The final version of this manuscript appeared in the Proceedings of the International Conference on Computing, Networking and Communications

(ICNC 2016) Kauai, Hawaii, USA, February 15-18, 2016
DOI: not yet available

COBANETS: a new paradigm for cognitive
communications systems
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Abstract—In response to the new challenges in the design and
operation of communication networks, and taking inspiration
from how living beings deal with complexity and scalability, in
this position paper we introduce an innovative system concept
called COgnition-BAsed NETworkS (COBANETS). The proposed
approach develops around the systematic application of advanced
machine learning techniques and, in particular, unsupervised deep
learning and probabilistic generative models for system-wide learn-
ing, modeling, optimization, and data representation. Moreover,
in COBANETS we propose to combine the learning architecture
with the emerging network virtualization paradigms, which make
it possible to actuate automatic optimization and reconfiguration
strategies at the system level, thus fully unleashing the potential
of the learning approach.

Compared to past and current research efforts in this area,
the technical approach depicted in this paper is deeply inter-
disciplinary and more comprehensive, calling for the synergic
combination of expertise of computer scientists, communications
and networking engineers, and cognitive scientists, with the
ultimate aim of breaking new ground through a profound
rethinking of how the modern understanding of cognition can be
used in the management and optimization of telecommunication
networks.

I. INTRODUCTION

RADITIONALLY, the ISO/OSI system architecture has

been the cornerstone of network design, due to its
modularity that enables the optimization of individual sets
of functionalities and guarantees scalability. While such an
ordered and simple structure has successfully served the needs
of the Internet users up to now, the always increasing number
and variety of services deployed over the network, and the
effort of the Internet service providers to continuously improve
the quality of the services offered to their customers are
challenging the current network architecture, that suffers from
ossification in the underlying infrastructure and does not
appear capable of scaling up with the growing complexity of
the upcoming communication scenarios.

This trend is indeed expected to accelerate in future fifth-
generation (5G) mobile systems that, though not yet fully
specified, will certainly pose extreme challenges in terms of
heterogeneity of both device capabilities and traffic; scalability
in terms of number of functions and parameters within a single
node, and of number of nodes in the system; efficient use of
the resources, such as bandwidth and energy; and effective
management of Quality of Experience (QoE) [1]-[3].

Consider, for example, a massive access scenario, where the
base stations are required to guarantee access to a very large
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number of machine-type devices that sporadically transmit
very short packets [4], [5], or sustain the simultaneous upload
of many pictures or videos taken by people attending a com-
mon public event. With current technologies and protocols,
massive access will generate overwhelming signaling overhead
and cause service outages. Another demanding scenario is
that of Heterogeneous Networks (HetNets), in which many
pico and/or femto base stations will be placed within a macro
cell to provide better coverage and higher connection speed.
However, the design of efficient handover policies, resource
allocation/reservation schemes, service migration strategies,
and so on in these systems are complex open problems
that require new approaches and methodologies [6], [7]. A
third challenging problem is to provide adequate Quality of
Experience (QoE) to mobile users, irrespective of the number
and variety of data flows that need to be simultaneously served
by the wireless access network. To reach this objective, the
new generations of communication systems shall be able to
differentiate the services not only by class of application, but
even per flow within each class, thus providing content-based
service optimization [8], [9].

There is hence a need to manage more efficiently the
available resources, taking into account the vast variety of
traffic features and of their performance requirements, as well
as the extreme heterogeneity of device capabilities and of
communications technologies.

Recent trends in networking have shown that crossing
the boundaries of the layering architecture can lead to
much higher efficiency than respecting the orthodox layered
model, and cross-layer approaches have been proposed and
shown to provide very good results, especially in resource-
challenged environments. Furthermore, newly emerged net-
working paradigms and capabilities, including Software De-
fined Networking (SDN) and Network Function Virtualization
(NFV) [10], open up unprecedented opportunities towards new
systems and applications.

However, greater flexibility in network management implies
more degrees of freedom in the setting of the network param-
eters and, consequently, a much bigger optimization space,
which will call for more advanced (and complex) optimization
strategies. If in addition we try to use the abundance of sensory
data already present (or easily obtainable) in networks and
devices, the dimensionality of the problem quickly becomes
very large, making traditional approaches insufficient and
calling for disruptive paradigms.

As a response to these challenges, and inspired by how
the nervous system of living beings deals with complexity
and scalability, we introduce the new concept of COgnition-
BAsed NETworkS (COBANETS), intelligent communications



systems which are much more than just a collection of smart or
cognitive nodes, and instead include a network-wide cognitive
infrastructure for learning, modeling and optimization, and
data representation. Advanced machine learning techniques, in
particular unsupervised deep learning and probabilistic gener-
ative models (suitable for scenarios with massive unlabeled
data), along with network optimization at all layers of the
protocol stack and corresponding reconfiguration through SDN
tools, are the key building blocks of our approach, which
significantly departs from state-of-the-art solutions in cognitive
networking.

The conceptual design and practical implementation of
cognition-based networks has been elusive for years. In this
paper, we advocate that this vision is now at hand, because of
the following key enabling factors:

i) the recent advances in cognitive science, with the devel-
opment of deep unsupervised learning networks which
have been successfully applied to solve extremely difficult
classification problems;

ii) the impressive performance improvement of processing
units, with the commercial diffusion of parallel computing
architectures that are particularly suitable for running
very-large-scale deep learning models;

iii) the rapidly growing popularity of new networking
paradigms, such us SDN and NFV, that have the po-
tential to overcome the ossification in the underlying
infrastructure of the Internet and enable a more dynamic
and flexible management of the network, thus making it
possible to actuate network-wide optimization strategies.

Despite the conjunction of these favorable factors, building
the grand vision of a learning network, able to adapt to chang-
ing conditions and to serve multiple communication services,
still remains a great challenge, which requires pushing the
research significantly beyond the current state-of-the-art.

In the rest of this position paper, we describe our vision
on how to move forward towards the practical realization
of the COBANETS concept. The paper is organized as fol-
lows. In Sec. II we will quickly survey the recent history
of cognitive networking and of machine learning applied to
network optimization. Furthermore, the section offers a brief
introduction of unsupervised learning techniques, which are at
the core of the COBANETS framework. The reasons behind
this choice are discussed in Sec. III, which describes in more
details the COBANETS concept, and the specific properties of
Generative Deep Neural Networks that make them particularly
attractive as key enabling elements of a cognitive architecture.
Successively, Sec. IV discusses the most relevant research
challenges opened by the proposed approach, and finally
Sec. V concludes the paper with a short summary of the study
and some final considerations.

II. STATE OF THE ART

In order to set the stage for the description of the proposed
approach, we first provide a brief overview of the recent his-
tory of cognitive networking and machine learning approaches,
with a particular focus on deep learning and generative models
which are the basic building blocks of our approach.

a) Cognitive radios and networks: Cognition as a way
to deal with the challenges of future networks has been
suggested several times in the past. The pioneering work in
[11], [12] proposed to apply cognition to special commu-
nications devices, called cognitive radios, able to learn and
adapt to the environment, with the goal of providing reliable
communication and efficient utilization of the radio spectrum.
This concept of adaptability at the physical layer was later
extended to a paradigm called cognitive radio network [13],
where the spectrum owned by the so-called primary users
(i.e., the legitimate users of a licensed band) is shared by
secondary cognitive radios (frequency-agile transceivers with
enough intelligence to perform spectrum sensing and dynamic
spectrum access, and to communicate while coexisting with
the primary users).

Even though in most of the existing papers on cognitive
radio and cognitive radio networks the “cognitive” aspects are
focused on sensing, channel selection, and adaptive commu-
nications, both Mitola [12] and Haykin [11] actually gave a
broader definition of cognitive radio, which includes aspects
that relate to the true essence of cognition, such as intelligent
observation, learning, and decision-making. From this view-
point, the existing studies that have addressed these cognition
issues in networks, though certainly interesting and valuable
in their own right, have only scratched the surface of what
promises to be a rich research area with high potential for
innovation. In this direction, cognitive networks for wireless
systems [14], [15] and the Knowledge Plane for the Internet
[17] have been proposed as new paradigms in which the
concepts of cognition, learning and adaptability are applied
in an end-to-end fashion to the whole protocol stack.

b) The role of machine learning: Machine Learning
(ML) tools have been recently used in a networking context
(e.g., see [18] for a recent survey on learning techniques for
cognitive radio networks). Some examples of topics that have
been addressed in this context include architectural models
[19], data routing and clustering in sensor and ad hoc networks
[20], and optimization of routing and scheduling through
reinforcement learning. Supervised learning methods have
been widely used to address various classification tasks., e.g.,
IP packet and Internet traffic classification [21]. A computer
program able to automatically design end-to-end congestion-
control algorithms is proposed in [22] and proved to outper-
form the best-known techniques in many different scenarios,
showing that an intelligent unified framework can do better
than customized solutions.

¢) Unsupervised learning and generative models: The
above applications of ML to networking problems are meant
to solve specific issues, and make use of either supervised
learning (in which correct inputs/outputs are explicitly pre-
sented and/or suboptimal actions are explicitly corrected) or
some form of reinforcement learning (where an agent receives
a reward based on the action it chooses, trying to find a balance
between exploration and exploitation). These approaches are
typically effective in the presence of a well-defined goal and
of a feedback loop through which the agent is informed about
the goodness of a certain action. However, although humans
often learn through supervision (by teacher instruction) or



reinforcement (by understanding the effects of actions), we
also continuously perform unsupervised learning, in which
through stimuli from the environment we gradually develop
a worldview upon which we build our cognitive activities
[23]. Unsupervised learning gives an agent the ability to deal
with situations never encountered before, and can exploit
the huge amount of unlabeled data to build rich internal
representations, on which supervised tasks can be more easily
carried out [24], a framework often associated with the no-
tions of representation learning and transfer learning, where
knowledge abstracted from one domain is readily re-used in
many different supervised tasks.

In this context, a generative model is a probabilistic model
of how the underlying physical properties of the world cause
sensory data [25], that can be efficiently implemented in
stochastic recurrent neural networks, such as the Boltzmann
machine, recently formalized following [26]. These advances,
and the efficient unsupervised training on big datasets, have
made it possible for the very first time to effectively stack
together several basic modules in order to learn hierarchical
architectures [27], which paved the way for the so-called deep
learning models [28]. Although most recent research on deep
learning has focused on the use of supervised techniques,
unsupervised deep learning remains the only choice when data
cannot be easily labeled (as in our scenarios of interest), and
represents a research frontier for the future [29]. Moreover,
the introduction of powerful parallel computing architectures,
such as the CUDA framework, now makes it possible to
efficiently build very-large-scale deep learning models. By
exploiting these advances, deep learning algorithms have re-
cently led to impressive performance gains in many difficult
ML tasks, e.g., object recognition, natural language modeling,
and studying the effects of mutations in DNA, just to name
a few. Generative neural networks have also been recently
extended to model sequential data and have been combined
with reinforcement learning strategies, approaching human-
level performance [30].

III. THE COBANETS CONCEPT

From the above review of the related literature, we learn
that, although the powerful paradigm of bringing cognitive
processes into networks has been suggested in various forms
in the past fifteen years or so, the idea has not yet found its way
into a comprehensive and practical design, and even less so to
a large-scale application in real systems. We believe the main
reasons for this are to be found in the lack of a sufficiently
general tool to implement intelligence in a scalable way, and
the lack of actionable schemes able to effectively implement
decisions in complex systems, possibly combined with the lack
of a broader view of the cognition-based system beyond the
ad hoc application of specific ML techniques to a limited set
of functionalities.

New paradigms that have emerged only very recently in
the areas of cognitive science (deep networks and generative
models, i.e., the intelligence) and networking (software defined
networks, i.e., the actionable schemes) make this the right
time for a disruptive change of paradigm and for realizing
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Fig. 1. Schematic representation of a learning framework based on a Gener-
ative Deep Neural Network (GDNN)

the ambition to bring cognitive networking techniques to the
next level, by moving from the limited scope of a set of
specific applications towards the development of a compre-
hensive framework in which large-scale unsupervised learning
is the stepping stone and a key enabler of a wide range of
optimization techniques for the whole network, as well as for
its individual components.

According to these premises, the COBANETS concept fo-
cuses on Generative Deep Neural Networks (GDNN) and net-
work virtualization paradigms as key enabling factors for the
development of a groundbreaking novel approach to network
optimization. In the remainder of this section, we describe in
more details the characteristics that make GDNN extremely
appealing in this context and, then, we give a broad description
of the system architecture we envision.

A. GDNN: Generative Deep Neural Networks

At an intuitive level, the unsupervised training of a deep
neural network builds an inner model of unlabeled input
signals that is independent of any specific concept defined
by the user. Unlike in typical supervised learning tasks, here
the learning objective is to extract a useful set of features
from the input space, which allow to accurately represent and
reconstruct the input through a specific configuration of the
neurons in the deeper layer (features). The generative model
obtained from unsupervised training of a deep neural network
(hereafter called Generative Deep Neural Network GDNN)
supports the general learning framework represented in Fig. 1,
and is characterized by the following specific properties.

Generative property: GDNNs are trained to minimize the
error between the observed data and its estimate obtained
from the inner representation of the input, given by the hidden
layer. This property can be used for predictions and anomaly
detection.

Feature extraction: The internal representations extracted by
unsupervised learning are not tied to a specific discriminative
task and turn out to be generally more informative than those
obtained with supervised training. This property can be used
to enhance the performance of simple supervised techniques
applied to the features instead of the original data [31], [32].

Compact data representation: Deep unsupervised learning
can also be interpreted as a particular type of efficient coding



strategy. This property can be used for data compression and
dimensionality reduction, and to achieve scalability [27].

Synergy with reinforcement learning: The generative ap-
proach offers new insights about the possible role of reinforce-
ment learning, by which an agent can improve its own internal
model of the world by actively searching for information that
can be used to disambiguate competing hypotheses [30], [33].

These properties of GDNNs can be exploited to develop
a system architecture capable of efficiently dealing with the
scalability, management, and multipurpose optimization chal-
lenges offered by the next generations of communication
systems and services. For example, GDNNs can be trained to
learn the wireless channel model for a mobile user and then
exploited to predict the evolution of the wireless channel and
proactively adapt all protocol layers accordingly. Similarly, a
GDNN may be used to infer the nature of the traffic generated
by the devices, thus making it possible to discriminate not only
between different classes of traffic sources (e.g, alarms versus
periodic metering data), but even between different streams of
the same class (e.g., between sensory data with higher or lower
priority depending, for instance, on their temporal trends). A
practical example of the way GDNNs can be exploited to
gain better context information and optimize QoE is given
in our recent work [34], where we trained a GDDN to learn
a generative model of the size (not the specific content) of
encoded video frames. This model was then used to estimate
the rate/distortion curve of each video sequence and, then,
to design QoE-aware resource allocation and call admission
control algorithms [35], [36].

B. General architecture

To fully express the potential of GDNNs, we envision
an architecture that enables network-wide observation and
sensing at multiple levels, including quantities such as protocol
parameters and state variables, traffic conditions, channel
statistics, transmission and error events, interference, and so
on. The architecture shall also provide the flexibility required
for the practical implementation of the proposed approach.
For this reason, we look at the SDN and NFV paradigms
as basic building blocks of COBANETS. An advanced SDN
controller, indeed, may be able to collect the inter-device data
generated by the cognitive nodes in the system, and make
decisions for system-wide optimization. SDN protocols, such
as OpenFlow, can be used to implement the optimization
actions on the different nodes, whose functionalities shall be
completely virtualized per the NFV concept. In addition, the
controller may instruct the nodes to instantiate generative deep
learning modules for the optimization of local functionalities
(e.g., PHY and MAC), using inter-device data only.

Clearly, there is still a long way to go to turn this broad and
very general vision into a practical and well defined system
architecture. In the remainder of this section, we describe
some of the main components that we believe may help
reach this ultimate objective. These components, which shall
all be part of the final COBANETS architecture, are here
presented in order of increasing generality and scope, thus
reflecting the natural path we envision for the development of
the COBANETS concept.

1) Functional abstraction and optimization: Important
components of COBANETS will be generative models that
provide an informative representation of fundamental elements
and functionalities of a communication network, including
traffic sources, radio channel, MAC protocols, and so on. In
parallel, we may have GDNNs that can capture the interde-
pendencies among the parameters within a certain protocol
layer (e.g., at the physical layer the transmission parameters
of a mobile node and the interference from adjacent cells,
or at the MAC layer the packet inter-arrival time and the
number of retransmissions). These generative models can be
used to predict the offered traffic in the near future and/or to
train classifiers to get more detailed context information, for
instance the type of application(s) generating the data flows,
the operational scenarios (indoor, urban, vehicular, rural), or
the congestion level of a certain connection. The context
information, in turn, may be used to optimize some network
functionalities (e.g., handover, content caching, transmit rate,
and so on).

2) Integration of different generative models: In analogy
with the sensory segregation and integration observed in the
brain, the specialized modules operating in different domains,
as above described, should be combined in a learning ar-
chitecture capable of building more abstract representations
of the world. Implementing this strategy is very challenging,
because it requires to carefully engineer the scope of each
sub-module and to integrate the internal representations cre-
ated by different models without disrupting domain-specific
knowledge. A possible solution can be to concatenate the
representation of different models and to jointly train an
additional generative model with the task of reconstructing this
composite input, thereby learning useful correlations among
the abstract representations provided by different sensory do-
mains [37]. Another approach consists in mapping the abstract
representations learned by the sub-models into layer-specific
performance indices and then training a combined generative
model using such indices. These two approaches, as well as
others, shall be deeply studied and compared in terms of
complexity and efficiency, with the goal of identifying the best
solution.

3) Inter flow optimization: As an intermediate step to
system-wide optimization, we believe that COBANETS shall
make it possible to jointly optimize multiple functionalities
with local scope (e.g., within a single node). Unlike in
traditional cross-layer optimization, where prior knowledge of
some explicit interdependencies among protocols is assumed,
the approach based on generative model learning has the
potential to discover and exploit hidden relations among the
different parameters, which can be specific for a certain appli-
cation scenario or user profile and, hence, are not replicable
in other contexts. For example, daily habits of users (e.g.,
watching movie trailers on the smartphone while commuting
by train) may be reflected in specific inter-relations among the
type of traffic generated by the device, the interference pro-
duced by other devices, and the radio channel characteristics.
Therefore, COBANETS shall entail generative models capable
of capturing these multifold correlations, thus supporting the
design of optimization strategies that are adapted to a specific



device and scenario.

4) System Level optimization: The final objective of
COBANETS shall have a global scope, and shall refer to
the whole system, rather than to single nodes or flows. A
possible global optimization may regard the routing strategy,
scheduling policies in the switches, resource allocation at
base stations, and transport protocol parameters, which can
be jointly optimized according to the nature of the data, the
characteristics of the user (static, mobile), the congestion on
the links, and so on. We believe that GDNNs can enable
the development of an innovative scalable approach to the
above problem, by taking advantage of the data provided
by the single agents of the system and collected by the
cognition-based architecture designed, thus making it possible
for a centralized network controller to autonomously derive
strategies for the maximization of multi-objective functions,
and to actuate such strategies in the network elements by
means, e.g., of SDN.

IV. RESEARCH CHALLENGES

Despite the encouraging results of some initial studies, the
design of an effective GDNN-based framework for network
optimization is still in its infancy. In the following we dis-
cuss what are, in our opinion, some of the most important
challenges raised by this exciting scenario.

A. Data collection and sharing

A key enabler for the optimization approach proposed in
this paper is the ability to collect data from various layers of
the protocol stack, the environment, and even the final user,
and to share these data at the network level. In general, we
envision several types of data that can be collected, namely:

i) intra-device data (collected within each single device,
e.g., protocol parameters or location), to be used in local
optimizations (e.g., energy efficiency of a node);

ii) inter-device data (exchanged between devices, e.g., traffic
patterns or queue lengths at routers), to be used for
optimization on a wider scale (e.g., maximization of the
number of flows the system can serve);

iii) user-profile data (which represent the users preferences)
to define the Quality of Experience objective function to
be used in the optimization.

Finding which data is most useful in the GDNN and for
network optimization, studying the granularity and frequency
at which these data need to be collected, and defining practical
methods for representing, storing and retrieving such data at
both the device and the system level are all open research
problems that have to be solved.

B. Data representation and synchronization

Another open issue of the proposed optimization framework
is the choice of the format of the data patterns that should
be given as input to the GDNNs. In the context of network
optimization, indeed, the sensory data might come in many
different formats, which should nevertheless be encoded as
activation values on the input layer of the network. This
implies the need to carefully design a variety of encoding

modules that should be used to transform the collected data
into a unified representation, which should preserve as much
as possible the inherent structure present in the data. This
problem becomes even more challenging when considering
data coming from heterogeneous devices and/or abstraction
layers and from different time scales, or collected with differ-
ent sampling frequencies or even asynchronously. Therefore,
some effort shall be devoted to the identification of a solution
for the data representation problem, which will also allow to
better understand which are the most critical dimensions of
the data domain (i.e., the most informative input signals) that
should be given to the learning system.

C. Exploiting long-term spatio-temporal behaviors

An important component of cognition is the ability to adapt
based on behaviors that have been observed and learned in the
past and are likely to repeat again. How to include knowledge
of the long-term spatio-temporal behavior of the network
parameters (such as congestion or channel characteristics)
into the optimization framework is an open research issue.
Different strategies to include the time dimension into the
generative models can be considered. A possible way is to
build input vectors that collect the system parameters sampled
at different time scales, in order to provide a representative
example of the time evolution of the system. Another promis-
ing possibility is to use more complex generative models
that are inherently sequential, such as the Recurrent Temporal
Restricted Boltzmann Machine [38] or similar models that can
be even combined into hierarchical architectures [16]. Further
research is needed to gain a deeper understanding of these and
other approaches and to find the best solution for the different
optimization goals.

D. Multi-objective optimization strategies

The final objective of COBANETS shall be the automatic
management of complex systems, in which individual agents
may have both selfish objectives and common social goals
to pursue (the latter possibly encouraged by game-theoretic
or trust and reputation-based incentives). This problem may
be approached using multi-objective optimization techniques,
or by properly defining utility functions that jointly account
for multiple objectives, appropriately weighed, or through a
hierarchical organization of the goals. The specific properties
of the generative models shall likely be combined with rein-
forcement learning mechanisms to automatically learn the best
strategies in such a complex scenario.

E. Identification of domain-specific deep architectures

A crucial aspect to improve the performance and the
scalability of many learning systems is to identify a useful
set of constraints that can facilitate learning, for instance
by reducing the complexity of the model or by improving
convergence. For example, the most successful deep archi-
tectures for visual object recognition have been designed to
exploit the strong local spatial correlation found in natural
images [39]. It is therefore of interest to investigate how the
distinguishing characteristics of telecommunication network
signals can influence the deep architectures for learning-based



optimizations. For example, the deep network architectures
may be designed to better process data with strong spatio-
temporal correlation, or to account for the interdependen-
cies among network elements induced by network topology.
Moreover, when the deep network is fed with data originated
by multiple devices interconnected through a communication
network, there may be significant communication delays or
even packet losses, thereby posing concrete challenges to a
learning system that is usually expected to receive “clean”
and reliable training patterns. These problems represent a less
studied field of research that can potentially generate new
insights and advances also in the machine learning domain.

F. Alternative building blocks for unsupervised learning

Generative models can take different forms, such as au-
toencoders, restricted Boltzmann machines and, more gen-
erally, energy-based models. Most of these models obtain
similar performance in canonical machine learning exper-
imental evaluations [40], but with different computational
properties. Therefore, an interesting research subject will be
the systematic study of the strengths and weaknesses of each
approach in light of the considered optimization framework,
and the investigation of which regularization techniques are
more effective with the type of data and tasks required in
such scenarios.

G. Knowledge distribution across network elements

A centralized management system may become the bottle-
neck of the optimization framework, in which case it would
be preferable to distribute the optimization tasks to different
network elements that should nevertheless be able to perform
optimizations according to a global view of the networking
environment. Some interesting recent studies have shown that
the performance level obtained by very-large-scale deep neural
networks in supervised classification tasks can be replicated in
much smaller learning modules (model compression), such as
simple networks with only one hidden layer, if we use as train-
ing labels the soft-labels produced as output by the large-scale
deep network [42]. This intriguing result motivates further
research about how to possibly create “lightweight” processing
nodes that can support efficient optimization in a highly dis-
tributed system. Moreover, distributing the generative model
over multiple nodes might be a valuable approach to speed up
learning and inference tasks via efficient parallelization [41].
This feature is even more appealing considering that modern
mobile devices (e.g., smartphones or notebooks) are equipped
with powerful computing hardware, as discussed later on.

H. Security aspects

In our cognition-based approach, the network will need to
continuously collect large amounts of data, apply a learning
process to it, and take actions as a result, which will make
the confidentiality of the original data, as well as that of the
“reasoned” outcome, much more important than in traditional
TCP/IP networks. For example, by changing behavior and
observing how the network reacts, a user may obtain private
information of others [43]. An open issue is to find the proper

tradeoff between confidentiality and effectiveness of the pro-
posed solutions, also considering possible de-anonymization
techniques and privacy attacks based on machine learning
[44]. Another problem is to design solutions to assess the
trustworthiness of both peers and data (against attacks to either
evade security checks or poison the learning process with
fake data), as well as to make the learning process resilient
to malicious attacks (e.g., based on Adversarial Machine
Learning [45]). These are just a few examples of a number
of innovative and challenging research problems concerning
the security of cognitive system, which shall also include data
confidentiality, trustworthiness, and resiliency to attacks.

1. Implementation and prototyping

Since the proposed approach gravitates around the possibil-
ity of turning the complexity of the system into an advantage,
rather than an obstacle, by exploiting the inner capabilities
of deep learning generative architectures to capture and dis-
criminate hidden features of the complex multidimensional
signals that are observed in real scenarios, the availability of
large datasets of experimental data is essential for the proper
design of a cognition-based network. While some testbeds
capable of collecting system-wide cross-layer parameters have
been proposed (e.g., [46]), the real-time testing of machine
learning algorithms on experimental data has not yet been
systematically addressed. Moreover, further research is re-
quired to exploit the new parallel computing framework for
common graphic processor units (GPUs) on mobile devices to
run complex machine learning algorithms in real-time and at
affordable prices.

V. CONCLUSIONS

In this paper we advocated Generative Deep Neural Net-
works (GDNNGs) as the key building block of a new generation
of cognition-empowered networks and systems, where the
ability of GDNNs to extract richer context representations
will be combined with different kinds of machine learning
techniques to realize specific tasks, and will be integrated
with the Software Define Networking and Network Function
Virtualization paradigms to enable a flexible actuation and
management of complex systems.

Although some preliminary results are very encouraging,
the potential of the proposed approach is still to be discovered,
and a number of interesting interdisciplinary research issues
need to be addressed. A possible way to tackle these exciting
challenges is to approach the problem gradually, progressively
widening the scope of the network optimization goal. The first
fundamental step shall consist in gaining a deeper understand-
ing of the potential of the generative deep learning approach
to model and optimize specific network functionalities, such
as resource allocation at the PHY layer, setting of MAC
parameters, scheduling, routing, traffic source modeling, and
so on. Supported by a solid theoretical and experimental
foundation, it will then be possible to develop a generative
deep learning approach to system-level optimization. This
phase will require to design GDNNs capable of representing
all the relevant functionalities that concur in determining the
system performance, and to address the most critical and



challenging issues related to the scalability of the approach,
the multi-objective optimization of the system parameters,
the coordination of the different functionalities and network
elements, and the implementation of the planned actions.
Besides leading to novel methods for the optimization of
communication systems, this research may stimulate inno-
vation in cognitive science and machine learning as well,
leading to the development of new learning techniques that
need to obey different constraints and boundary conditions
than traditionally found in those areas. Therefore, we believe
that the COBANETS concept may pave the way to new
research avenues that intersect multiple sectors in cognitive
science and information and communication engineering, with
the potential of leading to disruptive innovation in these fields,
with unpredictable effects on other fields that may benefit from
the stimuli and the change of perspective brought about by the

proposed vision.
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