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Abstract

A convolutional code can be decomposed into smaller codes if it
admits decoupled encoders. In this paper, we show that if a code can
be decomposed into smaller codes (subcodes) its column distances are
the minimum of the column distances of its subcodes. Moreover, the j-th
column distance of a convolutional code C is equal to the j-th column
distance of the convolutional codes generated by the truncation of the
canonical encoders of C to matrices which entries have degree smaller or
equal than j. We show that if one of such codes can be decomposed into
smaller codes, so can be all the other codes.

Key words: Convolutional codes, decoupled encoders, code decomposition,

free distance, column distance

AMS subject classifications:

1 Introduction

Some convolutional codes can be decomposed into smaller codes (subcodes).
This happens if they admit decoupled encoders among its encoders [2]. The
free distance and the column distances are the most common distance measures
for a convolutional code. It was shown in [1] that the free distance of a code
is equal to the minimum of the free distances of its subcodes. In this paper,
we will show that similarly to the free distance, the j-th column distance of
a convolutional code C is equal to the minimum of the j-th column distances
of its subcodes. Moreover, to calculate the j-th column distance of C we can
consider the truncation of the entries of a canonical encoder of C to polynomials
of degree smaller or equal than j (truncation to degree j). Such obtained matrix
generates a different convolutional code with same i-th column distances than
C, for i ≤ j. So, if C admits a canonical encoder which truncation to degree j is
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a decoupled encoder, Gd(d), we have that the j-th column distance of C is equal
to the minimum of the column distances of the subcodes of the convolutional
code generated by Gd(d). We will see that if a convolutional code has such a
canonical encoder, all the convolutional codes generated by the truncation to
degree j of canonical encoders of C also admit decoupled encoders.

2 Convolutional codes

We will consider convolutional codes constituted by left compact sequences
of (Fp)Z, where p ∈ N and F is a finite field. Such sequences are naturally
represented by Laurent power series ŵ(d) =

∑
wtd

t ∈ F((d))p, and we are
allowed to multiply any left compact support sequence by a scalar Laurent
series s(d) =

∑
std

t ∈ F((d)). In fact, F((d))p is a vector space over the field
F((d)). F[d] and F(d) will denote, as usually, the ring of polynomials and the
field of rational functions with coefficients in F, respectively.

A [p,m]-convolutional code is an m-dimensional subspace of F((d))p, which
has a rational (and polynomial) basis, i.e., that is generated by a full row rank
rational matrix G(d) ∈ F(d)m×p,

C = ImG(d) = {ŵ(d) : ŵ(d) = û(d)G(d), û(d) ∈ F((d))m}.
C is said to have rate m

p and G(d) is called an encoder of C. G(d) produces

a codeword ŵ(d) = û(d)G(d) corresponding to each information sequence
û(d) ∈ F((d))m. A convolutional code admits many encoders. Two encoders
that generate the same code are called equivalent encoders and are related by a
nonsingular rational left factor in F(d)m×m. The encoders that can be realized
by a physical device are called causal encoders. A causal encoder induces a
“non-anticipatory“ input-output map, i.e., produces codewords that start at
the same time or after the corresponding information sequences. Among the
causal encoders of a convolutional code we have the polynomial encoders and
in the class of the polynomial encoders we distinguish the canonical encoders
which are the left prime and row reduced ones. Two canonical encoders of
a convolutional code C have the same row degrees φi, i = 1, . . . ,m, up to a
row permutation, and these row degrees are called Forney indices of C. The
maximum of the Forney indices is the memory of C and is represented by ν
[3, 5].

The free distance of a convolutional code C [5] is defined as

dfree(C) := min{wH(ŵ(d)) =
∑

wH(wt) : ŵ(d) =
∑

wtd
t ∈ C\{0}},

where wH(wt) represents the Hamming weight of wt, and is bounded by

dfree(C) ≤ (p − m)(⌊ ν

m
⌋ + 1) + ν + 1.

Such a bound is called the generalized Singleton bound. If the free distance of
C is equal to the corresponding generalized Singleton bound, then C is said to
be an MDS-code [6].
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A distance measure associated to each causal encoder of a convolutional code
C is the column distance [5].

Definition 2.1 The j-th order column distance of a causal encoder G(d) ∈
F(d)m×p is the minimum of the Hamming weights of ŵ(d)|[0,j]

1 where ŵ(d) is

a codeword corresponding to an information sequence û(d) =
∑

t≥0

utd
t such that

u0 6= 0.

The column distance is an encoder property and two equivalent causal
encoders can have different column distances. However the causal encoders
of a convolutional code which are delay-free (i.e., that produce codewords that
start at the same time as the corresponding information sequences) have the
same column distances, which leads to the definition of column distance of the
code. In this definition we only refer to polynomial encoders for simplicity. A
polynomial encoder G(d) is delay-free if and only if G(0) has full row rank.
Observe that a convolutional code always admit such encoders, being the
canonical encoders an example of delay-free polynomial encoders.

Definition 2.2 The j-th order column distance of a convolutional code is the
j-th order column distance of any polynomial encoder G(d) of C such that G(0)
is full row rank.

Let G(d) = G0 +G1d+ · · ·+Gℓd
ℓ, Gi ∈ F

m×p, i = 1, . . . , ℓ, be a polynomial
encoder of degree ℓ 2 of the convolutional code C, with G(0) = G0 full row rank,
and

M(G(d)) =




G0 G1 · · · · · · Gℓ

G0 G1 · · · · · · Gℓ

. . .
. . .

. . .





the corresponding semi-infinite matrix. Denote by Mc
j(G(d)) the truncation of

M(G(d)) after j + 1 (block) columns

Mc
j(G(d)) =





G0 G1 G2 · · · Gj

G0 G1 · · · Gj−1

G0 Gj−2

. . .
...

G0




(1)

where Gi = 0 for i > ℓ. Then the j-th order column distance of C is

dc
j(C) = minu0 6=0{wH([u0 u1 . . .uj ]M

c
j(G(d)))},

1If ŵ(d) =
X

t≥k

wtd
t then ŵ(d)|[0,j] =

j
X

t=0

wtd
t where wt = 0 for t < k, if k > 0.

2We consider the degree of a polynomial matrix as the maximum of the degrees of
its entries. If G(d) is an m × p polynomial matrix of degree ℓ, we can write G(d) =
G0 + G1d + · · · + Gℓd

ℓ, with Gi ∈ F
m×p, i = 1, . . . , ℓ, and Gℓ 6= 0.
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with ui ∈ F
m, i = 0, 1, . . . , j, for all j ∈ N [5]. For every j ≥ 0, the j-th column

distance of a [p,m]-convolutional code C is bounded by [4]

dc
j(C) ≤ (p − m)(j + 1) + 1.

3 Decoupled encoders and code decomposition

A convolutional code is decomposable into smaller codes if it admits encoders
in block diagonal form, called decoupled encoders. In this section we present a
brief introduction to such encoders. For more details see [2].

Definition 3.1 Let p1, . . . , pk be positive integers such that
∑k

i=1 pi = p and
P a permutation matrix. An encoder G(d) of C is said to be a (p1, . . . , pk)-
decoupled encoder of C associated with P if there exist positive integers
m1, . . . ,mk with

∑k
i=1 mi = m such that

G(d)P = diag{G(1)(d), . . . , G(k)(d)}, (2)

with G(i)(d) ∈ F(d)mi×pi , i = 1, . . . , k.

If G(d) is a (p1, . . . , pk)-decoupled encoder that satisfies (2) and û(d) =
[û1(d) · · · ûk(d)] ∈ F((d))m, with ûi(d) ∈ F((d))mi , an information sequence,
then its corresponding codeword ŵ(d) = û(d)G(d) is of the form

ŵ(d) = [ŵ1(d) · · · ŵk(d)]P,

where ŵi(d) = ûi(d)G(i)(d), i = 1, . . . , k. Consequently, up to a permutation
of the components of the codewords of C,

C = C(1) × · · · × C(k),

where C(i) is the [pi,mi]-convolutional code generated by G(i)(d), i = 1, . . . , k,
and we say that C is decomposable into C(1), . . . , C(k). If C does not have
a (p1, p2)-decoupled encoder, for some p1, p2 ∈ N, then C is said to be an
undecomposable code.

Definition 3.2 A (p1, . . . , pk)-decoupled encoder G(d) of C associated with a
permutation matrix P ,

G(d) = diag{G(1)(d), . . . , G(k)(d)}P−1,

with G(i)(d) ∈ F(d)mi×pi , i = 1, . . . , k and
∑k

i=1 mi = m, is said to be
maximally-decoupled if C(i) = ImG(i)(d) is undecomposable, i = 1, . . . , k.

The determination of a decoupled encoder of a [p,m]-convolutional code C
is directly related with a partition of the columns of the encoders of C. We
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will consider that the columns of any encoder of C constitute a set of nonzero
generators of F((d))m. 3

Definition 3.3 A set of nonzero generators of F((d))m,

G = {v̂1(d), v̂2(d), . . . , v̂p(d)}

and a decomposition of F((d))m in direct sum

F((d))m = V1 ⊕ V2 ⊕ · · · ⊕ Vk, (3)

are compatible if every vector of G belongs to a summand of (3) (and, obviously,
to only one).

If a generator set G is compatible with (3), then

(i) G1 ∪̇ G2 ∪̇ . . . ∪̇ Gk with Gi := Vi ∩ G, i = 1 . . . , k, is a partition of G and
Vi = span(Gi), i = 1, . . . , k.

(ii) if B := {v̂i1(d), . . . , v̂im
(d)} ⊂ G is a basis of F((d))m, Bi := Gi ∩ B is a

basis of span(Gi).

(iii) there exists a unique finest direct sum decomposition

V = V̄1 ⊕ V̄2 ⊕ · · · ⊕ V̄h (4)

compatible with G. Each summand of any other compatible decomposition
of F((d))m can be expressed as a suitable sum of some V̄is in (4).

The following algorithm determines the partition of G = {v̂1(d) . . . v̂p(d)}
associated with (4).

Algorithm 1:
Input: G(d) = [v̂1(d) . . . v̂p(d)].
Step 1: Select an m × m nonsingular submatrix B(d) of G(d) and put

X(d) = B(d)−1G(d).

Step 2: Construct the m × p boolean matrix A defined by

Aij =

{
1 if Xij 6= 0
0 if Xij = 0

.

Step 3: Compute (AT A)p−1 and determine a permutation matrix P ∈ F
p×p

such that
PT (AT A)p−1P = diag{N (1), . . . , N (h)},

3If the i-th column of an encoder of C is zero, the same happens for all equivalent encoders
and, moreover, the i-th component of all codewords of C is also zero. Therefore to determine
the decoupled encoders of C it is sufficient to consider the subcode of C constituted by its
codewords without the i-th component, which encoders are the encoders of C without the i-th
column.
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where N (i) =
[

1 . . . 1
]T [

1 . . . 1
]
∈ F

pi×pi , i = 1, . . . , h.
Step 4: Partitionate P = [P1| . . . |Ph] where Pi ∈ F

p×pi , i = 1, . . . , h and
define P := [GP1|GP2| . . . |GPh].

Output: P and P .

Let G(d) be an encoder of C, P = [G1(d)| . . . |Gh(d)], with Gi(d) ∈
F(d)m×pi , i = 1, . . . , h, be the partition of the columns of G(d) obtained by
applying Algorithm 1 and P be the corresponding permutation matrix. Then
[G1(d)| . . . |Gh(d)] = G(d)P with

F((d))m = spanG1(d) ⊕ · · · ⊕ spanGh(d).

Let also [B1(d)| . . . |Bh(d)] be an m × m nonsingular matrix such that Bi(d) ∈
F(d)m×mi is a submatrix of Gi(d), with mi = rank Gi(d), i = 1, . . . , h. Then

Ḡ(d) := [B1(d)| . . . |Bh(d)]−1G(d) = diag{Ḡ(1)(d), . . . , Ḡ(h)(d)}P−1 (5)

with Ḡ(i)(d) ∈ F(d)mi×pi , i = 1, . . . , h. Ḡ(d) is a (p1, . . . , ph)-decoupled encoder
of C which is maximally-decoupled since [G1(d)| . . . |Gh(d)] is the partition of
the columns of G(d) associated with the finest direct sum decomposition of
F((d))m, which implies that the [pi,mi]-convolutional codes C(i) = Im Ḡ(i)(d),
i = 1, . . . , h, are undecomposable. Moreover, any other maximally-decoupled
encoder of C, G̃(d), is such that G̃(d)P = diag{G̃1(d), . . . , G̃h(d)}, with
G̃i(d) ∈ F(d)mi×pi , i = 1, . . . , h.

Proposition 3.1 If C admits a (p1, . . . , pk)-decoupled encoder associated with
a permutation matrix P then it also admits a (p1, . . . , pk)-decoupled encoder
associated with P which is canonical.

The following result is immediate.

Corollary 3.1 A convolutional code admits maximally-decoupled canonical
encoders.

4 Code decomposition in the analysis of a convolutional code

Let C be a [p,m]-convolutional code with free distance dfree(C). Suppose that
C can be decomposed into smaller codes, i.e., that admits a decoupled encoder

G(d) = diag{G(1)(d), . . . , G(k)(d)}P,

with k ≥ 2, G(i)(d) ∈ F(d)mi×pi , i = 1, . . . , k,

k∑

i=1

mi = m,

k∑

i=1

pi = p and P

a permutation matrix. Let C(i) be the [pi,mi]-convolutional code generated by
G(i)(d), i = 1, . . . , k. It is easy to see that [1]

dfree(C) = min1≤i≤k dfree(Ci). (6)
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So, if we have a code C which can be decomposed into smaller codes with
different free distances, we obtain a better code just by considering the smaller
subcode with better free distance. If all the subcodes have the same free distance
but different rates, C will have rate smaller than the subcode with higher rate.
Moreover, if C is an MDS-code, it can not be decomposable into smaller codes,
as stated in the following proposition.

Proposition 4.1 If C is an MDS-code then C is undecomposable.

Proof: Assume by contradiction that C is an MDS-code that admits a (p1, p2)-
decoupled encoder G(d) ∈ F(d)m×p for some positive integers p1, p2 such that
p1 + p2 = p. Then C also admits a canonical (p1, p2)-decoupled encoder Gc(d)
such that

Gc(d)P =

[
G(1)(d) 0

0 G(2)(d)

]
,

for some permutation matrix P and G(i)(d) ∈ F(d)mi×pi , i = 1, 2, with
m1 + m2 = m.

Let C(i) = Im G(i)(d) and represent ν1 = deg(C(1)), ν2 = deg(C(2)) and
ν = deg(C). Observe that ν1 + ν2 = ν. Since C is an MDS-code,

dfree(C) = (p − m)(⌊ ν

m
⌋ + 1) + ν + 1.

Let us consider two cases: ν2m1 ≥ ν1m2 and ν2m1 < ν1m2.
Case 1: ν2m1 ≥ ν1m2. Since p1 + p2 = p, m1 + m2 = m and ν1 + ν2 = ν, we

have that

dfree(C) = (p1 + p2 − m1 − m2)(⌊
ν1 + ν2

m1 + m2
⌋ + 1) + ν1 + ν2 + 1 =

= (p1 − m1)(⌊
ν1

m1
⌋ + 1) + ν1 + 1 + (p1 − m1)(⌊

ν1 + ν2

m1 + m2
⌋ − ⌊ ν1

m1
⌋)+

+(p2 − m2)(⌊
ν1 + ν2

m1 + m2
⌋ + 1) + ν2.

But dfree(C(1)) ≤ (p1 − m1)(⌊ ν1

m1
⌋ + 1) + ν1 + 1 which implies that

dfree(C) ≥ dfree(C(1)) + (p1 − m1)(⌊
ν1 + ν2

m1 + m2
⌋ − ⌊ ν1

m1
⌋)+

+(p2 − m2)(⌊
ν1 + ν2

m1 + m2
⌋ + 1) + ν2

and therefore dfree(C) > dfree(C(1)) since (p2 − m2)(⌊ ν1+ν2

m1+m2
⌋ + 1) + ν2 ≥ 1

which contradicts (6).

Case 2: ν2m1 < ν1m2. Proceeding the same way we conclude that
dfree(C) > dfree(C(2)) which also contradicts (6), and we conclude that C is
undecomposable. ¤

Observe that the converse of the above lemma is not true as it is shown in
the next example.
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Example 4.1 Consider the [4, 2]-convolutional code C over the binary field
such that

Gc(d) =

[
1 0 d 0
0 1 1 1

]

is a canonical encoder of C. We can easily see that C is an undecomposable code
which is not an MDS-code since it has free distance 2 but the corresponding
generalized Singleton bound is 4.

A similar result to (6) holds for the column distances of a convolutional
code that can be decomposed into smaller codes, as stated in the following
proposition.

Proposition 4.2 Let G(d) be a (p1, . . . , pk)-decoupled encoder of C associated
with a permutation matrix P ,

G(d)P = diag{G(1)(d), . . . , G(k)(d)}, G(i)(d) ∈ F(d)mi×pi ,

and C(i) be the [pi,mi]-convolutional code generated by G(i)(d), i = 1, . . . , k.
Then dc

j(C) = min1≤i≤k dc
j(C(i)).

Proof: By Proposition 3.1 we can assume without loss of generality that G(d)

is canonical. Representing G(i)(d) = G
(i)
0 + G

(i)
1 d + · · ·+ G

(i)
ν dν , G

(i)
r ∈ F

mi×pi ,
i = 1, . . . , k, r = 0, . . . , ν, we have that

G(d) = diag{G(1)
0 , . . . , G

(k)
0 }P + diag{G(1)

1 , . . . , G
(k)
1 }Pd+

+ · · · + diag{G(1)
ν , . . . , G(k)

ν }Pdν

and then for all j ≥ 0 there exist permutation matrices P1 and P2 such that

Mc
j(G(d)) = P1 diag{Mc

j(G
(1)(d)), . . . ,Mc

j(G
(k)(d))} P2,

where P1 is such that if un = [u
(1)
n . . .u

(k)
n ], u

(i)
n ∈ F

mi , i = 1, . . . , k, n =
0, . . . , j, then

[u0 · · · uj ]P1 = [u
(1)
0 · · · u

(1)
j | · · · |u(k)

0 · · · u
(k)
j ].

Consequently, for un ∈ F
m, n = 0, . . . , j,

[u0 · · · uj ]M
c
j(G(d)) =

= [u
(1)
0 · · · u

(1)
j | · · · |u(k)

0 · · · u
(k)
j ] diag{Mc

j(G
(1)(d)), . . . ,Mc

j(G
(k)(d))} P2,

which implies that dc
j(C) = min1≤i≤kj

dc
j(C(i)). ¤

Let Gc(d) = G0 + G1d + · · · + Gνdν , with Gi ∈ F
m×p, i = 1, . . . , ν, be a

canonical encoder of C and define

Gc(d)|[0,j] = G0 + G1d + · · · + Gjd
j , (7)
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for j = 0, 1, . . . , ν. Since Gc(d) is left prime, G0 is full row rank and then so
it is Gc(d)|[0,j], j = 0, 1, . . . , ν. Therefore we can define C[j] to be the [p,m]-
convolutional code generated by Gc(d)|[0,j], j = 0, 1, . . . , ν. It is immediate to
see that

dc
j(C) = dc

j(C[j]), j = 0, 1, . . . , ν.

Observe that if Gc(d) and G̃c(d) are equivalent canonical encoders and C[j]

and C̃[j] are the convolutional encoders generated by Gc(d)|[0,j] and G̃c(d)|[0,j],

respectively, it is not true that C[j] and C̃[j] are the same as it is shown in the
following example.

Example 4.2 Consider the [5, 3]-convolutional code C generated by the
equivalent canonical encoders

Gc(d) =




1 0 d2 d3 0
0 d 1 0 0
0 0 0 1 1 + d





and

G̃c(d) =




1 d2 d2 + d d3 + d2 d3 + d2

0 d 1 1 1 + d
0 d 1 −1 −1 − d





and let j = 1. It is easy to see that the convolutional codes

C[1] = ImGc(d)|[0,1] = Im




1 0 0 0 0
0 d 1 0 0
0 0 0 1 1 + d





and

C̃[1] = Im G̃c(d)|[0, 1] = Im




1 0 d 0 0
0 d 1 1 1 + d
0 d 1 −1 −1 − d





are distinct.

However, these codes C[j] and C̃[j] have similar properties of decoupling as
stated in the following proposition.

Proposition 4.3 Let Gc(d) and G̃c(d) in F[d]m×p be equivalent canonical
encoders of degree ν and let C[j] and C̃[j] be the convolutional codes generated

by Gc(d)|[0,j] and G̃c(d)|[0,j], respectively, for j = 0, 1, . . . , ν. Then

if Gc(d)|[0,j]P = diag{G(1)(d), . . . , G(k)(d)}, G(i)(d) ∈ F[d]mi×pi , i =

1, . . . , k, with

k∑

i=1

mi = m,

k∑

i=1

pi = p and P a permutation matrix, then

diag{G(1)(d), . . . , G(k)(d)}P−1 is also an encoder of C̃[j].
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Proof: Since Gc(d) and G̃c(d) are equivalent canonical encoders,
there exists a unimodular matrix U(d) ∈ F[d]m×p such that Gc(d) =
U(d)G̃c(d). Therefore Ḡ(d) := U(d)G̃c(d)|[0,j] is an encoder of C̃|[0,j] such that

Ḡ(d)|[0,j]P = (U(d)G̃c(d)|[0,j])|[0,j]P = (U(d)G̃c(d))|[0,j]P = Gc(d)|[0,j]P =

diag{G(1)(d), . . . , G(k)(d)}. ¤

Propositions 4.2 and 4.3 immediately imply the following result.

Corollary 4.1 Let C be a [p,m]-convolutional code. If dc
j(C) = (p−m)(j+1)+1

for some j ≥ 0 then C does not have a canonical encoder Gc(d) such that
C[j] := ImGc(d)|[0,j] is decomposable into k ≥ 2 smaller codes.

5 Conclusions

We have showed that, similarly to the free distance, a convolutional code
that can be decomposed into smaller codes has j-th column distance equal
to the minimum of the j-th column distances of its subcodes. Moreover, a
convolutional code C can be undecomposable and admit a canonical encoder
Gc(d) such that Gc(d)[0,j] is decoupled for some j (as in Example 4.2 where
C is undecomposable and Gc(d)|[0,1] is a (3, 2)-decoupled encoder). The j-
th column distance of such code C is equal to the j-th column distance
of C[j] := ImGc(d)[0,j] which can be decomposed into smaller codes and,
consequently, the j-th column distance of C is equal to the minimum of the
j-th column distances of the subcodes of C[j]. A subject of future investigation
is the study of these codes. Although they seem not to be the best codes in
terms of their distances, they seem to present good performance in terms of
decoding.
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