
Low Power Link Layer Security for Internet of
Things: Implementation and Performance Analysis

Diego Altolini∗, Vishwas Lakkundi†, Nicola Bui∗†, Cristiano Tapparello‡ and Michele Rossi∗‡
∗Consorzio Ferrara Ricerche, Ferrara, Italy, †Patavina Technologies, Padova, Italy, ‡DEI, University of Padova, Italy

Email: diego.altolini@gmail.com, vishwaskl@ieee.org, nicolabui@gmail.com, {tappare1, rossi}@dei.unipd.it

Abstract—In this paper we present the implementation and
performance evaluation of security functionalities at the link
layer of IEEE 802.15.4-compliant IoT devices. Specifically, we
implement the required encryption and authentication mechanisms
entirely in software and as well exploit the hardware ciphers that
are made available by our IoT platform. Moreover, we present
quantitative results on the memory footprint, the execution time
and the energy consumption of selected implementation modes
and discuss some relevant tradeoffs. As expected, we find that
hardware-based implementations are not only much faster, leading
to latencies shorter than two orders of magnitude compared to
software-based security suites, but also provide substantial savings
in terms of ROM memory occupation, i.e. up to six times, and
energy consumption. Furthermore, the addition of hardware-based
security support at the link layer only marginally impacts the
network lifetime metric, leading to worst-case reductions of just
2% compared to the case where no security is employed. This is
due to the fact that energy consumption is dominated by other
factors, including the transmission and reception of data packets
and the control traffic that is required to maintain the network
structures for routing and data collection. On the other hand,
entirely software-based implementations are to be avoided as the
network lifetime reduction in this case can be as high as 25%.

Index Terms—Information Security; Data Link Layer Security;
AES-CCM; Internet of Things; M2M Communication; Perfor-
mance Analysis.

I. INTRODUCTION

The concept of Internet of Things (IoT) [1] has been proposed
and studied as a means to provide wireless communication
functionalities to different types of physical objects that support
our daily activities. Due to the pervasive nature of these objects,
sensitive data can be collected and transmitted for both public
and private use from different sources. Consequently, integrity
and confidentiality of transmitted data as well as the authentica-
tion of the elements involved in the communications are crucial.

There is an extensive literature that presents different so-
lutions to provide security functionality to wireless data net-
works [2], but the inherently limited processing and communi-
cation capabilities of IoT devices prevent the use of full-fledged
security suites. IoT devices are resource constrained and, in turn,
we either need to craft dedicated security mechanisms or adapt
existing schemes.

Security is a vast research topic, covering pretty much all
layers of the protocol stack. Security requirements range from
confidentially (information can only be understood by the
intended receiver), integrity (a message will not be corrupted

along the path connecting its source to its destination), authen-
tication (the identity of the sender is certified and verified at the
receiver), non-repudiation (the sender of a message cannot later
deny having sent the message) and robustness against various
types of attacks (man in the middle, replay attacks, denial-of-
service, etc.) [3]. Several approaches are currently being inves-
tigated to provide security at the network and transport layers
through lightweight key exchange techniques and simplified
cipher suite negotiation procedures, as illustrated in [4, 5]. Other
contributions focus on lightweight crypto-primitives, such as
Elliptic Cryptography [6]. A substantial amount of work has
been done to devise effective key management protocols as
explained in [3] and the references therein.

In this paper, we focus on data link layer security and
specifically on the security mechanisms that are specified by
the IEEE 802.15.4 MAC standard. Hence, we explore different
implementation modes, studying the impact of implementing
encryption and authentication primitives in software or exploit-
ing the hardware ciphers that are offered by most contemporary
IoT platforms. We carry out an experimental campaign focusing
on performance metrics such as latency, memory occupation
and energy consumption and discuss relevant tradeoffs. Our
results indicate that hardware-based implementations lead to
latencies shorter than two orders of magnitude compared to
software-based security suites, at the same time providing
substantial savings in terms of ROM memory occupation (up
to six times) and reduced energy consumption. Remarkably, the
addition of hardware-based security support at the link layer
only marginally impacts the network lifetime metric, leading
to worst-case reductions of just 2% (relative to the case where
no security is accounted for at the link layer). This is probably
the main result of this paper and also basically tells us that
hardware-based implementations of link layer security are a
viable approach. Software-based implementations are rather less
attractive as the network lifetime reduction in this case can be
as high as 25%.

This paper is organized as follows: our protocol stack archi-
tecture, link layer security aspects, pertinent authentication and
encryption algorithms are described in Section II; Section III
explains how the security block is implemented within such
architecture, defines its structure, specifies the algorithms em-
ployed and also describes the experimental setup used during the
trials. Section IV depicts the results obtained and provides their
performance analysis and finally and conclusions are drawn in
Section V.978-1-4673-2480-9/13/$31.00 c© 2013 IEEE

Figure 1: Communication stack architecture.

II. MAC LAYER SECURITY

A. Protocol stack architecture and link layer procedures

The architecture of our communication stack is depicted in
Fig. 1. It illustrates the implementation of an IPv6/6LoWPAN
stack [7, 8] running on IEEE 802.15.4 radio technology. This
stack provides an abstraction of all the existing physical com-
munication interfaces of a sensor node and allows seamless data
transmission, reception and forwarding. In our implementation,
the shaded modules are mandatory to enable basic connectivity
(providing IPv6 support, physical and link layer technology),
while the unshaded modules are optional, and provide more
advanced functionalities such as CoAP [9] to handle application
layer messages and RPL [10] to permit routing of packets over
multi-hop low power and lossy IPv6 networks. The modules
with dashed borders, instead, represent the logical components
of the communication stack that provide the basic gateway
functionalities and currently reside outside the node. These
are needed at the border gateway, which connects the wireless
sensor network (WSN) domain to the Internet. Further details on
IEEE 802.15.4 data link (DLL) and physical (PHY) layers are
available in the IEEE 802.15.4 standard [11]. For more details
on our protocol architecture, see [5, 12].

At the DLL, we have implemented the Low Power Listening
(LPL) protocol [13, 14] that implements a medium access
control (MAC) strategy specifically designed to enable longer
battery lifetimes of WSN nodes. The main idea is to let the
network nodes sleep for most of the time and wake them up
periodically for only a fraction of the sleep period. During this
time, nodes sense the channel to detect data transmissions. If a
transmission is detected, the node continues to receive the whole
data packet, otherwise it switches back to the sleep mode. On the
other hand, the transmitting node, in order to maximize the prob-
ability of being heard by the addressed L2 destination, repeats
the transmission of the packet for the whole duration of the sleep
period. This protocol provides great advantages especially when
the transmissions are very sporadic. The LPL protocol takes
care of all the major MAC functionalities including transmission
and reception of frames, radio power efficiency control, CSMA-
CA channel access management, backoff congestion control and

IPv6 (6LoWPAN)

Link Layer Security

Low Power MAC

IEEE 802.15.4 DLL

IEEE 802.15.4 PHY

Figure 2: Link layer security module.

retransmissions, duplicate filtering, broadcast support, neighbor
cache maintenance and so on. The LPL layer implementa-
tion resides between the 6LoWPAN adaptation layer and the
IEEE 802.15.4 PHY layer.

Our link layer security module is implemented within the
LPL block as shown in Fig. 2. Further details are given below
in Section III.

B. IEEE 802.15.4 MAC security description

The IEEE 802.15.4 specification [11] defines the PHY and
MAC layers for low rate wireless personal area networks (LR-
WPAN), that is used for short range communications and
requires low power consumption and low cost devices. Because
of their nature, there are additional constraints that make it
difficult to secure these networks. In particular, the choices
related to cryptographic algorithms are strongly influenced by
the limited capabilities available on IoT nodes.

This specification provides some security services as data

confidentiality, data authenticity and protection against replay

attacks. Data confidentiality is required in order to protect the
information included in the data frames from unauthorized ac-
cess and is achieved through message encryption, whereas data
authenticity is used to prevent unauthorized content changes and
to verify the identity of the source of the transmitted information
at the receiver. Replay protection, when required, detects the
fraudulent repetition of messages to avoid replay attacks and
is obtained through a frame counter, which is incremented
each time a secure frame is transmitted until it reaches a
given threshold. Obviously, as security is not mandatory, the
unsecured mode is also supported.

For secured mode, the IEEE 802.15.4 standard makes use
of symmetric-key cryptography with keys provided by the
higher layers1, combined together with some operation modes to
achieve both frame encryption and integrity. While the former
is accomplished by using a symmetric block cipher, such as
the Advanced Encryption Standard (AES), the latter is fulfilled
through a message authentication code (MAC), also called

1To this end, pre-shared keys may be used or the network administrator
should rely on a key distribution mechanism. The investigation of these matters
is outside the scope of this paper.

authentication tag or message integrity code (MIC), that is a
variable-length tag used to authenticate and to provide integrity
assurance on the message. Counter (CTR) mode, cipher block
chaining with message authentication code (CBC-MAC) mode
and counter with CBC-MAC (CCM) mode are the supported
modes of operation. When both encryption and authentication
are provided, the operation mode used is CCM; otherwise,
when only one is required, CTR and CBC-MAC are used for
providing encryption and authentication only, respectively. AES
is the block cipher used for all the operation modes. AES, CTR,
CBC-MAC and CCM are explained in greater details in the
following sections.

The IEEE 802.15.4 specification allows flexibility for security
support providing optional data confidentiality, and different lev-
els of data authenticity in order to minimize the total overhead.
The security options and the corresponding services offered by
the specification, together with the authentication tag length, are
shown in Table I.

TABLE I
SECURITY OPTIONS AND SERVICES PROVIDED BY THE IEEE 802.15.4 SPEC.

Security name Confidentiality Authenticity Auth. tag (bits)

None ✗ ✗ 0
MIC-32 ✗ ✓ 32
MIC-64 ✗ ✓ 64
MIC-128 ✗ ✓ 128
ENC ✓ ✗ 0
ENC-MIC-32 ✓ ✓ 32
ENC-MIC-64 ✓ ✓ 64
ENC-MIC-128 ✓ ✓ 128

C. Advanced Encryption Standard (AES)

AES is a cryptographic algorithm defined by the US National
Institute of Standards and Technology (NIST) in 2001, as
Federal Information Processing Standard (FIPS) Publication 197
[15] and used by US Federal departments and agencies or
non-Federal Government organizations to protect sensitive and
unclassified electronic data.

It is a symmetric block cipher used to encrypt and decrypt
information with the same key, based on the Rijndael algorithm.
Unlike Rijndael that handles more block sizes and key lengths,
the AES is designed to encrypt and decrypt data blocks of 128
bits using cipher keys of 128, 192, or 256 bits. It has supplanted
the Data Encryption Standard (DES) in many cryptography
applications.

D. Counter mode (CTR)

CTR [16] is a mode of operation that is used in conjunction
with a symmetric key block cipher algorithm, such as AES, to
obtain confidentiality over several blocks using the same cipher
key, and to avoid pattern recognition by a possible intruder. For
each block, a counter block, that must be different among the
blocks for all messages under a given key (also called nonce), is
encrypted using a block cipher with a given key to produce the
keystream. The resulting output block is then XORed with the
corresponding plaintext block to obtain the ciphertext block and
vice versa. For the last block, which may be a partial block, only
the most significant bits related to the partial block length are
used whereas the remaining bits are discarded. For both CTR

encryption and decryption, the forward block cipher functions
can be performed in parallel. The CTR mode of operation is
shown in Fig. 3, for both encryption and decryption, where K

is the symmetric cipher key.

block_cipher

ciphk

+

key K

counter_block_1

plaintext_1

ciphertext_1

block_cipher

ciphk

+

counter_block_n

...

(plaintext_1)

(ciphertext_1)

ciphertext_n
(plaintext_n)

plaintext_n
(ciphertext_n)

key K

Figure 3: Diagram of the CTR encryption (decryption) mode.

E. CBC-MAC mode

The cipher block chaining with message authentication code
is a procedure to generate a message authentication code using
a block cipher in CBC [16] operation mode.

The message to be authenticated is encrypted in CBC mode
with a deterministic initialization vector consisting of an all-
zero block. The sequence to be encrypted must be padded to a
multiple of the cipher block size (block size), simply by adding
zeroes at the end of the message. Further, the padded data is
divided into blocks, each matching the block size. The first
message block is XORed with the initialization vector before
being encrypted using a symmetric-key block cipher with the
same key. The result is then XORed with the second message
block and encrypted again. The last message block is XORed
with the previous block and given as input to the block cipher.
The resulting block, or part of it (leftmost bits), represents the
authentication tag. Fig. 4 shows the CBC-MAC mode, where
plaintext i represents the i-th message block.

block_cipher

ciphk

+

key K

init_vector

...

plaintext_1

block_cipher

ciphk

+

key K

plaintext_n

authentication tag

Figure 4: Diagram of the CBC-MAC mode of operation.

As CBC-MAC is not secure for variable-length messages,
usually the length of the message is included in the first block.
Since the input block to each encryption operation depends on
the result of the previous one, it cannot be run in parallel. At
the receiver side, the message authentication code is computed
and compared with the received one to verify authentication and
integrity of the received data message.

F. Counter with CBC-MAC (CCM) mode

The CCM mode [17, 18] provides both authentication and
confidentiality of data by combining the techniques of CTR
and CBC-MAC modes. Further details on CCM follow in
Section III.

III. IMPLEMENTATION DETAILS

CCM is a generic combined encryption and authentication
block cipher mode that is also specified by the IEEE 802.11
MAC standard. Specifically, CCM∗ coincides with the original
specification of CCM [17] for messages that require authen-
tication and encryption, but it additionally supports messages
that only require encryption. Moreover, it can also be employed
where the use of variable-length authentication tags is preferable
(rather than fixed-length authentication tags). Like CCM, CCM∗

also requires a single secret key [11].
The block cipher used in the implementation of CCM∗ is

AES-128 as specified in [15]. This block cipher is used with
symmetric keys with the same size as that of the block cipher,
which in our implementation has been set to 128 bits.

The implementation of CCM∗ includes two procedures: for-
ward transformation (Fig. 5(a)), executed at the transmitter side
to encrypt and authenticate link layer packets before their trans-
mission over the channel and inverse transformation (Fig. 5(b)),
executed at the receiver side to decrypt and validate the data.
The forward transformation involves the execution of: an input
transformation (CCM-1), an authentication procedure (CCM-
2) and an encryption transformation (CCM-3), as shown in
Fig. 5(a). CCM-1 involves the transformation of the two CCM∗

input strings m (the original message) and a (an associated data
sequence) onto the strings PlainTextData and AuthData, to be
used by the encryption transformation and the authentication
procedure, respectively. Thus, the authentication transformation
step tags the AuthData using the tagging transformation and
produces an authentication tag. Finally, the PlaintextData and
the authentication tag formed earlier are encrypted using the en-
cryption transformation step resulting in an encrypted message
called Ciphertext and an encrypted authentication tag.

(a) CCM∗ forward transformation

(b) CCM∗ inverse transformation

Figure 5: Block diagram of CCM∗ mode of operation.

The CCM∗ mode inverse transformation involves the exe-
cution of a decryption transformation and an authentication
checking transformation as shown in Fig. 5(b). The decryption
transformation is similar to the encryption transformation ex-
plained above, resulting in a decrypted authentication tag and
the m string. Further, the authentication checking transformation
step uses the input transformation explained above to form

AuthData by using as inputs the a string and the m string
established during decryption transformation. Furthermore, it
employs authentication transformation, with AuthData as input,
to form MACTag and compares it with the authentication tag
established during decryption transformation. If both the tags
are equal, the authentication is valid; otherwise the resultant a
and m strings are rejected thus completing the overall CCM∗

procedure. Further details about all the CCM∗ implementation
steps described above are available in [11, 18] and are beyond
the scope of this paper.

In order to determine the best possible solution in terms of
efficiency and complexity, we have considered several com-
binations of both software and hardware implementations of
our security module and its constituents. While the AES block
cipher is implemented in both hardware and software, the CBC-
MAC and the CCM∗ engine were only implemented in software,
as the corresponding functionalities are not provided by our
hardware architecture. In greater detail, the hardware platform
for which we have implemented our protocol stack features an
AVR XMEGA AU micro-controller [19], that is combined with
an AVR AT86RF231 radio transceiver [20]. The XMEGA AU
micro-controllers is a family of low-power, high-performance,
and peripheral-rich CMOS 8/16-bit micro-controllers based on
the AVR enhanced RISC architecture, whereas the AT86RF231
is a low-power 2.4 GHz radio transceiver designed for industrial
and consumer IEEE 802.15.4, ZigBee, 6LoWPAN, RF4CE,
SP100 and WirelessHART.

The experimental setup used during our measurement trials
included the aforementioned hardware modules along with
a digital storage oscilloscope and a computer running on a
3.4 GHz Intel Core i7 CPU under the UNIX operating envi-
ronment.

IV. RESULTS AND ANALYSIS

The performance of our DLL security suite has been eval-
uated in terms of parameters such as execution time, memory
usage and energy consumption. In what follows, we use these
metrics to compare hardware and software implementations of
the AES block cipher and to analyze the overall CCM∗ mode
of operation. For all of them we considered both optimized and
unoptimized versions. Optimization can be achieved through
different criteria such as the minimization of the code size, the
memory usage or the execution time without compromising on
the code correctness. Since our tightest requirement is related to
the code size, we opted for the space option that tries to reduce
the image size of the compiled code as much as possible.

A. Time and memory requirements

The first set of measurements pertaining to the time required
by different security operations is analyzed below.

According to Atmel’s application notes [19, 21], the AES
crypto module requires 375 clock cycles to execute one en-
cryption/decryption operation, when key and data are loaded
and the mode of operation is selected. Considering the AVR
XMEGA A3 micro-controller’s reference clock frequency of
32 MHz [19], the time required to complete a single encryp-
tion(decryption) operation is given by:

tenc/dec = tclk ·Nclock_cycles =
1

32 MHz
· 375 ≃ 11.719 µs.

The corresponding experimental measurements, obtained for
optimized and unoptimized code, are given in Table II. The exe-
cution times are also expressed in terms of clock ticks alongside,
by again taking into consideration the micro-controller’s clock
frequency of 32 MHz. Our experimental measurements closely
match those predicted by the Atmel application notes.

TABLE II
AES HARDWARE ENCRYPTION/DECRYPTION.

Time Required Ticks

Optimized Code 12.00 µs 384
Unoptimized Code 12.80 µs 410

The delay performance of encryption and decryption opera-
tions for a block of 128 bits (according to AES-128) are given
in Table III, where the delay is expressed in terms of seconds
and clock ticks (note that these measurements also include the
time required to load the secret key and the data block to be
encrypted).

TABLE III
AES ENCRYPTION/DECRYPTION TIME FOR A BLOCK OF 128 BITS.

Optimized Code Unoptimized Code
Time Ticks Time Ticks

AES Hardware 41.60 µs 1331 160.00 µs 5120
AES Software 1.44 ms 46080 2.94 ms 94080

As shown in Table III, the software implementation of AES is
much slower than its hardware counterpart. This was expected,
and is due to the fact that the former requires several accesses
to the flash memory in order to perform the required operations,
and every memory access involves a significant amount of time.
In fact, we implemented all the encryption constants as look-
up tables in flash memory in order to save as much SRAM
as possible. In our architecture, this is achieved using specific
compiler attributes provided by the compiler, e.g., PROGMEM.
The values of time required to read either a byte or a double
word (4 bytes) from the flash memory are listed in Table IV.

TABLE IV
TIME REQUIRED FOR EACH ACCESS TO THE FLASH MEMORY.

Optimized Code Unoptimized Code
Time Ticks Time Ticks

Byte 8.20 µs 262 15.40 µs 493
Double Word 11.40 µs 365 24.00 µs 768

Regarding the CCM∗ mode of operation, we recall here that
CCM∗’s encryption consists of three phases CCM-1, CCM-2
and CCM-3 as explained in Section III and, in addition to
these, CCM∗’s decryption also requires the validation of the
decrypted data. In Table V, we show the performance of the
complete CCM∗ forward (i.e. encryption and authentication
at the transmitter) and CCM∗ inverse (i.e. decryption and
validation at the receiver) procedures in terms of execution time
and consumed energy, considering a link layer packet payload

size of 95 bytes, which is the maximum possible packet payload
size for the security level considered in our implementation
(i.e. ENC-MIC-128) considering the values of MAC header
(14 bytes), FCS (2 bytes), MIC (16 bytes) and the maximum
PSDU size (127 bytes) as defined in [11]. These results include
the time necessary to execute the three phases CCM-1, CCM-
2 and CCM-3 and also that required to create the nonce and
the associated data sequences, as required by the algorithms.
The performance related to each of the constituent operations
(CCM-1, CCM-2 and CCM3) is also given in the table.
It should be noted that while the AES block cipher can be

implemented in either hardware or software, as indicated in
Table V, the CBC-MAC and the CCM∗ engine are implemented
in software.
The total amount of memory consumed by each of the four

security implementations that we consider here is given in
Table VI. Note that the overhead pertaining to accessing the
flash memory (ROM) during the software mode of operation is
quite high even in terms of memory consumption. Specifically,
the ROM memory footprint of the hardware-based implementa-
tion is about six times smaller than that of the software-based
implementation. However, there was no significant difference
between the four modes with respect to RAM consumption.

TABLE VI
OVERALL MEMORY CONSUMPTION IN BYTES.

Security Mode ROM RAM

Hardware Optimized 4495 23
Hardware Unoptimized 7041 23
Software Optimized 21459 37
Software Unoptimized 26183 37

B. Energy efficiency and implementation complexity

The contour plots in Fig. 6 and Fig. 7 depict the impact
of introducing DLL security within the IoT protocol stack of
Section II-A. We measure the energy efficiency of our DLL
security implementations in terms of their effect on the overall
lifetime of the network as illustrated in these contour plots.
The x-axes represent the number of relay nodes in the network,
whereas the y-axes show the inter-packet transmission intervals.
The numerical values expressed as percentages shown above
the contour lines represent the reduction in lifetime between
a network setup where the nodes do not implement any DLL
security feature and the same network scenario where all nodes
implement DLL security. These figures have been obtained
considering a network setup where a number of nodes (shown on
the abscissa) have been deployed according to a tree topology,
6LoWPAN has been used as the addressing technology and
RPL [10] has been exploited to route data to a data collection
node located at the root of the tree.
Remarkably, the impact of adding our DLL security suite

is negligible when we utilize a hardware-based optimized
implementation as can be seen in Fig. 6. In this case, the
decrease in the nodes’ lifespan is less than 2% under all network
configurations (i.e. varying number of nodes and inter-packet
transmission times). This is a very good result which makes
DLL security a viable option even for resource constrained IoT
nodes. Note however that the impact of adding DLL security

TABLE V
EXECUTION TIME AND ENERGY CONSUMPTION PERFORMANCE OF THE HARDWARE- AND SOFTWARE-BASED IMPLEMENTATIONS OF THE DLL SECURITY

SUITE. RESULTS ARE SHOWN FOR BOTH OPTIMIZED AND UNOPTIMIZED CODE FOR A PAYLOAD SIZE OF 95 BYTES (ENERGY PERFORMANCE OF UNOPTIMIZED

CODE HAS BEEN OMITTED DUE TO SPACE CONSTRAINTS).

Optimized code Unoptimized code
Function AES Hardware AES Software AES Hardware AES Software

Time Ticks Energy Time Ticks Energy Time Ticks Time Ticks

CCM* forward 1.44 ms 46080 114.05 µJ 28.80 ms 921600 2280.96 µJ 4.80 ms 153600 64.80 ms 2073600
CCM* inverse 1.50 ms 48000 118.80 µJ 29.20 ms 934400 2312.64 µJ 5.20 ms 166400 64.80 ms 2073600
CCM-1) Input 78.00 µs 2496 6.17 µJ 78.00 µs 2496 6.17 µJ 102.40 µs 3277 102.40 µs 3277
CCM-2) Authentication 700.00 µs 22400 55.44 µJ 15.00 ms 480000 1188.00 µJ 2.56 ms 81920 33.60 ms 1075200
CCM-3) Encryption 576.00 µs 18432 45.62 µJ 13.80 ms 441600 1092.96 µJ 1.92 ms 61440 30.40 ms 972800

Number of nodes

T
X

 i
n
te

rv
a
l
[s

]

Reduction in lifetime expressed in percentage

 1.6 % 1.4 %

 1.2 %
 1.0 %

 0.8 %

 0.6 %

 0.4 %

 0
.2

 %

5 10 15 20 25 30 35 40 45 50

500

1000

1500

2000

2500

3000

3500

Figure 6: Energy consumption comparison: no security vs.
optimized hardware-based implementation security.

Number of nodes

T
X

 i
n
te

rv
a
l
[s

]

Reduction in lifetime expressed in percentage

25.3 %19.1 %

16.1 %13.0 %

 9.9 %

 6.9 %

 3
.8

 %

5 10 15 20 25 30 35 40 45 50

500

1000

1500

2000

2500

3000

3500

Figure 7: Energy consumption comparison: no security vs.
optimized software-based implementation security.

is much more pronounced for software-based implementations
(see Fig. 7). In this case, when the number of nodes is high (in
the range 30 − 50) the lifetime can reduce by about 25% for
inter-packet transmission times shorter than 500 seconds.

To better put these percentages into perspective, we note that
lifetime differences of 1−2% roughly correspond to 5−8 hours
of reduced operational time. This is the price we have to pay
for the addition of DLL security features, which we deem
acceptable considering that typical values of the WSN lifetime
span between three months and two years (depending on the
selected inter-packet transmission time).

These optimum results are due to the fact that the energy
spent for the processing required by the DLL security algorithms
is orders of magnitude smaller than that required by the radio for
transmission and reception activities of data and control packets
(as those required to maintain the network structures for routing
and data collection). These facts dominate the overall energy
budget (compare the energy figures in Table V with respect to
the energy drained by the transmission of a packet, which takes
about 480 µJ). For the software-based implementation, instead,
the security overhead impacts more on the lifetime, as shown
in Fig. 7 and this is due to their much longer processing times,
which entail a much higher energy expenditure.

In Fig. 8 we focus on the implementation complexity, which
is the amount of time taken by each of the constituent blocks of

the CCM∗ security module vs. the link layer packet payload size
(reported on the abscissa). In this figure, we show results for
both the hardware- (HW) and software-based (SW) implementa-
tions, by specifying the results for the complete CCM∗ security
procedure (i.e. including CCM-1, CCM-2 and CCM-3 and
referred to in the figure as CCM_AES) as well as the time taken
by the execution of the sole authentication procedure (CCM-2,
referred to in the figure as AUTH_AES) and by the encryption
transformation (CCM-3, referred to in the figure as ENC_AES).
Due to space limitations we only show the results for the op-
timized (opt) HW implementation and the unoptimized (unopt)
SW implementation, which can be considered as the best and
worst cases respectively in terms of performance. Clearly, the
authentication procedure (AUTH_AES_HW) is computationally
more intensive than encryption transformation (ENC_AES_SW
and ENC_AES_HW) for both software- and hardware-based
implementations. In addition, HW implementations outperform
SW ones by about two orders of magnitude.

Fig. 9 shows the total time taken by the entire CCM∗

procedure (including CCM-1, CCM-2 and CCM-3) as a function
of the link layer packet size. We hereby provide curves for HW
and SW implementations for both the optimized and unopti-
mized code. As expected, the hardware optimized (HW_opt)
security mode performs best, whereas the software unoptimized
(SW_unopt) security mode fares the worst. Note that the results

0.1

1

10

10
2

16 32 48 64 80 95

T
im

e
 r

e
q
u
ir
e
d
 [
m

s
]

Payload size [bytes]

CCM_AES_HW_opt
AUTH_AES_HW_opt

ENC_AES_HW_opt
CCM_AES_SW_unopt

AUTH_AES_SW_unopt
ENC_AES_SW_unopt

Figure 8: Time required by each operation for selected CCM∗

security modes (best and worst methods only).

 0

 10

 20

 30

 40

 50

 60

 70

16 32 48 64 80 95

T
im

e
 r

e
q
u
ir
e
d
 [
m

s
]

Payload size [bytes]

AES_HW_opt
AES_HW_unopt

AES_SW_opt
AES_SW_unopt

Figure 9: Total time required by CCM∗ security (all methods).

in this figure, for a payload size of 95 bytes, correspond to those
shown in Table V. Also, the performance of all modes varies
linearly with the packet payload size.

V. CONCLUSIONS

In this paper we have presented the implementation of
IEEE 802.15.4-compliant link layer security procedures. To
begin with, we briefly describe our Internet of Things protocol
stack architecture, then delve onto the description of the security
functionalities that are to be implemented at the data link layer
for complete IEEE 802.15.4 compliance. Thus, we have detailed
all the aspects of our implementation and we have finally
presented our experimental results to quantify the performance
of the corresponding encryption and authentication routines
for the selected implementation modes. From our experimental
analysis, we conclude that hardware implementations of AES
ciphers are preferred as they provide substantial savings in terms
of memory (up to six times) and, at the same time, in terms
of delay reduction (up to two orders of magnitude) compared
to their software-based counterparts. Also, the addition of

hardware-based link layer security features has no significant
impact on the network lifetime performance. Specifically, com-
pared to network scenarios where the data link layer does not
include any security feature, hardware-based security leads to
wort-case lifetime reductions of just 2%. On the other hand,
software-based implementations may have detrimental effects
on the lifetime performance, leading to reductions as high as
25% in extreme cases.

ACKNOWLEDGMENT

This work has been supported in part by the European
Commission through the FP7 EU project titled “Internet of
Things–Architecture (IoT-A)” (G.A. no. 257521) and by the FP7
EU project “Symbiotic Wireless Autonomous Powered system
(SWAP)” (G.A. no. 251557).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Elsevier Computer Networks, vol. 54, no. 15, Oct. 2010.

[2] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the Internet of Things:
A Review,” in IEEE ICCSEE, Hangzhou, China, Mar. 2012.

[3] Y. Wang, G. Attebury, and B. Ramamurthy, “A Survey of Security Issues
in Wireless Sensor Networks,” IEEE Communications Survey, vol. 8, no. 2,
2nd Quarter 2006.

[4] G. Bianchi, A. T. Capossele, A. Mei, and C. Petrioli, “Flexible Key
Exchange Negotiation for Wireless Sensor Networks,” in ACM WiNTECH,
Chicago, IL, US, Sep. 2010.

[5] R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati, and M. Rossi,
“Secure Communication for Smart IoT Objects: Protocol Stacks, Use
Cases and Practical Examples,” in IEEE IoT-SoS, San Francisco, CA, US,
Jun. 2012.

[6] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede,
“Low-Cost elliptic curve cryptography for wireless sensor networks,” in
ACM ESAS, Hamburg, Germany, Sep. 2006.

[7] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “RFC4944: Trans-
mission of IPv6 Packets over IEEE 802.15.4 Networks,” IETF Request
For Comments, Sep. 2007.

[8] Z. Shelby and C. Borman, 6LoWPAN: The Wireless Embedded Internet.
Wiley, Nov. 2009.

[9] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained Application
Protocol (CoAP),” IETF Internet Draft, draft-ietf-core-coap-13, Jun. 2013.

[10] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RFC6550: RPL – IPv6 Routing
Protocol for Low-Power and Lossy Networks,” IETF Request For Com-
ments, Mar. 2012.

[11] IEEE 802.15.4, “Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs),” http://www.ieee802.org/15/pub/TG4.html, Sep. 2006.

[12] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web Services
for the Internet of Things through CoAP and EXI,” in Proceedings of IEEE
ICC, Kyoto, Japan, Jun. 2011.

[13] D. C. J. Polastre, J. Hill, “Versatile Low Power Media Access for Wireless
Sensors Networks,” in ACM SenSys, Baltimore, MD, USA, Nov. 2004.

[14] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks,” in
ACM SenSys, Boulder, CO, USA, Oct. 2006.

[15] FIPS Publication 197, “Advanced Encryption Standard (AES),” U.S.
DoC/NIST, 2001.

[16] NIST Special Publication 800-38A, “Recommendation for Block Cipher
Modes of Operation,” U.S. DoC/NIST, 2001.

[17] D. Whiting, R. Housley, and N. Ferguson, “RFC3610: Counter with CBC-
MAC (CCM),” IETF Request For Comments, Sep. 2003.

[18] NIST Special Publication 800-38C, “Recommendation for Block Cipher
Modes of Operation: The CCM Mode for Authentication and Confiden-
tiality,” U.S. DoC/NIST, 2004.

[19] “Atmel AVR XMEGA AU 8-bit Microcontroller Manual,”
http://www.atmel.com/Images/Atmel-8331-8-and-16-bit-AVR-
Microcontroller-XMEGA-AU_Manual.pdf, 2013.

[20] “AT86RF231: AVR Low Power 2.4 GHz Transceiver,”
http://www.atmel.com/Images/doc8111.pdf, 2009.

[21] “AVR1318: Using the XMEGA built-in AES accelerator,”
http://www.atmel.com/Images/doc8106.pdf, 2008.

