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Abstract—In this paper we analyze automated probabilistic
quality control from a game theoretic point of view. Quality
control is a key component of many industrial production lines
and in the recent years there has been a push to automate this
task, thanks to the advances in industrial manipulators with
machine learning and vision capabilities. We formalize a serial
multi-robot quality control model and analyze it in comparison
with single-robot models, both theoretically and through some
instance scenarios.

Index Terms—Networked manufacturing; Robotic assembly;
Production control; Machine vision; Game theory.

I. INTRODUCTION

Quality control is a key step in most industrial production
lines and processes. Checking that goods are up to the com-
pany’s standards is traditionally a task for specialized human
personnel, resisting automation due to the higher complexity
and lower accuracy of automatic methods. However, these
tasks are usually time consuming and repetitive, making them
unappealing to the human operators [1]. Also, due to the time
consuming nature of human quality control most goods are
checked by random sampling [2]. Thus, the ever increasing
demand for quality [3], [4] along with the development of
new machine learning and deep learning techniques [5]–[7],
has led to the rise of automated quality control.

Starting from these foundations, we explore a cascade of
multiple classifiers to better trade-off individual classifier costs
and overall performance using game theoretical methods. With
respect to a single-controller system, cascading has the further
objective of further performance improvements from just a
better quality of each element [8], [9]; however, it poses
several issues to network coordination [10].

This idea was inspired by boosting machine learning algo-
rithms, in particular the approach of [11] to face recognition;
yet, this and similar papers do not formally derive bounds on
optimal strategies. Similarly, there are several previous works
analyzing the cost/performance trade-off during training [12],
[13], showing considerable interest about the subject; yet, we
could not find any paper tackling such a problem analytically.

Such concepts will be explored focusing on the case of a
cascade of collaborative robots employed in a quality control
task, analyzing how Game Theory can be used to derive
optimal cooperative strategies and their bounds [14]–[16].

The rest of this paper is structured as follows: first, in
Section II we introduce the problem setup and describe the

environment and tasks involved. In Section III we develop
a game theoretical multiplayer model for our problem and
analyze different solutions. Section IV discusses instead the
single player model for the same task, which is compared to
the previous one in Section V. In Section VI, we conclude
with final remarks and future directions.

Fig. 1. Reference scenario

II. PROBLEM SETUP

Consider a 4.0 factory with automated quality control lo-
cated at the end of a production line [8], [17]. The system,
depicted in Fig. 1, consists of a conveyor belt carrying the
goods exiting the production line, a series of N robots with
machine vision systems, and a collecting bin at the end of the
conveyor belt. The goods can be defective or quality products
with probabilities d and 1−d, respectively. Each robot receives
the result of the scanning of the object passing under its vision
system and can decide whether to accept the good by picking
it out of the conveyor belt, or discard the piece and let it travel
further along the conveyor. The result of each scan is shared
with the other robots, although those further along the belt
cannot immediately act on a piece that has yet to reach them.

We consider the following cost/return parameters: (i) a fixed
production cost for the good cp; (ii) a fixed gross return from
the sale of quality goods gp; (iii) a fixed cost for refunding
a faulty good, including e.g. the loss of reputation for the
company cd > gp; (iv) a parametric cost for operating a robot
plus its corresponding vision system ck, where k ∈ [1, ..., N ]
is the robot index. For ease of notation, we introduce cr =
cd − gp > 0 as the net cost of selling a defective good.

Costs ck are a function of the accuracy of the vision system
employed. A suitable choice, assuming pk is the probability
of having a correct reading from machine vision system k, is:

ck = α
pk

(1− pk)
(1)

since the cost should increase slowly with low accuracy and
sharply when the accuracy gets higher. This reflects the ease: 978-1-6654-6030-9/22/$31.00 ©2022 IEEE



TABLE I
LIST OF PARAMETERS AND NOTATIONS

term meaning
d defective products rate
cp per-item production cost
gp per-item sale price
cd per-item refund cost
ck, k ∈ {1, 2} cost of operating robot k
cr = cd − gp loss when selling a defective item
pk, k ∈ {1, 2} robot k detection accuracy

of having a mediocre detection and the difficulty in increasing
the accuracy above a certain threshold [18]. Parameter α can
be used to finetune the steepness of the function. This is just
an example of what we might find in practice, but it is by no
means the only option: we may model an operational cost, an
initial investment divided over the expect lifetime of the line,
or a mixture of both. Another possibility lies in exploiting ck to
represent the time required to perform inference: while this is
often negligible, in some industrial setups the production rate
can become critical. The latter case is equivalent to quantifying
the inference cost of a cascade of boosted classifiers.

We further assume that pk > 0.5, which is not limiting as
the reverse case with pk < 0.5 can be brought back to this
condition by simply inverting the signal.

The net earnings of the company (without accounting for
the cost of operating the robots) are: (i) sale of a quality good:
gp − cp; (ii) sale of a faulty good: −cp − cr; (iii) discarding
a good (any type): −cp. Thus, the expected gain for a single
product when no quality check is employed is

G0 = (1− d) · (gp − cp) + d · (−cp − cr)
= (1− d) · gp − d · cr − cp

(2)

meaning that the production cost is always incurred, there is
a gross gain gp when the product is up to standards (with
probability 1 − d), and a gross loss cr when the product is
faulty (with probability d). The reader can refer to Table I for
a list of the parameters introduced above.

Our focus is on whether it is profitable for the company
to use one or more robotic quality inspectors and under
which conditions. We employ game theory to formalize the
mathematical constraints involved and the approaches to the
best solution for a business strategy [19].

III. GAME MODEL

The case with just one robot along the belt boils down to
single player optimization. Its analysis is included in Section
IV for completeness’ sake and to compare it with the multi-
robot case. For now, consider N > 1 robots along the line,
focusing on the N = 2 for simplicity. An extension to N > 2
would be conceptually immediate.

Robots R1 and R2 are assumed to receive correct quality
scans from their associated vision systems with respective
probabilities p1 and p2, modeled as Nature’s choices. The cost
of operating them is c1 and c2 computed according to (1). We
suppose p2 > p1 so that the second, more powerful but costly,
robot can correct the mistakes made by the first one, while not
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Fig. 2. Complete two-player game in extensive form

affecting the costs as much as if both had the highest precision.
Each player receives a signal from its vision system and can
accordingly choose between two actions: to accept (A) the
product and take it out of the line or discard (D) the product
and let it go forward. All scan results are common knowledge,
since the line is an engineered collaborative environment [10].

The quality of each product is modeled once again as
Nature’s decision, and the robots play sequentially. To get
reasonable quantities as the robots’ payoffs, we decided to
distribute the company’s revenues between the players, pro-
portionally to their involvement. The production cost is not
considered in the individual utilities since it is fixed and not
depending on their choices. We need to factor it in again when
computing the company’s payoff. Thus, there are 5 end results
(and corresponding payoffs, denoted by uk):
1) R1 accepts a quality product: u1(1) = gp − c1, u2(1) =0
2) R1 accepts a faulty product: u1(2) = −cr−c1, u2(2)=0
3) R2 accepts a quality product, while R1 wrongly discarded
it: u1(3) = −c1, u2(3) = gp − c2
4) R2 accepts a faulty product, while R1 correctly discarded
it: u1(4) = −c1, u2(4) = −cr − c2
5) The product is discarded, after both robots checked it:
u1(5) = −c1, u2(5) = −c2

We denote with u(x) the tuple (u1(x), u2(x)). This way,
we reflect each player’s actual contribution, while keeping the
company profit computation as the sum of the two individual
utilities minus the (fixed) production cost [20]. This leads
to the complete (but imperfect) information dynamic game
depicted in extensive form in Fig. 2, where the game ends
without actions from R2 in the cases where the first robot
accepts, since the product is not on the line anymore.

Player R1 has 2 information sets corresponding to the
uncertainty of whether the good is faulty or not. R2, on the
other hand, has 4 information sets, since it has the same
uncertainty as R1, plus it is also uncertain whether the signal
of the first robot was correct or not. Because of all choices
being binary, this leads to 4 and 16 strategies for R1 and R2,
respectively. Also due to its many parameters, the complexity
becomes too high for an exhaustive analysis and must be
reduced with an engineering perspective. E.g., we can limit



R2’s play to the best responses to all of R1’s strategies. By
backward induction, we can thus solve the game [21].

A. Analysis of R2’s strategies

We choose R2’s strategy of always following the signal, due
to these reasons. (i) Strategies of always accepting/discarding
are pointless and could be achieved by just removing the robot.
(ii) Strategies always blindly following R1 in at least one
case are not useful, since the second robot is supposed to
correct the first one’s mistakes. This would restrict the player’s
capabilities, and not achieve cost-effective management. (iii)
Given that the accuracy of each signal is higher than 0.5, we
also discard strategies going against signals.

We want to impose that “follow the signal” for R2 is
the only best response to player R1’s moves as it strictly
dominates the others. Let KX,Y be the probability that the
product is in state X ∈ {A,D} (quality or faulty), and the
robot(s) Y ∈ ℘{1, 2} correctly detected such state. E.g.,
KA is the probability that no robot detects that the piece
is up to standards, i.e., (1−d)(1−p1)(1−p2), while KD,2 is
the probability that only R2 detects a faulty product, i.e.,
d (1 − p1)p2. Applying Bayes’ rule to the 4 information sets
of R2, and imposing the preference of the appropriate action
in each one of them, we can derive the following conditions
on the parameters, one for each information set:

cr ·KD,12 > gp ·KA (3)
cr ·KD,2 > gp ·KA,1 (4)
gp ·KA,2 > cr ·KD,1 (5)
gp ·KA,12 > cr ·KD (6)

Assuming (4) and (5) hold, the following inequalities are
satisfied, implying (3) and (6) as well if p1, p2 > 0.5:

cr ·KD,12 > cr ·KD,2 > gp ·KA,1 > gp ·KA

gp ·KA,12 > gp ·KA,2 > cr ·KD,1 > cr ·KD

So, the only constraints for which R2 is always better off
following its signal are (4) and (5). The inequalities can be
rewritten by highlighting gp/cr, obtaining

d

1− d
· p1

1− p1
· 1− p2

p2
<
gp
cr
,

gp
cr

<
d

1− d
· 1− p1

p1
· p2

1− p2

(7)

These constraints on gp/cr hold since if this ratio is too
high, the incentive to sell each a product is too strong to follow
a “discard” signal. On the other hand, if it is too low, then
the risk of selling a faulty product is too high to follow any
“accept” signal. This must be weighted on the prior probability
of having faulty goods and the accuracy of the two robots.

B. Analysis of R1’s strategies

With the above choice of R2’s strategy, R1 can see the
original game as equivalent to what reported in Table II, where
rows and columns list R1’s and R2’s strategies, respectively.
The action list on each strategy follows the tree in Fig. 2,

TABLE II
CHOICES OF R1 WHEN R2 FOLLOWS THE SIGNAL (“DADA”)

DADA

AA gp · (1− d)− cr · d− c1,
0

AD gp · (1− d)(1− p1)− cr · d · p1 − c1,
(KD,2 +KA,1) · u2(5) +KD · u2(4) +KA,12 · u2(3)

DA gp · (1− d) · p1 − cr · d · (1− p1)− c1,
(KD,12 +KA) · u2(5) +KD,1 · u2(4) +KA,2 · u2(3)

DD −c1,
−c2 + gp · (KA,2 +KA,12)− cr · (KD +KD,1)

from left to right, e.g., strategy “AD” for R1 means that “A”
is played in the blue information set and “D” in the red one.

For pure strategies, only “DA” is desirable, since “AA” and
“DD” would make the robot useless (but still costing money
to run), while “AD” contradicts the choice of p1 > 0.5. If we
move to mixed strategies, the reasoning is not as simple.

Given that R1 knows that R2 is further along the line, and
that it has greater classification abilities, it could make sense
for R1 to discard some products even if its signal is positive, so
as to let R2 make a better decision, thus generating interest in
analyzing the mixed strategy with support {DA,DD}. This
should be offset with the lack of reward for R1 for quality
products correctly recognized, thus avoiding purely falling into
strategy “DD”.

1) Mixed Strategies: For R1 to be able to play a mixed
strategy in this setup, it must be that all strategies in the
support have the same utility (u1), which must be greater than
the utilities of strategies outside it [22]. Since R2 does not
need to be convinced to play its only strategy, the choice of
m (which is the probability of R1 choosing “DA”) is free in
the range (0, 1).

Solving the equality condition, the result is:

gp · (1− d) · p1 = cr · d · (1− p1)

while the two inequality conditions imply:

gp · (1− d) < cr · d

gp · (1− d)(1− p1) < cr · d · p1

All these restrictions are compatible with the conditions on the
strategy of R2, as long as the parameters are chosen correctly.
So, at least from a mathematical point of view, there are
practical instances that allow for this mixed equilibrium. This
does not mean that it is profitable from the company’s point of
view; in fact, if we let u2,DA be the payoff for R2 whenever
R1 plays DA, and u2,DD the payoff for R2 when R1 plays
DD, then the company utility is

u1 + u2 − cp = u1 +m · (u2,DA) + (1−m)u2,DD − cp (8)

If u2,DA > u2,DD then it is most convenient to set m to
1, returning to a pure strategy; in the symmetrical case it is
best to set m − 1 to 1. The only option where we could
reasonably have a true mixed equilibrium with any m is if
the two quantities are equal. If this holds, then the company’s
payoff in the mixed equilibrium is exactly the same as if the



Fig. 3. In the orange and purple regions, (12) or (7) is the most stringent
condition, respectively.

first robot always plays “DD”. Seeing this, the company can
just remove the first player and get a greater payoff since c1
would not be paid anymore. We hence did not go into greater
detail about the mixed strategy calculations, since it is always
outperformed by pure strategies or single player scenarios.

2) Pure Strategies: Thus, the only Nash Equilibrium in
pure strategies is “DA” for player R1 and “DADA” for R2.
After finding the conditions for R2, we now focus on those
for R1, which are (� stands for “strictly dominates”)

“DA” � “DD” if: gp(1− d) > cr · d ·
1− p1

p1
(9)

“DA” � “AD” if: (gp(1− d) + cr · d) · (2p1 − 1) > 0 (10)

“DA” � “AA” if: gp(1− d) < cr · d ·
p1

1− p1
(11)

We can drop (10) since the first factor is a sum of positive
quantities and the second factor is always positive due to our
assumption p1 > 0.5. The remaining inequalities impose the
following range on gp/cr, with the same intuitions as (7):

d

1− d
· 1− p1

p1
<
gp
cr

<
d

1− d
p1

1− p1
(12)

Merging this constraint with (7) leads to two ranges, i.e.,
(7) if p1 > (1 +

√
1− p2/p2)

−1, and (12), otherwise.
The meaning of these conditions is that if p1 is close

enough to p2, then the second player has doubts when it wants
to contradict player 1’s choices and so it has the strictest
conditions. Otherwise, the second player can just follow its
signal without second thoughts and, since p2 > p1, it is the
first player that must check that its detector quality is sufficient.
The domains of the two ranges are shown in Fig. 3.

To end this analysis, we compute the company’s payoff for
the resulting Nash Equilibrium:

G2 = gp ·KA,U − cr ·KD,Ī − cp − c1 −K2 · c2 (13)

where KA,U = (1−d)·(p1+p2−p1p2) is the probability that a
product is of good quality and gets correctly labeled by either
player; KD,Ī = d·(1−p1p2) is the probability that a product is
faulty and still passes both checks; K2 = d p1+(1−d)(1−p1)
is the probability that the second robot gets to play a move.

IV. SINGLE PLAYER SETUP

This setup is solvable by single agent optimization, without
any game theory. We still include this analysis to make
a comparison with the two-player model. The payoffs are
computed as in the previous cases, only, there is no option of
letting the second robot play. Following the same reasoning
previously made, we choose “D” in the blue information set
and “A” in the red information set. Hence,

d

1− d
· 1− p

p
<
gp
cr

<
d

1− d
· p

1− p
(14)

If we replace p with p1, the inequality expresses the same
constraints as (12) since the payoff of R1 in that case is that
of a single player. The company’s payoff in this setup is:

G1 = −cs − cp − cr · d · (1− p) + gp · (1− d) · p (15)

where cs is the cost of operating the robot, modeled by (1).
If we compute dG1/dp and set it equal to zero we obtain (as
the only feasible solution)

p∗ = 1−
√

α

gp · (1− d) + cr · d
which is a maximum. Should robot costs change, the value of
p∗ is to be recomputed accordingly.

V. MODEL COMPARISONS

A. Closed form analysis

The simplest case to consider is quality control being done
more conveniently with just one robot instead of none:

G1 > G0 ⇔ gp · (1− d) · (1− p) + cs < cr · d · p (16)

which is equivalent to

gp
cr

<
d

1− d
· p

1− p
upper range limit

− cs
cr · (1− d) · (1− p)

normalized cost factor

(17)

This constraint is identical to “DA dominates AA” but is
made stricter by the fact that the robot’s cost does not cancel
out anymore. The physical meaning is that if the gain is
proportionally much bigger than the return cost then it makes
more sense to accept the full price for the refunds and skip
quality control altogether. Thus, if we satisfy the inequality
above we are automatically below the upper limit of the range
for operating the robot in the desired fashion.

Analytically comparing the two-robot setup with the other
two models is instead quite complex to do in closed form and
it does not give any more intuitive insight than what already
presented. For example, when imposing G2 > G0 we get:

gp
cr

<
d−KD,Ī

(1− d)−KA,U
− c1 +K2 · c2

(1− d)−KA,U
(18)

with a similar meaning to (17).
Furthermore, it proved too complex to solve for p∗1, p

∗
2 in

closed form with our choice of robot cost function, even when
employing symbolic solvers. It is instead easier to evaluate the
different models with numeric methods when fixing the values
of gp, cp, cr, d and α, as we do in the next section.



TABLE III
SAMPLE SCENARIOS, CHECKED FOR THE CONSTRAINTS ON gp/cr

Scenario 1 G2 is best, both G1 and G2 constraints satisfied
parameters gp = 6.6, cp = 2.2, cr = 16.5, d = 0.2, α = 0.2
G0 −0.21
G∗

1 0.66 at p = 0.847
G∗

2 0.72 at p1 = 0.785, p2 = 0.867
gp/cr constraints = 0.4; (G1): ∈ [0.05,1.39]; (G2): ∈ [0.14,0.45];
Scenario 2 G2 is best, only G1 constraint satisfied
parameters gp = 6.6, cp = 2.2, cr =13.2, d =0.1, α =0.02
G0 2.42
G∗

1 2.99 at p = 0.947
G∗

2 3.27 at p1 = 0.897, p2 = 0.955
gp/cr constraints = 0.5; (G1): ∈ [0.01,2.01]; (G2): ∈ [0.05,0.27];
Scenario 3 G0 is best, both G1 and G2 constraints violated
parameters gp = 6.6, cp = 2.2, cr = 13.2, d = 0.1, α = 0.2
G0 3.41
G∗

1 1.92 at p = 0.830
G∗

2 2.70 at p1 = 0.717, p2 = 0.835
gp/cr constraints = 0.5; (G1): ∈ [0.01,0.26]; (G2): ∈ [0.03,0.11];
Scenario 4 G1 is best, both G1 and G2 constraints satisfied
parameters gp = 6.6, cp = 2.2, cr = 16.5, d = 0.3, α = 0.1
G0 −2.53
G∗

1 1.09 at p = 0.928
G∗

2 0.91 at p1 = 0.902, p2 = 0.941
gp/cr constraints = 0.4; (G1): ∈ [0.03,5.5]; (G2): ∈ [0.25,0.75];

Fig. 4. Scenario 1: G1 versus p

Fig. 5. Scenario 1: G2 versus p1 and p2

B. Case studies

We discuss the scenarios listed in Table III, drawing inter-
esting conclusions. While the parameters are theoretic figures,
they can be matched with real industrial contexts [8], [23].

Scenario 1 (see Figs. 4–5) has all models within bounds,
with the two-robot setup performing the best, proving that
using two robots may be convenient. Working without any
robot would lead to a net loss, justifying the need for quality

Fig. 6. Scenario 2: G1 versus p

Fig. 7. Scenario 2: G2 versus p1 and p2

control. Also in Scenario 2 (see Figs. 6–7) the two-robot setup
outperforms the others; but, upon further inspection, such a
setup is operating outside the NE constraints. In this case,
we should re-analyze the game to find out the resulting equi-
librium, and possibly modify the setup accordingly. Finally,
Scenarios 3 and 4, are counterexamples, where the best models
are without quality control and with a single robot, and are
reported in Figs. 8–9 and Figs. 10–11, respectively. All of this
showcases the operational conditions can affect the outcomes.

VI. CONCLUSIONS

We employed game theory to merge predictors considering
the cost of accuracy for robotic production lines. We compared
models with no predictor, one predictor, and two cascaded
predictors following their signals. The results are not confined
to quality control, nor an industrial setup: similar approaches
can be applied to other tasks [24], [25]. For each model, non-
trivial constraints were obtained, as well as payoff optimiza-
tion techniques; we also showed an array of sample scenarios.

Our game theoretic analysis of accuracy vs. prediction
time/cost at inference time with a multi-classifier approach
may serve as a foundation for other models, by relaxing some
assumptions. E.g., in the two-classifier model, probabilities p1

and p2 can be correlated [26], or the false-positive and false-
negative probabilities be different [27], [28]. A cost relation
other than (1) can be used, e.g., if we represent the time spent
on inference, we may model c2 to account for the second robot
receiving fewer products, impacting less on production time.
Finally, mixed strategy setups can be explored.



Fig. 8. Scenario 3: G1 versus p

Fig. 9. Scenario 3: G2 versus p1 and p2
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