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Abstract— In this paper, monomial reachability and reacha-
bility of a special class of discrete-time positive switched systems
are investigated. Necessary and sufficient conditions for these
properties to hold, together with some related examples, are
provided.

I. INTRODUCTION

Switched linear systems have attracted the interest of
several scientists, in the last fifteen years. Initially treated as
special cases of the broader class of hybrid systems, they
have later gained complete autonomy and have been the
object of an in-depth analysis. While the first contributions
were almost exclusively concentrated on the stability and
stabilizability properties [12], [18], nowadays several other
issues have been investigated and, in particular, structural
properties, like reachability, controllability and observability
have been explored [9], [15], [17], [19].

Despite of the numerous research efforts, these issues still
offer a quite interesting set of open problems. Indeed, struc-
tural properties have found a rather complete characterization
for the class of continuous-time switched systems and for
the class of reversible discrete-time switched systems (by
this meaning that the system matrices of all the subsystems
among which the system commutes are nonsingular). The
non-reversible discrete-time case, however, still deserves
investigation, since necessary and sufficient conditions for
reachability (and observability) have been provided only
under certain structural constraints (see, e.g., [7]). However,
it must be pointed out that some interesting properties of
the controllable sets for (both reversible and non-reversible)
discrete-time switched systems have been investigated in the
pioneering works of Conner and Stanford [10], [11], [14].

Positive linear systems, on the other hand, are state-space
models in which the state variables are always positive, or
at least nonnegative, in value. These systems have received
considerable attention in the literature, as they naturally
arise in various fields such as bioengineering (compart-
mental models), economic modelling, behavioral science,
and stochastic processes (Markov chains), where the state
variables represent quantities that may not have meaning
unless nonnegative. In the last two decades, several system
issues have been addressed for positive systems, by taking
advantage of the powerful tools coming out of positive
matrix theory and, even more, of graph theory. In particular,
the analysis of controllability and reachability properties
of positive discrete-time systems has been the object of a
noteworthy interest [3], [6], [16].
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Switched positive systems deserve investigation both for
theoretical reasons and for practical applications. Indeed,
switching among different system models naturally arises as
a way to mathematically formalize the fact that the system
laws change under different operating conditions. Indeed,
different discrete-time positive systems, which arise when
discretizing linear differential equations describing processes
whose state variables are temperatures, pressures, population
levels, etc., or when providing a discrete-time model for the
time evolution of productions levels or stocked amounts of
some good, may undergo different working conditions and,
consequently, switch among different mathematical models.

The aim of this paper is to define monomial reachability
and reachability properties for a special class of discrete-
time positive switched systems, for which the system matrix
is the same, while the input-to-state matrix changes, and to
provide some necessary and sufficient conditions for these
properties to hold.

Before proceeding, we introduce some notation. Given
any positive integer k ∈ N, we denote by 〈k〉 the set of
positive integers {1, 2, . . . , k}. The symbol R+ denotes the
semiring of nonnegative real numbers. A matrix M ∈ Rn×m

+

is said to be a nonnegative matrix; if M is nonnegative
and nonzero it is called positive, while if all its entries are
greater than zero, M is strictly positive. The (i, j)th entry
of a matrix M is denoted by [M ]ij , while the ith entry of
a vector v is [v]i. We let ei denote the ith vector of the
canonical basis in Rn (where n is always clear from the
context). Given a nonnegative vector v, the nonzero pattern
of v is the set of indices corresponding to its nonzero entries,
namely ZP(v) := {i : [v]i $= 0}. A vector v ∈ Rn

+

is an ith monomial vector if ZP(v) = ZP(ei) = {i}. A
monomial matrix is a nonsingular square nonnegative matrix
whose columns are (of course, distinct) monomial vectors.
A monomial matrix whose nonzero entries are all unitary is
called permutation matrix.

Given an n-dimensional positive system with p inputs,
namely a state-space model

x(k + 1) = Ax(k) + Bu(k), k ∈ Z+, (1)

where x(·) and u(·) denote the n-dimensional nonnegative
state variable and the p-dimensional nonnegative input vari-
able, A ∈ Rn×n

+ and B ∈ Rn×p
+ , we may associate with

it [3], [4], [16] a digraph (directed graph) D(A, B), with n
vertices, indexed by 1, 2, . . . , n, and p sources s1, s2, . . . , sp.
There is an arc (j, i) from j to i if and only if [A]ij > 0,



and there is an arc (sj , i) from the source sj to the vertex i
if and only if [B]ij > 0.

A sequence sj → i0 → i1 → . . . → ik−1, start-
ing from the source sj , and passing through the vertices
i0, . . . , ik−1, is an s-path from sj to ik−1 (of length k)
provided (sj , i0), (i0, i1), . . . , (ik−2, ik−1) are all arcs of
D(A, B). An s-path of length k from sj deterministically
reaches some vertex i, if no other vertex of the digraph can
be reached in k steps starting from sj . It is easily seen that
there is an s-path of length k from sj to i if and only if
the (i, j)th entry of Ak−1B is positive. In general, leaving
from sj , after k steps one can reach several distinct vertices:
this corresponds to saying that the jth column of Ak−1B
can have more than one nonzero entry. So, a vertex i can be
deterministically reached from the source sj by means of a
path of length k if and only if the jth column of Ak−1B is
an ith monomial vector.

Basic definitions and results about cones may be found,
for instance, in [1], [2]. We recall here only those facts that
will be used within this paper.

A set K ⊂ Rn is said to be a cone if αK ⊆ K for
all α ≥ 0; a cone is convex if it contains, with any two
points, the line segment between them. A cone K is said to
be polyhedral if it can be expressed as the set of nonnegative
linear combinations of a finite set of generating vectors. This
amounts to saying that a positive integer k and an n × k
matrix C can be found, such that K coincides with the set
of nonnegative combinations of the columns of C. In this
case, we adopt the notation K := Cone(C).

II. DISCRETE-TIME SINGLE-INPUT POSITIVE SWITCHED
SYSTEMS AND REACHABILITY PROPERTIES

A discrete-time single-input positive switched system is
described, at each time instant t ∈ Z+, by a first-order
difference equation of the following type:

x(t + 1) = Aσ(t)x(t) + bσ(t)u(t), (2)

where x(·) and u(·) denote the n-dimensional nonnegative
state variable and the nonnegative scalar input, while σ is
a switching sequence, defined on Z+ and taking values in
a finite set P := 〈p〉. For each i ∈ P , the pair (Ai, bi)
represents a discrete-time single-input positive system (1),
which means that Ai ∈ Rn×n

+ and bi ∈ Rn
+.

The definitions of monomial reachability and of reachabil-
ity for discrete-time positive switched systems may be given
by suitably adjusting the definitions of reachability given in
[9], [19], in order to introduce the nonnegativity constraint
on the state and input variables.

Definition 1: [13] A state xf ∈ Rn
+ is said to be reachable

at time k ∈ N if there exist a switching sequence σ : Z+ →
P and an input sequence u : Z+ → R+ that lead the state
trajectory from x(0) = 0 to x(k) = xf .

System (2) is said to be monomially reachable if every
monomial vector xf ∈ Rn

+ (equivalently, every vector ei of
the canonical basis in Rn) is reachable at some time instant
k. System (2) is said to be reachable if every state xf ∈ Rn

+

is reachable at some time instant k.

Since (monomial) reachability always refers to a finite
time interval, focusing on the value of the state at the final
instant k, only the values of the switching sequence σ (and
of the input sequence u) within {0, 1, . . . , k−1} are relevant.
So, we refer to the cardinality of the discrete time interval
{0, 1, . . . , k − 1} as to the length of the switching sequence
σ and we denote it by |σ| (in this case, |σ| = k).

When (monomial) reachability property is ensured, a nat-
ural goal one may want to pursue is that of determining
the maximum number of steps required to reach every
(monomial) nonnegative state. This leads to the following
definition of (monomial) reachability index.

Definition 2: Given a (monomially) reachable switched
system (2), we define its (monomial) reachability index
as (IMR := maxi∈〈n〉 min{k : ei is reachable at time k})
IR := supx∈Rn

+
min{k : x is reachable at time k}.

It has been shown in [13] that reachable systems can be
found endowed with an infinite1 IR. Also, for monomially
reachable systems the index IMR can far exceed the system
dimension and even reach the theoretical bound of 2n − 1.
These facts represent significant differences with respect to
both standard switched systems and positive systems.

III. MONOMIAL REACHABILITY OF A CLASS OF
SINGLE-INPUT POSITIVE SWITCHED SYSTEMS

In this paper we consider the special class of discrete-
time single-input positive switched systems described by the
following state equation

x(t + 1) = Ax(t) + bσ(t)u(t). (3)

The special property of this class of systems is that its p =
|P| subsystems share the same positive state matrix A, and
hence differ only in the input-to-state matrix, bi ∈ Rn

+, i ∈ P .
For these systems we will provide characterizations of both
monomial reachability and of reachability, and we will show
that the indices IMR and IR are always upper bounded by
the system dimension n.

To explore monomial reachability and reachability for the
class of systems (3), it is first convenient to provide the
explicit expression of the state at any time instant k ∈ N,
starting from the initial condition x(0) = 0, under the effect
of the input sequence u(0), u(1), . . . , u(k − 1), and of the
switching sequence σ(0), σ(1), . . . ,σ(k−1). It turns out that

x(k) = Ak−1bσ(0)u(0) + Ak−2bσ(1)u(1) + . . .

+ Abσ(k−2)u(k − 2) + bσ(k−1)u(k − 1), (4)

where σ(i) ∈ P for every i ∈ {0, 1, . . . , k − 1}. If we
define the reachability matrix associated with the switching
sequence σ of length k as

Rk(σ) = [ Ak−1bσ(0) Ak−2bσ(1) . . . Abσ(k−2) bσ(k−1) ] ,

1It is worthwhile to underline that even when IR is infinite, each single
nonnegative state can be reached in a finite number of steps. However, such a
number of steps may be arbitrarily high. This concept must not be confused
with the weak reachability property of positive systems [16], which allows
to reach certain states only asymptotically.



it is easily seen that (4) can be rewritten as

x(k) = Rk(σ)




u(0)

...
u(k − 1)



 ,

and hence x(k) ∈ Cone(Rk(σ)). This is a much simpler
expression w.r.t. the general one available for system (2).
Nonetheless, as we will see, even for this class of sys-
tems, reachability characterization turns out to be articu-
late. Clearly, a positive state xf is reachable if and only
if there exists a switching sequence σ such that xf ∈
Cone(R|σ|(σ)). Equivalently, xf is reachable if and only
if there exist k ∈ N, i1, i2, . . . , ik ∈ P , such that

xf ∈ Cone ([Ak−1bik Ak−2bik−1 . . . Abi2 bi1 ]) .

As a first step, we derive the characterization of monomial
reachability.

Proposition 1: Given a discrete-time single-input positive
switched system described by the state equation (3), the
following facts are equivalent ones:

i) the switched system (3) is monomially reachable;
ii) the n-dimensional non-switched positive system with p

inputs (1), described by the pair (A, B), with

B := [ b1 b2 . . . bp ] ,

is reachable, namely [5], [16] its reachability matrix

Rn(A, B) := [ An−1B . . . AB B ] ,

contains an n× n monomial submatrix.
So, if system (3) is monomially reachable, then its monomial
reachability index IMR can never exceed n.

Proof: System (3) is monomially reachable if and
only if for every i ∈ 〈n〉 there exists a switching sequence
σi of length say ki such that ei ∈ Cone(Rki(σi)). But
this amounts to saying that for every i ∈ 〈n〉 there exists
hi ∈ Z+ and ji ∈ P such that Ahibji is an ith monomial
vector. As proved in [5], if such an index hi exists, than
it can always be chosen not greater than n − 1. But this
ensures, that all monomial vectors are reachable if and only
if Rn(A, [ b1 . . . bp ]) contains n linearly independent
monomial vectors and hence an n× n monomial matrix.

The final statement about IMR is an obvious consequence.

Before moving to the characterization of reachability, we
aim now to provide some meaningful examples, illustrating
how even for this simple class of positive switched systems
several complex situations arise w.r.t. standard positive sys-
tems. As a first thing, monomial reachability is not equivalent
to reachability. This is shown by the following elementary
counterexample.

Example 1: Consider the discrete-time single-input pos-
itive switched system described by the state equation (3),
with

A = 02×2, b1 =
[

1
0

]
, b2 =

[
0
1

]
,

(so that P = 〈2〉). It is easily seen that all monomial
vectors are reachable, but no vector with both positive entries
can be reached. So, there is monomial reachability, but not
reachability.

The reason why monomial reachability does not ensure
reachability is because different monomial vectors can be
reached along different switching sequences and such switch-
ing sequences are not necessarily compatible. Of course,
if we can find a single switching sequence along which
one may reach every monomial vector, then reachability is
ensured.

Proposition 2: Given a discrete-time single-input positive
switched system described by the state equation (3), if there
exists a switching sequence σ of length say k such that
the reachability matrix Rk(σ) includes an n× n monomial
submatrix, then the system is reachable (with IR ≤ k).

Proof: Obvious, as in this case it would be
Cone(Rk(σ)) = Rn

+.

It is worthwhile noticing that the existence of a switch-
ing sequence σ of length say k such that the reachability
matrix Rk(σ) includes an n × n monomial submatrix cor-
responds to the possibility of choosing n distinct indices
h1, h2, . . . , hn ∈ Z+ such that ZP(Ahibji) = {i} for
suitable indices ji ∈ P . In fact, if this is the case, by
simply choosing a switching sequence σ of length k :=
maxi∈〈n〉{hi} + 1, which satisfies σ(k − 1 − hi) = ji, for
i ∈ 〈n〉, and that takes arbitrary values at all time instants
t ∈ {0, 1, . . . , k − 1} \ {h1, h2, . . . , hn}, we ensure that
Rk(σ) includes an n× n monomial submatrix.

Example 2: Consider the discrete-time single-input pos-
itive switched system described by the state equation (3),
with

A =





0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
2 0 0 0 1 0
0 0 0 0 0 1
1 0 0 1 0 0




, b1 =





0
0
1
0
0
0




, b2 =





0
0
0
0
0
1




.

It is easily seen that the system is monomially reachable,
since

b1 = e3, Ab1 = e2, A
2b1 = e1,

while
b2 = e6, Ab2 = e5, A

2b2 = e4.

On the other hand, it is easily seen that e4, e5, e6 can also
be obtained as

A3b2 = e6, A
4b2 = e5, A

5b2 = e4,

and hence by choosing σ of length 6, taking value 2 at k =
0, 1, 2, and taking value 1 at k = 3, 4, 5, we get

R6(σ) = [ e4, e5, e6, e1, e2, e3 ] .

This ensures reachability.



The condition provided in Proposition 2 above is only
sufficient for the system reachability. In fact, reachability
property may be ensured, but different positive vectors can be
reached only by means of different switching sequences. It is
worthwhile to remark, however, that for standard (i.e., non-
positive) switched systems the situation is different. Indeed,
it has been proved [9] that a switched system is reachable
if and only if there exists a switching sequence σ (of length
say k) such that Im (Rk(σ)) = Rn.

Example 3: Consider the discrete-time single-input pos-
itive switched system described by the state equation (3),
with

A =
[

2 2
3 1

]
, b1 =

[
1
0

]
, b2 =

[
0
1

]
.

It is easily seen that the system is monomially reachable,
even more it is reachable (with finite reachability index).
Indeed,

Cone([ b1 Ab1 ]) = Cone
([

1 2
0 3

])
,

while

Cone([ b2 Ab2 ]) = Cone
([

0 2
1 1

])
.

So, if we define σ1 the switching sequence of length 2 taking
only value 1, and σ2 the switching sequence of length 2
taking only value 2, we get

Cone(R2(σ1)) ∪ Cone(R2(σ2)) = R2
+,

which ensures reachability. On the other hand, there is no
way to find a switching sequence σ, of length say k, such
that Rk(σ) includes a 2 × 2 monomial submatrix. In fact,
ei = bi for i ∈ 〈2〉, however for every k ∈ N and every
i ∈ 〈2〉, |ZP(Akbi)| > 1.

To conclude, we present a preliminary result which will
be useful for providing a characterization of reachability in
the following section. This lemma represents a refinement of
Lemma 2 in [16].

Lemma 1: If the positive switched system (3) is reachable,
then the n× (n + p) positive matrix [A b1 b2 . . . bp ]
includes an n × n monomial matrix, A is not zero, and at
least one of the vectors bi, i ∈ P, is a monomial vector.

Proof: If the positive switched system (3) is reachable,
then, in particular, it is monomially reachable and hence,
by Proposition 1, the (non-switched) positive system (1),
with B = [ b1 b2 . . . bp ], is reachable. This implies
(see Lemma 2 in [16]) that [A b1 b2 . . . bp ] includes
an n × n monomial matrix. On the other hand, if none
of the vectors bi’s would be monomial, then A should be
monomial and hence it could be expressed as A = DP
for some nonsingular diagonal matrix D ∈ Rn×n

+ and some
permutation matrix P ∈ Rn×n

+ . But then, none of the vectors
Ahbj could be monomial, for any h ∈ Z+ and any j ∈ P . So,
none of the columns of Rn(A, [ b1 b2 . . . bp ]) would be
a monomial vector, a contradiction. Finally, if A would be

zero, then only monomial vectors could be reached, thus
contradicting the reachability assumption.

IV. REACHABILITY OF A CLASS OF DISCRETE-TIME
SINGLE-INPUT POSITIVE SWITCHED SYSTEMS

We now address the general problem of reachability for the
specific class of positive switched systems (3). In the sequel,
we will steadily assume, for the sake of simplicity, P = 〈2〉.
The extension to the general case, when |P| = p ≥ 2, is not
conceptually different, but requires a lengthy analysis of the
various cases, thus making the paper quite heavy.

As a first step, we investigate the case when the system
dimension is n = 2, and later move to the case of a generic
n ∈ N. Reachability, as we will see, is a structural property
for this specific class of systems. However, this is not, in
our opinion, immediately obvious, and hence we will assume
that the matrices A, b1 and b2 have entries in R+ (and not
in {0, 1}, as it would be convenient if we would take care
only of the nonzero patterns of the matrices and the vectors
involved). Nonetheless, every time either b1 or b2 will be
monomial, we will assume w.l.o.g. that it is a canonical
vector. Also, since reachability of system (3) implies (see
Lemma 1) that at least one between b1 and b2 is monomial, in
the following we will steadily assume that b1 is a monomial
vector and, specifically, b1 = e1 (as we can always reduce
ourselves to this case by means of a suitable permutation of
the state vector entries). Also, A will be positive (i.e., not
zero). Finally, we will steadily assume that b1 and b2 are
linearly independent (in particular, nonzero): were it not the
case, reachability of the positive switched system (3) would
reduce to the reachability of a single-input positive system
(1).

Proposition 3: Consider a discrete-time single-input pos-
itive switched system described by the state equation (3),
with P = 〈2〉, A ∈ R2×2

+ , b1 = e1, b2 ∈ R2
+. A necessary

and sufficient condition for the system to be reachable is that
i) if [ b1 b2 ] is a 2× 2 monomial matrix, then A is not

the zero matrix;

ii) if only b1 = e1 is monomial, then A =
[

0 0
a21 a22

]

with (a21, a22) $= (0, 0).

Proof: Suppose, first, that [ b1 b2 ] = I2. If at least
one column of A, say the first, for instance, is strictly
positive, then

Cone ([ b1 Ab1 ]) ∪ Cone ([ b2 Ab1 ])

= Cone
([

1 a11

0 a21

])
∪ Cone

([
0 a11

1 a21

])
= R2

+.

If neither of the columns of A is strictly positive, but A $= 0,
then there must be at least one nonzero entry in A. If it is
on the main diagonal, then

Cone ([ b2 Ab1 ]) = R2
+, if a11 > 0,

Cone ([ b1 Ab2 ]) = R2
+, if a22 > 0.



On the other hand, if the nonzero entry is not on the main
diagonal, then either (A, b1) is reachable (if a21 > 0) or
(A, b2) is reachable (if a12 > 0). Finally, if A would be
zero, then only monomial vectors would be reachable.

Suppose, now, that b2 is not a monomial vector, then in
order to reach a 2nd monomial vector the only possibility is

that A =
[

0 0
a21 a22

]
and at least one between a21 and a22

is nonzero. If so,

Cone ([ b1 Ab2 ]) = R2
+.

No other possibility arising, the proposition’s statement is
proved.

We now move to the analysis of reachability for the class
of single-input systems (3), with P = 〈2〉 and n > 2. The
case when only b1 is a monomial vector will be addressed
in Theorem 1, while the situation when both b1 and b2 are
monomials will be dealt with in Theorem 2.

Theorem 1: Consider a discrete-time single-input positive
switched system described by the state equation (3), with
P = 〈2〉, A ∈ Rn×n, b1, b2 ∈ Rn

+, b1 is monomial and b2

a nonzero non-monomial vector. Suppose, also, that (A, b1)
is not reachable2. A necessary and sufficient condition for
the system to be reachable is that there exist r ∈ N, and a
permutation matrix P , such that

P T AP=

2

66666666666664

0 . . . 0 0
a2,1 . . . 0 0

...
. . .

...
...

0 . . . ar,r−1 0

0r×(n−r)

0(n−r)×r

0 . . . 0 ar+1,n
ar+2,r+1 . . . 0 0

...
. . .

...
...

0 . . . an,n−1 0

3

77777777777775

,

(5)

where all ai+1,i are positive, and (possibly after a rescal-
ing) PT b1 = e1, while PT b2 = er+1 +

∑r
i=1 αiei, and at

least of the αi’s is positive.
If so, the reachability index IR is n.

Proof: [Sufficiency] It entails no loss of generality
assuming P = In. Under the previous assumptions, we can
ensure the existence of a switching sequence σ along which
all monomial vectors can be reached. Indeed, it is easily seen
that

ZP(b1) = {1},ZP(Ab1) = {2}, . . .ZP(Ar−1b1) = {r},

while the sequence of vectors

Arb2, A
r+1b2, . . . , A

r+(n−r−1)b2 = An−1b2,

consists of n− r monomial vectors, each of them having a
distinct nonzero pattern {i} with i ∈ {r + 1, r + 2, . . . , n}.
As a consequence, by choosing σ of length n, taking value

2Surely, by the well-know characterization of single-input positive reach-
able systems [8], (A, b2) is not.

2 at k = 0, 1, . . . , n − r − 1 and taking value 1 at k =
n− r, n− r + 1, . . . , n− 1, we get the reachability matrix

Rn(σ) = [An−1b2 . . . Arb2 Ar−1b1 . . . b1 ]

which is an n × n monomial matrix, thus ensuring (by
Proposition 2) reachability.

This part also proves that IR = n.

[Necessity] Notice, preliminarily, that, by Lemma 1,
[A b1 b2 ] includes an n× n monomial matrix and since
b1 is monomial, but b2 is not, A must include n− 1 linearly
independent monomial vectors with nonzero pattern different
from ZP(b1).

Consider, now, the sequence {Ahb1, h ∈ Z+}, and set
r := min{h ∈ N : Ahb1 is not a monomial vector
linearly independent of b1, Ab1, . . . , Ah−1b1}. By resorting
to a suitable relabeling, we can always assume that
ZP(Ahb1) = {h + 1}, h = 0, 1, . . . , r − 1, and hence we
can reduce ourselves, possibly after a permutation, to the
following situation:

A =

2

666666666666666666664

0 . . . 0 0
a2,1 . . . 0 0

...
. . .

...
...

0 . . . ar−1,r−2 0
0 . . . 0 ar,r−1

v1 0r×(n−r)

0 . . . 0 0
0 . . . 0 0
0 . . . 0 0
...

...
...

0 . . . 0 0

v2 DP̃

3

777777777777777777775

where ai+1,i > 0 for every index i, v1 and v2 are

nonnegative vectors (notice that Arb1 =
[

v1

v2

]
), D is

a diagonal matrix with positive entries, while P̃ is an
(n − r) × (n − r) permutation matrix. Indeed, A must
include, among its columns, the ith monomial vectors for
i ∈ {r + 1, r + 2, . . . , n}, and since Arb1 is not a ith
monomial of that type, this is the only possible solution.

It is clear that there is no way to obtain the ith monomial
vectors for i > r, by resorting to the sequence {Ahb1, h ≥
r}. In fact, since Arb1 is not a monomial vector linearly
independent of {e1, e2, . . . , er}, the following cases may
occur:

a) v1 = 0, v2 = 0;
b) v1 $= 0;
c) v1 = 0 and |ZP(v2)| > 1.

In the first case all vectors in {Ahb1, h ≥ r} are zero. In the
second case the nonzero pattern of all vectors in {Ahb1, h ≥
r} intersects 〈r〉. In the third case the nonzero pattern of all
vectors in {Ahb1, h ≥ r} has cardinality at least two. So, we
have to find the ith monomial vectors, i > r, in the sequence
{Ahb2, h ∈ Z+}.



As |ZP(b2)| > 1, it is easily seen that both in case b)
and in case c), for every choice of ZP(b2), it turns out that
|ZP(Ahb2)| > 1 for every h ∈ Z+. So, |ZP(b2)| > 1 is
compatible only with case a). When so, it must be |ZP(b2)∩
{r+1, r+2, . . . , n}| = 1. If we assume w.l.o.g. that ZP(b2)∩
{r + 1, r + 2, . . . , n} = {r + 1}, then ZP(b2)∩ 〈r〉 $= ∅, and
the only way to generate all canonical vectors ei, i > r, is
by imposing to P̃ a cyclic structure, thus getting the form
given in (5).

Theorem 2: Consider a discrete-time single-input positive
switched system described by the state equation (3), with
P = 〈2〉, A ∈ Rn×n, b1, b2 ∈ Rn

+, b1 and b2 two
linearly independent monomial vectors. Suppose that neither
(A, b1) nor (A, b2) are reachable subsystems. A necessary
and sufficient condition for the system to be reachable is
that there exist r ∈ N, and a permutation matrix P , such
that PT AP takes the form

2

6666666666666666664

0 . . . 0 a1r

a21 . . . 0 a2r
...

. . .
...

...
0 . . . ar,r−1 arr

0 . . . 0 a1n

0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

0 . . . 0 ar+1,r

0 . . . 0 ar+2,r

...
. . .

...
...

0 . . . 0 anr

0 . . . 0 ar+1,n

ar+2,r+1 . . . 0 0
...

. . .
...

...
0 . . . an,n−1 0

3

7777777777777777775

(6)

where all entries ai+1,i for i = 1, 2, . . . , r − 1 and i =
r + 1, r + 2, . . . , n − 1 are positive, at least one between
a1n and ar+1,n is positive, and (possibly after a rescaling)
PT b1 = e1 and PT b2 = er+1. If so, IR = n.

Proof: [Necessity] Reachability implies monomial
reachability of the switched system (3) and hence the reach-
ability of the pair (A, [ b1 b2 ]). So, since both b1 and b2 are
monomial vectors (but neither of the pairs (A, bi), i = 1, 2,
is reachable), an index r ∈ N can be found [16] so that, after
a suitable permutation, we can assume b1 = e1, b2 = er+1

and A takes the form

2

6666666666666666664

0 . . . 0 a1r

a21 . . . 0 a2r
...

. . .
...

...
0 . . . arr−1 arr

0 . . . 0 a1n

0 . . . 0 a2n
...

. . .
...

...
0 . . . 0 arn

0 . . . 0 ar+1r

0 . . . 0 ar+2r
...

. . .
...

...
0 . . . 0 anr

0 . . . 0 ar+1n

ar+2r+1 . . . 0 ar+2n
...

. . .
...

...
0 . . . ann−1 ann

3

7777777777777777775

On the other hand, reachability ensures that all vectors v >
0, with ZP(v) = {1, r + 1} can be reached, and hence they

belong to the cone generated by some reachability matrix

[Ak−1bik Ak−2bik−1 . . . Abi2 bi1 ] ,

where k ∈ N, i1, i2, . . . , ik ∈ P . This implies that there
exists h ∈ Z+, 2 ≤ h ≤ k, and ih ∈ P such that
∅ $= ZP(Ah−1bih) ⊆ {1, r +1}. But this necessarily implies
that there exists a nonzero column in A with nonzero pattern
included in {1, r+1}. Since there are only two columns (the
rth and the nth) to which we may assign this structure, then,
possibly by inverting the roles of b1 and b2, we can always
assume that it is the nth column.

[Sufficiency] Suppose that b1 = e1, b2 = er+1 and that A is
described as in (6) (so, for the sake of simplicity, we assume
P = In). Four cases possibly arise:
(1) a1n = 0 (and ar+1,n > 0);
(2) ar+1,n = 0 (and a1,n > 0);
(3) a1n > 0, ar+1,n > 0 and r ≤ n− r;
(4) a1n > 0, ar+1,n > 0 and r > n− r.

Case (1): By making use of just the same reasoning we
resorted to in proving the Sufficiency part of Theorem 1,
we can choose the sequence σ of length n, taking value
2 at k = 0, 1, . . . , n − r − 1 and taking value 1 at k =
n − r, n − r + 1, . . . , n − 1, thus getting the reachability
matrix

Rn(σ) = [An−1b2 . . . Arb2 Ar−1b1 . . . b1 ]

which is an n×n monomial matrix. This ensures reachability.

Case (2): If so, (A, b2) would be reachable, thus contradicting
the theorem’s assumptions. So, this case cannot occur.
Case (3): Under this assumption, we preliminary notice that
(we assume that all nonzero coefficients are equal to one
since, as we will see, they are not relevant for the logic of
the proof)

b1 = e1, b2 = er+1,
Ab1 = e2, Ab2 = er+2,
A2b1 = e3, A2b2 = er+3,

...
...

Ar−1b1 = er, Ar−1b2 = e2r,
Arb2 = e2r+1

...
An−r−1b2 = en,
An−rb2 = e1 + er+1,

An−r+1b2 = e2 + er+2,
An−r+2b2 = e3 + er+3,

...
An−1b2 = er + e2r

where we have exploited the fact that r ≤ n− r.
It is not difficult to verify that every vector

v with ZP(v) = {p, p + r}, p ∈ 〈r〉, belongs
either to Cone([Ap−1b1 An−r+p−1b2]) or to
Cone([Ap−1b2 An−r+p−1b2]), depending on the specific
values of its nonzero entries. Consequently, every vector



v ∈ Rn
+ belongs to the cone of a specific reachability matrix

that, once reordered in the most convenient way, is thus
composed:
[
bi1 An−rb2 Abi2 An−r+1b2 . . .

Ar−1bir An−1b2 ‖ Arb2 . . . An−r−1b2

]

where each index ip ∈ P is chosen depending on the specific
subvector [ [v]p [v]p+r ]T .

Case (4): We suppose, now, that r > s := n− r. In this case
we face a more complicate situation as far as the vectors
generated by the two sequences {Aj−1b1, j = 1, 2, . . . , r}
and {Aj−1b2, j = 1, 2, . . . , n} are concerned. Indeed, we
obtain (by neglecting again the specific values of the positive
coefficients):

Aj−1b1 = ej , j = 1, 2, . . . , r,

Ats+p−1b2 = ep+r +
t−1∑

h=0

ehs+p,

where we have exploited the fact that every j ∈ {1, 2, . . . , n}
can be expressed as j = ts + p, for some t ∈ Z+ and some
p ∈ {1, 2, . . . , s}.

Let v(p), p ∈ {1, 2, . . . , s}, be any positive vector with

ZP(v(p)) ⊆ {p, s + p, 2s + p, . . . , ks + p; r + p},

where k is a suitable nonnegative number, and ks + p ≤ r.
We want to prove the following Claim:

• if ZP(v(p)) ! {p, s + p, 2s + p, . . . , ks + p; r + p},
then there exist indices i1, i2, . . . , ik+1 ∈ P such that
v(p) belongs to the cone generated by some reachability
matrix of the following type

[Ap−1bi1 Ap−1+sbi2 . . . Ap−1+ksbik+1 ] ;

• if ZP(v(p)) = {p, s + p, 2s + p, . . . , ks + p; r + p},
then there exist indices i1, i2, . . . , ik+2 ∈ P such that
v(p) belongs to the cone generated by some reachability
matrix of the following type

[Ap−1bi1 Ap−1+sbi2 . . . Ap−1+(k+1)sbik+2 ] .

To this end, we proceed by induction on the nonnega-
tive integer k. Suppose, first, k = 0. This means that
ZP(v(p)) ⊆ {p; r + p}. So, if ZP(v(p)) ! {p; r + p},
then v(p) belongs either to Cone

(
Ap−1b1

)
, if ZP(v(p)) =

{p}, or to Cone
(
Ap−1b2

)
, if ZP(v(p)) = {p + r}.

On the other hand, if ZP(v(p)) = {p; r + p}, then
v(p) belongs either to Cone ([Ap−1b1 Ap−1+sb2 ]) or to
Cone ([Ap−1b2 Ap−1+sb2 ]), depending on the specific
values of the two nonzero entries. So, the result holds for
k = 0.

Suppose, now, that the two previous statements are verified
for every vector w(p) with ZP(w(p)) ⊆ {p, s + p, 2s +
p, . . . , (k−1)s+p; r+p}. We want to prove that the results
extend to all vectors v(p) with ZP(v(p)) ⊆ {p, s + p, 2s +
p, . . . , ks + p; r + p}.

To this end, suppose, first, that ZP(v(p)) ! {p, s+p, 2s+
p, . . . , ks+p; r+p}. If ks+p $∈ ZP(v(p)), then ZP(v(p)) ⊆
{p, s + p, 2s + p, . . . , (k − 1)s + p; r + p}, and hence by
the inductive assumption, v(p) belongs either to the cone
generated by [Ap−1bi1 Ap−1+sbi2 . . . Ap−1+ksbik+1 ]
or to the cone generated by
[Ap−1bi1 Ap−1+sbi2 . . . Ap−1+(k−1)sbik ] . So, in
both cases, we may claim that v(p) belongs to the cone
generated by [Ap−1bi1 Ap−1+sbi2 . . . Ap−1+ksbik+1 ]
for suitable choices of the indices. On the other hand, if
ks + p ∈ ZP(v(p)), then there exists α > 0 such that

w(p) = v(p) − αAp−1+ksb1,

satisfies ZP(w(p)) ! {p, s+p, 2s+p, . . . , (k−1)s+p; r+p},
and hence by resorting to the inductive assumption, again,
we may say that v(p) belongs to the cone generated by

[Ap−1bi1 Ap−1+sbi2 . . . Ap−1+(k−1)sbik Ap−1+ksb1 ] .

Assume, now, that ZP(v(p)) = {p, s+ p, 2s + p, . . . , ks+
p; r + p}. Then there exists α > 0 such that

w(p) = v(p) − αAp−1+(k+1)sb2

satisfies ZP(w(p)) ! {p, s + p, 2s + p, . . . , ks + p; r + p}.
So, by the previous part of the proof, we can claim that w(p)

belongs to the cone generated by some matrix

[Ap−1bi1 Ap−1+sbi2 . . . Ap−1+ksbik+1 ] ,

and this implies that v(p) belongs to some cone

[ Ap−1bi1 Ap−1+sbi2 . . . Ap−1+ksbik+1 Ap−1+(k+1)sb2 ] ,

thus completing the proof by induction of our Claim.
To conclude, now that we have shown that every vector

v(p), p ∈ {1, 2, . . . , s}, with ZP(v(p)) ⊆ {p, s + p, 2s +
p, . . . , ks + p; r + p}, where k is a suitable nonnegative
number, belongs to the cone generated by some reachability
matrix of the following type

[Ap−1bi1 Ap−1+sbi2 . . . Ap−1+(k+1)sbik+2 ] ,

(where p − 1 + (k + 1)s ≤ n − 1), it is sufficient to notice
that every positive vector v ∈ Rn

+ can be expressed as
v =

∑s
p=1 v(p), for suitable choices of the vectors v(p), and

since each of them is obtained by combining columns where
different powers of the matrix A appear, it is immediately
seen that we can always find indices i1, i2, . . . , in ∈ P such
that

v ∈ Cone ([An−1bin . . . A2bi3 Abi2 bi1 ]) .

Clearly, in all four cases it turns out that IR = n.

V. CONCLUSIONS

In this paper we have investigated monomial reachability
and reachability for the special class of single-input positive
switched systems which commute among subsystems sharing
the same system matrix and different input-to-state vectors
bi ∈ Rn

+. Monomial reachability can be reduced to the
reachability of a standard positive system, and it turns out



that the monomial reachability index IMR is always upper
bounded by the system dimension n.

Reachability property has been investigated in detail for
the special case when the number p of subsystems among
which the system commutes is 2. In this setting, two distinct
canonical forms, depending on whether both b1 and b2 are
monomial, or only one of them is, have been derived. In both
cases, it turns out that the reachability index IR is always
equal to n.
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