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Abstract—A recent line of analysis discusses the age of in-
formation as a better performance metric than throughput or
delay to evaluate the performance of medium access techniques,
especially when applied to remote sensing applications and more
in general the Internet of Things. Fully analytical investigations
based on game theory have shown how selfish players can behave
efficiently in random access systems if they are driven by AoI-
based objectives. In this paper, we expand this kind of reasoning
to the case of a slotted ALOHA system with capture effect.
We present a fully analytical derivation of some notable cases,
based on the existing literature, and we highlight the impact
of some parameters, specifically the cost coefficient and the
capture threshold, towards achieving an efficient allocation that
represents an equilibrium point for the network management.
It is shown that, when the capture effect is relatively strong,
which is easier when the number of terminals is limited, the Nash
equilibrium of the system achieves near-optimal performance.

Index Terms—Age of Information; Game theory; Capture
effect; Slotted ALOHA; Internet of Things.

I. INTRODUCTION

In many sensing and monitoring applications for remote
process control, or hazards detection and prevention, freshness
of the data exchanged is more important than their sheer
amount [1], [2]. For this reason, the concept of age of informa-
tion (AoI) [3] is gaining momentum in analytical investigations
of medium access, to offer a quantitative performance metric
beyond standard indicators such as throughput or delay.

An appealing aspect of AoI evaluations is that they can be
framed in closed form, along the lines of throughput investiga-
tions, but often with unexpected conclusions. This is especially
true for systems based on ALOHA-like protocols [4], [5],
which are typical whenever the nodes are dense in number,
heterogeneous in nature, and limited in their computational and
energy resources, as for machine-to-machine communications
in the Internet of Things (IoT), where centralized access
control becomes impractical. Scenarios of distributed random
access can also benefit from investigations based on game
theory. Such a mathematical tool combines the benefits of
modeling the intelligence of the nodes as guided by an individ-
ual utility, which is realistic in massive access scenarios, and
capturing the system performance to the point of identifying
practical solutions for a distributed efficient control.

Some investigations of random access protocols have been
performed under the lens of game theory, but mostly focusing
on throughput as the main performance metric, whereas until
recently, characterizations of the opportunistic behavior of
selfish nodes acting under the objective of minimizing the AoI

are seldom found in the literature, with few notable exceptions
[6]–[8]. In addition, game theoretic investigations have shown
that even uncoordinated contention-based access protocols can
behave efficiently to some extent, meaning that a relatively
efficient Nash equilibrium (NE) can be achieved, when the
individual objectives of the players combine their local age
of information with a transmission cost term. Most of them,
including our own previous work [6], only focus on simple
protocols such as slotted ALOHA, which is well known to
achieve low access efficiency due to collisions resulting in
wasted transmission slots.

However, in [9] we also made a fully analytical investigation
of the impact of the so-called capture effect on a slotted
ALOHA system, that is, the improvement in the probability
of successful transmission thanks to the strongest signals
surviving collisions and being correctly decoded in spite of
the interference of other signals. Notably, that analysis did
not involve game theory and only considered throughput.

The goal of the present paper is to combine all these
elements in an original way, to obtain a game theoretic
investigation of a dense network where access is based on
slotted ALOHA with capture effect and where nodes have the
objective of obtaining a low AoI of their data. In fact, the
individual goal of the selfish nodes takes also into account a
transmission cost, which is needed to attenuate the aggressive
behavior of the nodes driven by selfish objectives.

While our investigation is purely analytical and with exact
derivations, we will instantiate it for specific cases with the
purpose of drawing design guidelines in practical systems. In
particular, we will specify it to the sample case of exponential
received power values of the terminals, which allows for
a simple yet substantial derivation in closed form, where
all the relevant parameters are included. We will show how
the capture threshold b affects the relationship between the
transmission cost c and the system equilibrium, so that the
impact of the values of b, c, and also the number of terminals
N can be better understood. Also, we can infer a network
control by means of a distributed management, where nodes
are just incentivized to follow individual objectives. More-
over, the resulting NE is determined, and numerical results
show that, when the capture effect is strong enough, also
in relationship with a contained number of terminals in the
network, the equilibrium performance is very close to that of
an optimal allocation from a global standpoint; as a result,
network management can be greatly simplified.



The rest of this paper is organized as follows. In Section II,
we discuss the previous contributions on the subjects of game
theory and random access with multi-packet reception, and
explain how the contribution of the present paper fills a gap in
the related literature. Also, we summarize the key ingredients,
based on existing results, of our analysis. These elements are
developed in Section III for our analysis, where we first discuss
the AoI evaluation with capture effect, and then apply game
theory to derive the possible NEs of the resulting systems and
their connection to the technical parameters. We will further
instantiate this to the specific case of exponential SNR so as to
show numerical results in Section IV. Finally, we will conclude
the paper in Section V.

II. BACKGROUND

A. Related work

Several papers in the literature apply game theory to
network systems, in particular the most common reference
scenario is for security issues in adversarial contexts at the
different layers of the protocol stack, such as denial-of-service
or jamming [10], [11]; in [12], this is applied to an AoI-based
scenario. There is also a line of research for medium access
seen as a game played by selfish agents, where ALOHA-
like techniques are a reference case investigated by many
classic references [13]–[15]; however, these papers mostly
consider throughput-based objectives for the players, since
the popularity of AoI as a performance metric is relatively
recent. From a game theoretic standpoint, one can generally
conclude that the NE of such systems is less efficient than a
globally optimum operating point [16]. However, in a recent
contribution [6], we prove that this conclusion is mitigated
for systems where the players aim at minimizing their AoI,
since when the cost parameter is above a given threshold,
a better NE arises. Moreover, the main criterion adopted in
these contributions to represent the medium access is just that
collisions result in lost packets, and the so-called capture effect
is rarely considered. Our contribution in the present paper is
to extend this kind of investigations to this case, leveraging
the analysis presented in [9].

We also note that there has been a recent flourishing of
papers focusing on AoI evaluations, especially for remote
sensing in IoT. While slotted ALOHA is already considered in
[3] as a reference scenario, and there have been some recent
investigations along this line [17], [18], the field is relatively
unexplored for what concerns datalink layer aspects such as
modeling the medium access and/or the capture effect. At the
same time, it is also still uncommon to find AoI employed
within the utility functions of game theoretic approaches. A
notable reference is [19], where the authors consider a game
based on AoI, but the access model is just based on an abstract
assumption that collisions lead to losing the packets. Another
relevant paper is [20], where two transmitter/receiver pairs
share access over an interference channel, but the end goal is
related to the achievable capacity at the physical layer, without
specific considerations on medium access control.

B. Summary of Preliminary Results

We now highlight the starting point of our analysis, to better
frame the contribution of the present paper. In [6], we applied
game theory to AoI in slotted ALOHA. For random-based
medium access, the AoI follows from all nodes’ transmission
probabilities t = (t1, t2, . . . , tN ), chosen independently by the
nodes seen as distributed agents. Thus, a standard minimiza-
tion of the AoI can be derived, where symmetry reasons imply
tj = t for all j ∈ {1, . . . , N}.

The essence of a game theoretic perspective is that, instead
of achieving a minimization for all tj’s, an individual player,
say terminal 1, is put under the spotlight, and the minimization
of its AoI is done over t1 only, leaving the other values
t2, . . . tN unchanged. For symmetry reasons, it is sensible that
this once again results in an equilibrium where all tj’s are
equal, but to a different value than before. As a result, we
are led to another operating point, in general more aggressive
than the optimal one since nodes are driven by their selfish
objective - a very well established game theoretic principle
known as the tragedy of the commons [21].

However, in a game theoretic analysis it is often customary
to introduce a cost term that the nodes pay to access the
channel [15], [22]. This can be connected with some practical
motivation, such as energy expenditure within the terminals,
or simply to control their access. As a result, the transmission
probabilities of the individual nodes can be controlled, to the
point that a better NE arises when the cost is above a given
threshold, which can be computed analytically [6].

However, due to the inefficiency of slotted ALOHA, it is
generally required to introduce a high cost to control the
NE when the number of terminals is large. A more realistic
characterization of the medium access will possibly lead to a
better equilibrium without introducing too high transmission
costs. For this reason, in the present analysis we resort to
our previous characterization of the capture effect in random
medium access presented in [9]. That paper proposes several
closed-form derivations of how to represent multi-packet re-
ception capabilities of the terminals. We just take some sample
approaches to address this point, but the analysis is general and
can be extended to any scenario presented in the paper.

Starting from such existing work by the authors, the present
paper evolves the analysis in a novel manner achieving
new, original results. Our contribution can be summarized as
follows. First, we give an analytical derivation of the AoI
when the capture effect is present, which, to the best of our
knowledge, is not available in the present literature. Moreover,
we apply game theory as detailed above, focusing on the
transmission probability of a specific terminal, chosen so as
to optimize its individual objective (a linear combination of
its AoI and paid cost). The resulting NE is then discussed and
quantified, highlighting the role played by key parameters.

III. MATHEMATICAL ANALYSIS

We consider a network of N terminals that are synchronized
on a discrete (slotted) time reference. The terminals share a



common transmission channel which is used to send identical-
sized packets towards a single receiver (sink). The time slot
is hence assumed to be equal to the packet transmission time,
and transmissions can only occur according to the slot pattern.
We further assume that, during each time slot, terminal i is
actively transmitting with probability ti, independent of all the
other nodes, and the packet transmitted always contain up-to-
date information. Thus, the AoI of the data sent by a specific
terminal is separately counted at the sink, and whenever a
packet transmission is successful, that AoI value is set to 0,
otherwise it is increased by 1 at each time slot.

Now, denote with qi(j) the probability that a packet sent
by a transmitting node i is captured in the presence of
j competing transmitters, including node i itself. Notably,
qi(1) = 1, when i is the only transmitter, while, for a
regular slotted ALOHA system without capture, qi(j) = 0
if j > 1. Thus, the individual success probability ρi of a
given terminal i can be determined as the joint instance of
two separate events: (i) terminal i transmits; and (ii), out of all
combined transmission patterns of the other N − 1 terminals,
i’s transmission is captured. If, without loss of generality, we
focus on terminal 1, whose transmission probability is t1, and
assume for symmetry reasons that all other terminals have the
same transmission probability t, i.e., t2 = t3 = . . . = tN = t,1

the probability of successful transmission of terminal 1 is

ρ1 = t1

N∑
j=1

(
N−1

j−1

)
tj−1(1− t)N−j q1(j) . (1)

By expanding the analysis of [9], several ways to compute
q1(j) can be found. For the sake of simplicity, we consider one
specific case of exponentially distributed received power terms,
which allows for an immediate derivation reported next. Other
similar considerations can be made for the other scenarios of
multi-packet reception capabilities of the sink node discussed
in that paper, possibly including techniques such as successive
interference cancelation.

A. The case of exponential received powers

One simple way to model q1(j) is to assume that terminal
1’s packet is captured if its received power is higher than a
given fraction of the sum of all other received powers from
active terminals. If we denote the received powers of the j
active terminals as P1, P2, . . . , Pj , where P1 is the received
power of the terminal of interest, i.e., terminal 1, we can write
q1(j) = Pr[P1 > b

∑j
h=2 Ph], where the key parameter b is

the capture threshold. The reader can refer to [9] for a more
in-depth discussion on the value of b. Here, we treat it like an
adjustable parameter whose role in determining the AoI will
be explored next.

The expression above simplifies to a neat exact derivation
if the received powers of all active terminals are independent

1Clearly, we look into fully symmetric solutions for which also t1 = t.
Yet, we keep the notations separate in order to distinguish between terminal
1, on which we focus, and all other terminals. This distinction will become
useful when dealing with the game theoretic part of the analysis.

and identically distributed (i.i.d.) following an exponential
distribution with parameter λ, i.e., Ph ∼ Exp(λ), i.i.d.,
that is, the probability density function (pdf) of all received
powers is fPh

(x) = λe−λx 1(x), with 1(x) being a unit
step. From this assumption, it promptly follows that, for j>1,
q1(j) = Pr[P1 > b Qj−1], where Qk ∼ Erlang(k, λ) is
a random variable with Erlang distribution of index k and
parameter λ.

From known properties of the Erlang distribution, we get

Pr[P1 > b Qj−1] = EQj−1

[
e−bλQj−1

]
=

1

(1 + b)j−1
(2)

since EQk
[eaQk ] = (1− a/λ)−k.

Hence, putting k = j−1 in (1), we can write ρ1 as

ρ1 = t1

[
(1− t)N−1 +

N−1∑
k=1

(
N−1

k

)
tk(1−t)N−1−k

(1 + b)k

]
(3)

which reduces to ρ1 = t1

(
1 + b(1− t)

1 + b

)N−1

. (4)

B. AoI evaluation and game theoretic formulation

The derivation of ρ1 above is particularly useful as it
immediately reflects into the AoI evaluation. Since we are
considering a discrete time axis, the average AoI of the ith
terminal, denoted as ∆i, can be written as [6]

∆i = ρ−1
i − 1 . (5)

In particular, if we are interested in a symmetric centralized
optimal solution to minimize the AoI of all the terminals, we
can set t1 = t and find the minimum of ∆i over t. This can
be easily done by setting the first derivative in t to 0, but
we can actually remark that the problem is relatively trivial
since minimizing the AoI just corresponds to maximizing the
success probability ρ1, which is an obvious consequence of
the terminals choosing their transmission probabilities inde-
pendently of one another.

A game theoretic perspective becomes instead more inter-
esting, and is made relatively simple by the separation found in
(4) between t1 (the value of choice for the terminal of interest)
and t, i.e., the transmission probability of every other terminal.
In a game theoretic analysis, we can consider the N terminals
as the players of a static game of complete information [23],
where they set their action as their transmission probability,
chosen independently and unbeknownst to each other.

However, if we set the payoffs of the players as their AoI
values (or better, we ought to set the utility of the ith terminal
as ui = −∆i, since the AoI is to be minimized, while ui
is to be maximized), the resulting sheer minimization of the
AoI from the perspective of a selfish terminal will lead to
a catastrophic NE. In fact, whatever the choice of the other
terminals, it is always convenient for the terminal of interest
to aggressively transmit with probability 1 [14]. Symmetry
considerations imply that all terminals do the same and we get
a NE where everyone transmits in every slot, and the resulting
AoI is ∆i = (1 + b)N−1 for all terminals.



The common solution in game theoretic approaches is the
introduction of a cost incurred by each individual node i, pro-
portional to its transmission probability ti through a constant
c [11], [15], [16]. Such a cost term can be either related to
actual physical phenomena, such as the energy consumption
of the terminal when transmitting, or just introduced for the
sake of limiting persistent access by the terminals. This will
actually prompt a further discussion in the following.

For the purpose of a game theoretic analysis, we define the
utility of the ith player as the value that terminal i seeks to
maximize, defined as

ui(t) = −∆i − c ti = − 1

ρi
+ 1− c ti (6)

where the negative sign has the same explanation as above (all
terminals actually seek to minimize AoI and/or transmission
cost) and the individual utilities are defined to be functions of
the entire array of transmission probabilities, t = (t1, . . . , tN ),
which happens through ∆i and thus through ρi.

The utilities defined in (6) can be employed in two ways.
On the one hand, symmetry reasons lead to assuming that all
ti’s are equal, i.e., t = (t, t, . . . , t) and under this condition an
optimal t can be found, such that the utilities are maximized.
The numerical derivation of such a maximum is immediate by
setting the first-order derivative dui/dt = 0. This corresponds
to a fully coordinated working point, which is often deemed to
be impractical in a game theoretic spirit, as individual selfish
players may have an incentive to deviate.

On the other hand, we can also explore a unilateral max-
imization of the utility of a player of interest, say, terminal
1, while the moves of the others are kept unchanged. This
requires to separate the transmission probability t1 of such
a terminal, while all the others can be assumed to use
transmission probability t. Note that in the end, also t1 will
be set equal to this very value, but only after taking the first
order derivative, which is now dui/dt1, and setting it equal to
0. In game theoretic terms, this is the NE condition since each
player chooses a best response to the moves of the others.

Noting that the expression (1) of ρ1 can be rearranged as
ρ1 = t1K1 where

K1 =

N∑
j=1

(
N−1

j−1

)
tj−1(1− t)N−j q1(j) (7)

does not depend on t1, we can elaborate the NE condition
dui/dt1 = 0 into

1

ρ21

dρ1
dt1
− c = 0 ⇒ ρ1t1 =

1

c
. (8)

Now, we can also set t1 = t and look for NE solutions in t
of the resulting equation ρ1t− 1/c = 0.

Depending on the value of c, there are different cases. If c
is too low, the equation has no solutions and the only NE is
found in t = 1 for all terminals. As c increases, we observe a
threshold phenomenon [6], i.e., another NE arises when c > γ,
with γ being a proper threshold value, for which different
conditions can be formalized depending on the expression of
ρ1 and the resulting equation.

C. Discussion on the NE structure for the sample case

If we consider the case of exponentially distributed received
powers, (4) will lead to an (N+1)th degree equation

t2
(

1 + b(1− t)
1 + b

)N−1

=
1

c
(9)

whose solutions in t, if valid as probability values, represent
NEs for the system. Indeed, the NE condition (9) obtains
t between 0 and 1 only for sufficiently high c. It can be
proven that there exists a value γ such that if c > γ, there
is another NE beyond the catastrophic one, which leads to
a more efficient coordination among the terminals despite
them following individual objectives. While γ depends on
several factors (including the capture model and the number of
terminals), its existence is guaranteed by the above reasoning.

We can point out an important structural property of γ fol-
lowing (9). If we denote A(t) = t2(1 + b(1− t))/(1 + b)N−1,
we observe that if

dA(t)

dt
(1−) > 0 ⇒ b(N − 1) < 2 , (10)

then A(t) is always increasing in [0, 1] and its maximum is in
(1 + b)1−N , which gives a precise expression for γ. In other
words, if b(N − 1) < 2, i.e., b and/or N are low, we need
c > γ = (1 + b)N−1 for a better NE to exist. Conversely,
if (10) is not verified, the value of γ further increases; the
capture effect is weak, and a high cost is required [6].

IV. NUMERICAL RESULTS

We show some practical evaluations of the equations derived
in the previous analysis to draw some quantitative conclusions.
We consider N terminals as players in a simultaneous-move
game following individual utilities that are a linear combi-
nation of their negative AoI and their negative transmission
cost, with coefficient c = c̃ N , and whose strategic choices
are their individual transmission probability values. Their
received power values are i.i.d. exponentially distributed, and
medium access is slotted ALOHA with capture threshold
b. A successfully captured transmission sends the AoI of a
terminal back to 0. We consider symmetric solutions where
the transmission probability is the same for all terminals.
The results are always shown as functions of the normalized
transmission cost c̃, for the number of users N∈{10, 100},
and considering two different capture thresholds, i.e., b = 0.02
and b = 0.2. According to [9], the former represents a strong
capture effect, whereas the latter has a more limited extent, yet
it still significantly improves over standard slotted ALOHA.
We also note that the case b = 0.2, N = 100 does not meet
condition (10), while all the others do.

In Figs. 1–2, we report the resulting transmission proba-
bilities of the terminals computed either at the NE (when
available) or for the optimal centralized case. We remark that t
at the NE is meaningful only if c > γ and overall an increasing
cost significantly lowers the transmission probability of both
cases. For b = 0.02 the NE and optimal curves are very close,
while for b = 0.2 there is still some gap. This implies that a
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Fig. 1. Transmission probability t as a function of the normalized transmission
cost c̃, at the NE or with an optimal setup, for capture threshold b = 0.02.
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Fig. 2. Transmission probability t as a function of the normalized transmission
cost c̃, at the NE or with an optimal setup, for capture threshold b = 0.2.

strong capture effect causes that even a decentralized system
is able to work at near-optimal NEs.

However, this also hints that the value of c deserves a
technical discussion on its physical nature. Due to the need for
a sufficiently high c, the near-optimality of the NE is achieved
only if the persistence of selfish terminals is somehow limited.
At the same time, it is convenient that c is not too high,
since this would result in a very low transmission probability
(and, as will be shown next, high AoI). This suggests that
if c goes beyond being just a technical parameter, like the
energy expenditure, and can be set with some slack, a proper
regulation is key to obtain an efficient management.

In Figs. 3–4, we report the resulting values of the system
throughput, for N = 10 and N = 100 terminals, respectively.
These plots are straightforward extensions of the previous
results on the transmission probabilities, yet they show that the
system throughput at NE is even closer to the optimal case,
given that we have a sort of compensation between a slightly
higher t, resulting in more collisions but also a better chance
of being captured. Also, the throughput rapidly decreases in

0 5 10 15 20
0

1

2

3

4

5

6

7

s
y
s
te

m
 t
h
ro

u
g
h
p
u
t

Fig. 3. System throughput, as a function of the normalized transmission cost
c̃, at the NE or with an optimal setup, for N = 10 terminals.
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Fig. 4. System throughput, as a function of the normalized transmission cost
c̃, at the NE or with an optimal setup, for N = 100 terminals.

c̃, except when b = 0.2, N = 100, for which it is already low
anyway (the capture threshold is too low for so many users).

Fig. 5 shows the resulting expected AoI. Notably, this is
not the objective of the players, since they actually try to
minimize a utility combining AoI and transmission cost, which
is instead shown in Fig. 6. At any rate, we notice that in
all the resulting plots the optimal management and the NE
are almost indistinguishable, with the only exception of the
case b = 0.2 and N = 100, which is when (10) is violated.
Overall, we conjecture that the efficiency of the NE is related
to its threshold structure and the actual value of the threshold,
which is an issue that certainly deserves to be explored in
future work. From a quantitative standpoint, we can say that
the system-wide optimization can be replaced by a distributed
setup through an NE, which is especially true when N and/or
b are low enough, i.e., the capture effect is stronger.

V. CONCLUSIONS

We presented a game theoretic analysis of a large num-
ber of nodes sharing access following a slotted ALOHA
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Fig. 5. Expected AoI, as a function of the normalized transmission cost c̃,
at the NE or with an optimal setup.

protocol with capture effect, with their individual objectives
being related to minimizing their AoI and also comprising a
transmission cost. Based on previous analytical formulations
of the AoI for a random access system, we showed that
our framework is able to set an AoI-efficient working point,
doing so in a distributed fashion where nodes act without
coordination and driven by selfish objectives. This translates
the system-wide optimization to a more practical approach
based on individual actions of each nodes.

Future work may consider an expanded game theoretic
formulation where the strategic choices of the nodes are more
complex than just setting their transmission probability, pos-
sibly considering some sort of feedback from the receiver and
an overall planning ahead over multiple update epochs. Even
for these scenarios, game theory can be the proper instrument
to set a self-enforcing distributed management of nodes with
minimal supervision from the network manager, which appear
to be a desirable choice for future IoT implementations.
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