
(αβz − 1)k =

(αβz)q

(1− αβz)p+1
+m(z),

where m(z) ∈ R[z] is a polynomial of degree smaller than q. So, (16) holds also in this
case.
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The above lemma has a significant system theoretic interpretation. Indeed, given
a linear system whose transfer function has a pole in 1/δ, the coefficients of the power
series expansion in (14) can be regarded as describing a mode associated with the
pole. So, the identities (15) and (16) clarify that the Hadamard product of the modes
corresponding to the poles 1/α and 1/β, is a combination of modes corresponding to a
pole in 1/(αβ).
This result is useful for analyzing the free evolution of the bilinear model (3). Actually,
assume that U1(z1) and U2(z2) are polynomial inputs and consider the corresponding
output series

Y (z1, z2) =
1

h0(z1z2)

(
n(z1, z2)U1(z1)U2(z2)

h1(z1)h2(z2)
�
∑
t

(z1z2)t
)
.

Set n(z1, z2) :=
∑
i,j nijz

i
1z
j
2. By resorting to partial fraction expansions and to the

factorizations of h0, h1 and h2 given in (9), we get

n(z1, z2)U1(z1)U2(z2)
h1(z1)h2(z2)

=
∑
i,j

nij

[
p1i(z1) +

∑
r,s

ρirs
(1− αrz1)s

]p2j(z2) +
∑
v,t

τjvt
(1− βvz2)t

 ,
with p1i(z1) ∈ R[z1] and p2j(z2) ∈ R[z2]. It is not difficult to check that the Hadamard
product of

∑
t(z1z2)t with the above expression gives

n(z1, z2)U1(z1)U2(z2)
h1(z1)h2(z2)

�
∑
t

(z1z2)t = p(z1z2)+

 ∑
r,s,v,t

nijρirsτjvt
(1− αrz1)s(1− βvz2)t

�∑
t

(z1z2)t,

with p(z1z2) ∈ R[z1z2]. As

1
(1− αrz1)s(1− βvz2)t

�
∑
t

(z1z2)t ≡ 1
(1− αrz)s

� 1
(1− βvz)t

∣∣∣∣
z=z1z2

,

Lemma 3 applies and we get

Y (z1, z2) =
1

h0(z1z2)

p(z1z2) +
∑
r,s,v,t

crstvk
(1− αrβvz1z2)s+t−1−k

 , (18)

where crstvk := (−1)k
(s−1
k

)(s+t−2−k
s−1

)∑
i,j ρirsτjutnij . By expressing (18) as sum of par-

tial fractions, we obtain the output sequence y as a linear combination of elementary
modes associated with the poles 1/γi and 1/(αrβv).

Interestingly enough, the case possibly occurs that, even though some zeros of
h1(z) belong to the interior of D1, all products 1/(αrβv) belong to C \D1. Under this
assumption, when all zeros of h0(z) are in C \D1, the bilinear system (3) exhibits only
convergent modes, although it is not BIBO stable.
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Example 1 Assume in (1)

M(z1, z2) =
1

(1− 1/3 z1z2)(1− 2z1)(1− 1/4 z2)
.

This i/o bilinear map is not BIBO stable, because h1(z1) = 1 − 2z1 has a zero inside
D1. On the other hand, by resorting to the Euclidean algorithm, every pair of finite
support inputs can be written as

(U1(z1), U2(z2)) =
(
a(z1)(1− 2z1) + c, b(z2)(1− 1/4 z2) + d)

)
,

where a(z1) =
∑
i aiz

i
1, b(z2) =

∑
i biz

i
2, and ai, bi, c, d ∈ R. So, the corresponding

output Y (z1z2) is given by

Y (z1, z2) =
1

1− 1/3 z1z2

(
a(z1)b(z2) +

cb(z2)
1− 2z1

+
da(z1)

1− 1/4 z2
+

cd

(1− 2z1)(1− 1/4 z2)

)
�
∑

t

(z1z2)t

=
1

1− 1/3 z1z2

(∑
i

aibi(z1z2)i +
∑

i

cbi2i(z1z2)i +
∑

i

dai

4i
(z1z2)i +

∑
i

cd

2i
(z1z2)i

)
,

and hence is always convergent.

We conclude this section by surveying some aspects of bilinear i/o maps which are
connected with their limiting behavior, when a periodic excitation is applied. If we
assume BIBO stability, it is easy to realize that (a part from an exceptional set of
periodic inputs) any pair of inputs of period T eventually induces a nonzero output
with the same period. u2, we can always Actually, suppose that U1(z1) and U2(z2) are
given by

U1(z1) =
p1(z1)
1− zT1

, U2(z2) =
p2(z2)
1− zT2

, deg p1, deg p2 < T.

If n(z1, z2) is expressed as in (7), we have

Y (z1z2) =
N∑
i=0

zi1 ni(z1z2)
h0(z1z2)

[ p1(z1)
h1(z1)(1− zT1 )

p2(z2)
h2(z2)(1− zT2 )

]
�
∑
t

(z1z2)t

+
M∑
i=1

zi2 n−i(z1z2)
h0(z1z2)

[ p1(z1)
h1(z1)(1− zT1 )

p2(z2)
h2(z2)(1− zT2 )

]
�
∑
t

(z1z2)t

=
N∑
i=0

zi1 ni(z1z2)
h0(z1z2)

[( v10(z1)
(1− zT1 )

+
t10(z1)
h1(z1)

)(zi2v2i(z2)
(1− zT2 )

+
t2i(z2)
h2(z2)

)]
�
∑
t

(z1z2)t

+
M∑
i=1

zi2 n−i(z1z2)
h0(z1z2)

[(zi1v1i(z1)
(1− zT1 )

+
t1i(z1)
h1(z1)

)( v20(z2)
(1− zT2 )

+
t20(z2)
h2(z2)

)]
�
∑
t

(z1z2)t,

where v1i, v2i, t1i, t2i are polynomial solutions of the diophantine equations [14]

(1− zT1 )t1i(z1) + zi1h1(z1)v1i(z1) = p1(z1), i = 0, 1, . . . ,M,

(1− zT2 )t2i(z2) + zi2h2(z2)v2i(z2) = p2(z2), i = 0, 1, . . . , N.

12



By the BIBO stability assumption, for large values of the time variable the behavior of
the output sequence does not depend on the terms t1i/h1 and t2i/h2 and, consequently,
the power series expansion of

1
h0(z1z2)(1− (z1z2)T )

{
N∑

i=0

ni(z1z2)[v10(z1)v2i(z2)�
∑

t

(z1z2)t]+
M∑
i=1

n−i(z1z2)[v1i(z1)v20(z2)�
∑

t

(z1z2)t]}

asymptotically fits the actual output of the system. Upon setting

p(z) :=
N∑
i=0

ni(z1z2)[v10(z1)v2i(z2)�
∑
t

(z1z2)t]+
M∑
i=1

n−i(z1z2)[v1i(z1)v20(z2)�
∑
t

(z1z2)t]

∣∣∣∣∣
z=z1z2

,

the output series can be rewritten as

Y (z) =
p(z)

h0(z)(1− zT )
=

t(z)
h0(z)

+
v(z)

1− zT
, (19)

where (v(z), t(z)) is a polynomial solution of the diophantine equation

(1− zT )t(z) + h0(z)v(z) = p(z), (20)

satisfying deg v < T . Again, the BIBO stability assumption can be used to show
that the term t(z)/h0(z) decays asymptotically to zero. Thus the output is eventually
periodic, and its permanent evolution is given by the expansion of v(z)/(1− zT ). Note
that, as v(z) has degree smaller than T , its coefficents give the restriction to a period
of the permanent part of the output sequence.

Remark As mentioned at the beginning of the section, the case possibly occurs that a
nonzero pair of periodic inputs produces a zero permanent output. This happens when
in (19) the polynomial p(z) is a multiple of 1 − zT , and hence, by the BIBO stability
assumption, the whole output sequence asymptotically decays to zero.
The following examples enlighten two possible situations when this phaenomenon arises.
In the former, the denominators of the periodic inputs simplify with the polynomial
n(z1, z2); in the latter, the supports of the periodic inputs do not intersect.

Example 2 Consider the rational function

M(z1, z2) =
1− (z1z2)2

h0(z1z2)(1− αz1)(1− βz2)
,

with α, β ∈ R and all zeros of h0(z) outside D1. Corresponding to the pair of periodic
inputs (

U1(z1), U2(z2)
)

=
(1− αz1

1− z2
1

,
1− βz2
1− z2

2

)
,

13



we get the output series

Y (z1, z2) =
1− (z1z2)2

h0(z1z2)(1− z2
1)(1− z2

2)
�
∞∑
t=0

(z1z2)t

=
1− (z1z2)2

h0(z1z2)

(
1

(1− z2
1)(1− z2

2)
�
∞∑
t=0

(z1z2)t
)

=
1− (z1z2)2

h0(z1z2)
1

1− (z1z2)2
=

1
h0(z1z2)

,

thus proving that y asymptotically decays to zero.

Example 3 Consider the rational function

M(z1, z2) =
1

h0(z1z2)
,

where h0(z) has all zeros out of D1. The pair of periodic inputs

(
U1(z1), U2(z2)

)
=
(1 + z2

1

1− z3
1

,
2z2

1− z3
2

)
,

produces the output series

Y (z1, z2) =
1

h0(z1z2)

(
1 + z2

1

1− z3
1

2z2
1− z3

2

�
∞∑
t=0

(z1z2)t
)

= 0. (21)
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