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Abstract—Multiple autonomous robots are expected to inter-
act in Industry 4.0 scenarios, which makes it key to identify
distributed techniques for their control and coordination. Game
theory has a strong potential to be an excellent representation
methodology for the establishment of cooperation among dis-
tributed robotic agents. In this paper, we consider a model of
two industrial robots within a production line and we show how
to describe their interaction, with their different objectives and
control being kept into account. We also formalize a Bayesian
game that takes into account imperfections in the system, such
as the possibility that the robots make a wrong evaluation on a
specific item in production. For both the standard static game
and its Bayesian version, we compute the Nash equilibrium and
we argue how it ultimately represents a point of convergence of
the distributed control of the robots.

Index Terms—Game theory; Industrial control; Mathematical
modeling; Robotic assembly.

I. INTRODUCTION

Since its earliest origin, distributed robotics has been ex-
panding to a variety of applications in real-world scenarios,
and is nowadays envisioned as an enabler of new functionali-
ties in health technologies, smart agriculture, surveillance and
disaster management, and many other fields [1], [2]. In particu-
lar, we consider the applications of distributed robotics towards
the fourth industrial revolution, also dubbed as Industry 4.0,
i.e., a trend in manufacturing technologies that expected to
leverage cyber-physical systems and the Internet of things to
achieve unmanned operation and efficient production to an
unprecedented level [3].

According to the influential reference of [4], autonomous
robots make one of the nine pillars of Industry 4.0. Indeed,
they can be used for many crucial applications such as struc-
tural monitoring, complex manufacturing, or efficient logistics.
At the same time, they are also a driver of technological
and scientific innovation on many frontiers. Robots are used
more and more to perform autonomous tasks with demanding
precision constraints and in locations where humans cannot
work. The most typical functions performed by robots in
factories are tasks like handling, assembling, welding, surface
coating, cutting, inspecting, and so on [5], [6].

One of the open research directions for multi-robot systems
is represented by dynamic control of moving robots, for
localization, mapping, exploration, and transportation tasks
[7]. A team of robots can be used to carry loads from a point
to another, or to manipulate the environment, which requires to
keep into account decentralized asynchronous motion planning

problems, such as on the fly collision avoidance, general
motion coordination, formation generation and keeping, target
search, or multi-robot docking [8].

Robotic agents can exploit an underyling communication
infrastructure for the offload of time-critical, computationally
exhaustive operations onto a distributed network [9]. Yet, for
efficiency reasons, inter-node communications must be used
sparingly and without a central control [10]. Bio-inspired
approaches are also exploited in this context [11], [12] to
develop cooperative behaviors among independent robots.

In this spirit, we claim that Game Theory [13] represents a
good solution for a mathematical characterization of robotic
agents in industrial environments, since it allows for the
harmonization of multiple players with different and often
contrasting objectives [14]. Thus, we study a multi-robot
system in an industrial scenario through a game theoretic ap-
proach, which can provide further insight and suggest solution
methods for different robot tasks [15].

The contribution of this paper is two-fold. First, we con-
sider a static interaction between two robots with different
objectives in a production line and we show how to trigger
their coordination through the choice of proper Nash equilibria
(NEs). Furthermore, we consider a Bayesian version of this
scenario, to demonstrate how to include imperfections in the
robot data acquisition and still retain a tractable game model.

The rest of this paper is organized as follows. In Section
II we describe our model for the game-theoretic interaction,
which leads to a formulation as a static game of complete
information. In Section III we extend this to a Bayesian game,
which is also discussed. Section IV concludes the paper.

II. GAME MODEL

More and more frequently, large companies or factories
adopt the use of robots that can automate part of the work
so as to make it less burdensome for human personnel, faster
and more accurate, minimizing errors as much as possible [5].

We consider the following model for an Industry 4.0 factory,
divided into sectors [1]. First, we have a stage of material
production, where, e.g., products are assembled [6]. This is
followed by an automated quality control point managed by
robots, and finally a packing and shipping department.

Notably, in the central section of quality control, which
is the core of our analysis, we assume that two types of
cooperating robots operate in pairs. We focus on such a pair,
which includes (i) a robotic scanner (S) capable of detecting



defects and imperfections in the objects produced, and (ii)
another device, in the form of a robotic arm (A), able to grasp
the objects [11] and move them to a location for their transport
to the packaging and shipping department if declared as free
of defects, or sending them back if they are flawed.

We assume that the scanner is designed to monitor different
objects, from simple pieces with regular shape and smooth
surface, up to complex items with multiple parts and irregular
shapes. For the purpose of our game-theoretic analysis [15],
we assume that S can choose between two operating modes,
i.e., perform either a detailed scan mode (D) or a quick and
less accurate scan (Q). The former action has a slightly higher
cost cD than the cost cQ of a fast scan. S can still make errors
in both cases, due to external and uncontrollable agents (for
example: dirty scanning lenses). The second robot A, which
moves the objects after the scan (either to the delivery or to
return them back if flawed) is also assumed to have decisional
ability: namely, A can choose the speed mode. For the sake
of simplicity, we consider two modes of movement, i.e., a fast
mode (F) and a slower cautious mode (C), with respective
costs cF and cC , where cC > cF .

Mode F would be suitable, for example, if the item is once
again a simple piece with regular shape, in which case it will
be unlikely to fall. Conversely, a complex item, worth of a
detailed scan, would also probably require a careful handling.
Also, if the item is flawed, F is more appropriate than C,
since it will save operating time. However, the advantage of
increasing the delivery speed is nulled, and actually turns into
a penalty, if a complex piece, theoretically free of defects,
is unscrupulously sent to the delivery using mode F, since it
increases the risk of damaging the item. The damage caused
during the transport to the packaging department can be
assumed to be worse than wasting time over a faulty piece,
hence in this case C is preferred to F. At the same time,
missing a defect is more serious than using more time for
scanning a piece accurately; thus, if the piece is faulty, S
should prefer to choose D over Q. Finally, we would like to
achieve coordination among the robots, so we impose that it
is better to choose consistent strategies, in which sense the
strategy pairs (D,C) and (Q,F), considered to be coherent,
should be incentivized [7].

We start with a scenario where the robots make their
decision “simultaneously” for each object – in game theory
jargon, this means that they choose their action unbeknownst
to each other, which results in a static game of complete
information [13], meaning that they choose either available
action without preliminary coordination, but follow a rational
principle of choosing what is best for their own and are aware
of the aforementioned criteria, as well as their rationality.

This game can be formally described [15] as consisting of
set of players {S, A} and their respective set of actions SS =
{D, Q}, SA = {F, C}, and payoffs uS, uA that are described
by this formula for both robots:

u· = P · r − ci + bi , for i ∈ {D, Q, F, C} (1)

where ci is the cost of the performed action, and bi is

an effectiveness increase/decrease assigned to action i as
explained below, according to the values reported in Table
I; r is a reward factor, whose value is rc = 1 if the players
choose a coherent pair of strategies, and rn = 0.5 otherwise;
and finally, P is just a normalization constant.

The effectiveness term bi increases or decreases the payoff
to represent an incentive for safer actions. For S, it is safer to
play D because to misclassify an object is worse than wasting
time over an accurate scan, so D � Q. For A, the safe action
is C because going slow is better than risking to damage a
piece, so C � F. These increases are also reported in Table I.

TABLE I
PAYOFF VALUES RELATED TO ACTIONS

Player Action Cost Effectiveness

S D (detailed scan) cD = 2 bD = 1

Q (quick scan) cQ = 1 bQ = −1

A F (fast mode) cF = 1 bF = −1

C (cautious mode) cC = 2 bC = 1

We now analyze a first single round of the game, then
we look for NEs in both pure and mixed strategies. The
game is described in both normal and extensive forms. The
normal form is reported in Table II, where Table III reports
the numerical values of the parameters using P = 10 with
costs and increases reported above in Table I. The extensive
form is shown in Fig. 1.

In this single round game, there are two NEs in pure
strategies: (D,C) and (Q,F). We can also look for NEs in
mixed strategies, by applying the Indifference Theorem [13].
If we denote by β the probability of A playing F and with
α the probability of S playing D, the following indifference
relationships are found: β = P+2

2P , α = P−2
2P . With the

previous numerical choice of P = 10, we have β = 3
5 and

α = 2
5 . The presence of multiple NEs implies that the system

does not have a single operation point. While this thwarts the

TABLE II
STANDARD GAME NORMAL FORM

Player S

Player A

F C

D
P rn − cD + bD
P rn − cF + bF

P rc − cD + bD
P rc − cC + bC

Q
P rc − cQ + bQ
P rc − cF + bF

P rn − cQ + bQ
P rn − cC + bC

TABLE III
STANDARD GAME NORMAL FORM WITH PAYOFF VALUES

Player S

Player A

F C

D 4, 3 9, 9

Q 8, 8 3, 4
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Fig. 1. Standard game extensive form

TABLE IV
NORMAL FORM FOR MM OR RR PLAYER TYPES

Player
S

Player A

F C

D
Prn − cD + bD = 4
Prn − cF + bF = 3

Prc − cD + bD = 9
Prc − cC + bC = 9

Q
Prc − cQ + bQ = 8

Prc − cF + bF = 8

Prn − cQ + bQ = 3

Prn − cC + bC = 4

option of making clear-cut predictions through game theory, it
represents an opportunity for the development of engineering
protocols to choose among the NEs [15].

III. BAYESIAN GAME

We also consider an incomplete information game, modeled
as a Bayesian game [14]. In this scenario, according to the
standard game theory formalization, an additional player is
considered, called Nature [13], which in our case represents
the possibility that our players may make mistakes. In our
scenario, we assume that S commit scanning errors with
probability p, while A with probability q. This means that if S
makes mistakes it, recognizes the piece as irregular instead of
classifying it as regular, so S wrongly chooses D instead of Q.
In this case if A does not make mistakes, the cooperation will
not be achieved because A identifies the right regular shape
and plays F, leading to have (D,F), but we said cooperation is
reached when robots play one of (D,C) or (Q,F) strategies.

The following four situations can happen, depending on the
randomness of Nature’s intervention: (i) MM: both S and A
make a mistake; (ii) MR: S makes a mistake but A is right;
(iii) RM: S is right and A is mistaken; (iv) RR: they are both
right. So the game result changes based on these types, as the
numerical values related to the utilities are the same for every
action but the reward r is changed. Tables IV and V report
the resulting normal forms based on the possible player types.

For the cases where both S and A are of the same types, the
normal form of the game is reported in Table IV, while Table
V shows the normal forms for different types (only either of
the robots is in error).

TABLE V
NORMAL FORM FOR MR OR RM PLAYER TYPES

Player
S

Player A

F C

D
Prc − cD + bD = 9
Prc − cF + bF = 8

Prn − cD + bD = 4
Prn − cC + bC = 4

Q
Prn − cQ + bQ = 3

Prn − cF + bF = 3

Prc − cQ + bQ = 8

Prc − cC + bC = 9

The extensive form of the Bayesian game is shown in Fig.
2. For the sake of simplicity, we assume that both robots are
equally likely to make mistakes with probability p. This leads
to the normal form game reported in Table VI.

The Bayesian Nash Equilibria can be found from the
following computation of the best responses (BR) [13]:

BRS(DD) =


FC if 0 ≤ p ≤ 2

5

CC if 2
5 ≤ p ≤

3
5

CF if 3
5 ≤ p ≤ 1

BRS(QQ) =


CF if 0 ≤ p ≤ 2

5

CC if 2
5 ≤ p ≤

3
5

FC if 3
5 ≤ p ≤ 1

BRS(DQ) = CF ∀ p , 0 ≤ p ≤ 1

BRS(QD) = FC ∀ p , 0 ≤ p ≤ 1

Table VII reports the resulting normal form of the game
where the probability of making errors for S and for A is p =
q = 0.2. We can observe that the BNE are indeed (DQ,CF)
and (QD,FC). This implies that cooperation points, where both
robots adopt a coherent strategy, are sought but only when the
robots are of the same types. Failures in the system can steer
the equilibrium away from using a coherent strategy. Thus,
further research is needed to comprehend the Bayesian case
with possible extensions related to the players revealing their
type and also expanding the performance evaluation to the
required cost for achieving coordination (possibly including
an explicit communication among the robots) in this case [14].

TABLE VI
BAYESIAN NORMAL FORM WITH p = q

FF FC CF CC

DD
−10p2+10p+4

−10p2+10p+3
9−5p
−6p+9

5p+4
6p+3

10p2−10p+9

10p2−10p+9

DQ
−4p+8
8−5p

p+3
4−p

p+8
p+8

6p+3
5p+4

QD
4q+4
5p+3

9−p
9−p

4−p
p+3

−6p+9
9−5p

QQ
10p2 − 10p+8

10p2−10p+8
5p+3
4p+4

8−5p
−4p+8

−10p2+10p+3

−10p2+10p+4
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Fig. 2. Bayesian extensive form

TABLE VII
BAYESIAN NORMAL FORM WITH p = q = 0.2

FF FC CF CC

DD
5.6
4.6

8.0
7.8

5.0
4.2

7.4
7.4

DQ
7.2
7.0

3.2
3.8

8.2
8.2

4.2
5.0

QD
4.8
4.0

8.8
8.8

3.8
3.2

7.8
8.0

QQ
6.4
6.4

4.0
4.8

7.0
7.2

4.6
5.6

IV. CONCLUSIONS AND FUTURE WORK

We contextualized an Industry 4.0 scenario of two inter-
acting robots used for manufacturing processes [4], where
cooperation among different agents can be established through
the mathematical formalization of Game Theory [15]. We
analyzed a static game of complete information, looking for
NEs in such a setup. We also considered an extension of this
setup to a Bayesian game, where system imperfections are
kept into account such as misidentifications of the two robots
happening with a certain probability. This leads to a Bayesian
NE, which depends on the system parameters [13].

We posit that this kind of investigations can be expanded
to many further scenarios. For example, one may include a
Bayesian extension also to account for breakdowns of robots
which become unusable, or the sporadic intervention of human
operators that may counteract failures, but also they may
decrease the speed of the system or making it overall worse
in the long run. Future work may be devoted to explore these
avenues that appear particularly promising.

ACKNOWLEDGMENT

Part of this work was supported by MIUR (Italian Minister
for Education) under the initiative “Departments of Excel-
lence” (Law 232/2016).

REFERENCES

[1] S.-J. Chung and J.-J. E. Slotine, “Cooperative robot control and con-
current synchronization of Lagrangian systems,” IEEE Trans. Robot.,
vol. 25, no. 3, pp. 686–700, 2009.

[2] G. Cisotto and S. Pupolin, “Evolution of ICT for the improvement of
quality of life,” IEEE Aerosp. Electron. Syst. Mag., vol. 33, no. 5-6, pp.
6–12, 2018.

[3] G. Peralta, P. Garrido, J. Bilbao, R. Agüero, and P. M. Crespo, “Fog to
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