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Abstract—Future smart cities are expected to have efficient
control of vehicular traffic to provide satisfactory mobility and
transportation of people and goods. Reliable and efficient control
schedule design for signalized intersections is needed to alleviate
vehicular congestions and improve the overall road network
management. In the present paper, we propose an approach based
on game theory to design a decentralized intersection traffic
controller, able to adaptively react to changing traffic conditions
and minimize the waiting time of the cars in queue. We adopt
a Bayesian dynamic game framework, which is able to improve
the existing state of the art alternatives by reducing the amount
of data exchanged from monitoring roadside units. Moreover, we
also introduce a tunable sharing factor that is a design element
available to the traffic planner controlling the priority of access
and allowing for prioritization. Finally, the proposed solution is
extensively evaluated via simulation in different scenarios.

Index Terms—Game theory; smart cities; road traffic control;
scheduling algorithms.

I. INTRODUCTION

Modern cities are often subject to traffic congestion, defined
as a state of traffic flow with a high number of vehicles moving
at low speed, often caused by a demand for urban roads
that exceeds their capacity [1], [2]. Traffic congestion causes
productivity losses, energy wastes, pollution, and decreased
quality of life [3], [4].

With the advent of the Internet of Things (IoT), appli-
cation to smart cities and intelligent transportation systems
are envisioned [5], [6], and traffic regulations can be made
smarter. Signalized intersections are key infrastructures, where
the schedule for switching the traffic lights plays an important
role. This can be controlled either singularly, using local
information on the traffic conditions, or in groups, based on the
road network characteristics [7]. A first method of controlling
signalized intersections is based on fixed schedules, or on
sets of fixed schedules to chose among in response to real-
time traffic measurements [8]–[10]. This approach is often
dictated by the limited technology deployed at intersections.
Thanks to current technological advances in sensors and con-
trol hardware, adaptive schemes can be implemented, possibly
exploiting game theory as we propose here.

Game theory is the discipline that models the interaction
between rational decision makers in situations of conflict [11].
A decision maker (or player) is considered to be rational if it
acts to maximize its own wellbeing, as quantified by a utility
(or payoff) function. The payoff is function of the actions

of all the decision makers participating in the game. A Nash
equilibrium (NE), i.e., an operating point where every agent
chooses a best response, i.e., a local optimum of the payoff,
is generally seen as the natural result of this interaction.

The problem of controlling signalized intersections received
several proposals with diverse underlying assumptions. In [12],
a linear model is advanced to design a proportional-integrative-
derivative (PID) controller with the goal of achieving a desired
traffic state, defined in terms of queue lengths. The authors
of [1] employ a state-space model to cast the design of the
intersection schedule into an optimal control problem. The
authors propose different objective functions based on queue
length and average vehicle delay. A comprehensive survey on
such traffic control theory is presented in [2].

Another possible approach to traffic control makes use
of computational intelligence paradigms, for example: fuzzy
systems, artificial neural networks, evolutionary computing
and swarm intelligence, and reinforcement learning [9]. A
thorough survey of the research made in the field of com-
putational intelligence for traffic control is presented in [10].

Many other approaches share similarities with ours. The
authors of [7] model the traffic at each road of the interesection
as a Markov chain and design a Markovian non-cooperative
game for the scheduling of the traffic lights. An ε-NE is
found, using an iterative optimization algorithm. In [13], a
model of an intersection with IoT-empowered vehicles is
presented, and the control schedule is designed according to a
Cournot game or a Stackelberg game in the case of controlling
prioritized traffic. Both [14] and [15] propose game theoretic
approaches to control a network of intersections. The former
paper employs fictitious play to minimize the average travel
time. The latter develops a decentralized coordination scheme
through evolutionary game theory.

Our objective is to present an adaptive scheduling for
signalized intersections that makes use of game theory. The
idea is to model each traffic light as a rational decision
maker, charged with the task of choosing its allotted time for
controlling the intersection. The proposed algorithm is suitable
for a decentralized implementation [16] and does not require
information about the overall state of traffic at the intersection.

With respect to the existing literature, we introduce the
following advancements. First, the information about current
traffic condition at the roads converging to the intersection are
taken into account by considering a Bayesian type [17]. The
required common knowledge elements of the Bayesian game



(such as the prior of the traffic distribution, e.g., at a given time
of day), are relatively easy to gain. The resulting decentralized
implementation is lightweight, as for scalability and generality
reasons, it is key not to require data-intensive exchanges.

The remainder of this work is organized as follows. Section
II describes the game designed to model the interaction among
traffic lights. Section III proposes a solution to the game
and presents the implementation of the control schedule.
Section IV discusses the results of simulations performed with
MATLAB. Section V concludes the work.

II. SYSTEM MODEL

We provide a generic description of road traffic at an
intersection, and then we discuss strategic aspects that can
be useful for framing the problem into an approach based
on Bayesian game theory [17]. The model takes after the
formulation presented in [12].

For the intersection, the following assumptions have been
made. First, each converging road is modelled as a queue [18],
If the road has multiple lanes, this assumption is still sensible
in case all lanes allow travel in the same direction. Otherwise,
the assumption can be relaxed by controlling each lane with
a different agent. Also, we assume that only one traffic light
can be green (or amber) at the same time. However, the setup
of the game can be easily extended to account for the control
of phases [8], i.e., a set of lanes whose traffic lights can be
green at the same time given that they allow travel in non-
conflicting directions. Moreover, the traffic lights turn green
in a fixed order. While a traffic light is amber vehicles cannot
engage the intersection, the only vehicles that are moving are
those clearing the intersection. The duration A of the amber
phase is assumed to be equal for all traffic lights. Each street
is characterized by an arrival and a service Poisson process of
cars, with rates λi ∈ R+ and ηi ∈ R+, respectively [19]. It is
assumed that ηi > λi. Moreover, the queues of each road do
not have a maximum capacity, and overflow is neglected.

We consider an intersection with N incoming lanes. Each
traffic light is assigned a time-slot of duration τi ∈ R+ and the
length of its queue is li(k) ∈ R+ at the end of the k-th round.1

Let ∆li

(
{τi}Ni=1

)
be the difference between the numbers of

cars entering the ith queue and leaving it during the round.
Thus, omitting the dependence on the τis,

∆li = λi

N∑
i=1

τi − ηiτi + λiNA

= (λi − ηi)τi + λi
∑
j 6=i

τj + λiNA

(1)

and in principle ∆li ∈ R. The length of the queue at the end
of the (k + 1)-th round is therefore

li(k + 1) = max {li(k) + ∆li, 0} . (2)

Remark 1: It is assumed that the time-slots’ durations and
the flow rates are expressed with respect to the same unit of

1Round hereafter refers to the interval of time during which all the traffic
lights turn green once. It will coincide with the duration of a stage-game.

time. So, if the τis are expressed in seconds, then the arrival
and service rates λis and ηis represent the number of ingoing
and serviced cars per second.

The interaction among the traffic lights of the intersection
is modeled as a repeated Bayesian game [17]. Even though a
model of the intersection controllers interacting during their
whole activity would apparently require an infinite-horizon
repetition, traffic conditions usually exhibit a periodic charac-
ter over the day and on a seasonal scale [20]. Thus, a finitely
repeated game can be employed over a period. According to
the repeated game framework, a Bayesian static stage-game is
played at each round. The players choose the lengths of their
green light period for that round. It is assumed that players
do not precisely know the arrival rate of cars in the queue of
their opponents; thus, the game is Bayesian.

Formally, the stage-game is defined by the following ele-
ments. Players: they are the traffic lights controllers, that is,
the devices charged with switching the traffic light of a road
at the appointed time. Actions: available to each player is
the choice of intersection time to occupy during the current
round, that is, τi ∈ [0,+∞). Types: these are the numbers of
cars entering each queue during the round, λi. The underlying
assumption is that a player has access only to data about the
flow of cars through its own queue, with which it is able to
estimate λi. To obtain these data it is possible for instance to
use inductive loop sensors [21], [22]. It is in principle possible
to transmit the estimated λis to each traffic light–in which
case the game would collapse to a perfect information game–
but it would require a larger number of transmissions than
with this formulation. Moreover, it is assumed that the flow
of cars is constant during the game. This is realistic if the
traffic changes on a larger time-scale than the duration of the
stage-games. Priors: players are characterized by the arrivals
in their queue. The underlying assumption, used as the prior,
is that the arrivals λi in the queue of player i are modelled as
a Poisson process with rate Λi. Actually, the prior distribution
of Λi is assumed to be Poisson truncated at ηi, since λi must
be less than ηi [23] and it is assumed that the distributions are
all independent of each other. The priors can be derived from
historical observations of the traffic flow at the intersection of
interest. Payoffs: each utility function comprises two terms.
The former depends on the overall number of cars that transit
through the queue, and increases when τi increases. The latter
is a “penalty term” that accounts for the increase in the queue
length for i’s opponents caused by the choice of τi. Formally
the payoff function is

ui

(
{τi}Ni=1 ; {λi}Ni=1

)
= −∆li − γτ2i

∑
j 6=i

λj

which gives, substituting the expression written in (1) and
omitting the dependences,

ui = (ηi − λi)τi − λi
(∑
j 6=i

τj +NA

)
− γτ2i

∑
j 6=i

λj . (3)

The parameter γ ∈ (0, 1] that weighs the penalty term can
be thought of as an “altruism coefficient” that quantifies the



willingness of a player to shorten its time-slot to benefit the
opponents [24]. The structure of the game as well as rationality
of the players is assumed to be common knowledge.

Remark 2: For the limit case of γ = 0 the utility of player i
is monotonically increasing with the intersection time chosen,
and therefore the best response is to choose τi → +∞. Notice
that γ can be in principle different for each player.

The interaction between the players is modeled as a (possi-
bly infinitely) repeated game. It is assumed, in order to define
a more flexible control scheme, that the priors of the players
change at each stage-game. The utility of each player in the
game is the sum of the discounted payoffs received at each
stage-game. The discount parameter is δ ∈ [0, 1], with δ = 1
being admissible only in the case of finitely repeated game.

Remark 3: In the definition of the game it is assumed that
the prior distributions for a player over the different stage-
games are independent and different from each other. To
justify this assumption, think of a day as divided in intervals
of m minutes, each interval characterized by a distribution that
reflects the typical traffic conditions at that time of day. It is
possible to assign to each stage the priors that are associated
with the interval the stage begins in. If the stage-games have
a duration shorter or at most comparable to m, this approach
will handle the varying traffic conditions throughout the day.

III. SOLUTION OF THE GAME

This section presents first the derivation of the Bayesian
NE of the stage-game. The Bayesian NE extends the idea of
everyone playing a best response, including the beliefs about
the types of the other players. Formally, it is defined as the
strategy profile (τ∗1 , τ

∗
2 , . . . , τ

∗
N ) where, for any player i and

any action τi,

Eλ−i

[
ui
(
τ∗i ,
{
τ∗j
}
j 6=i ; {λi}Ni=1

)∣∣∣λi] ≥
Eλ−i

[
ui
(
τi,
{
τ∗j
}
j 6=i ; {λi}Ni=1

)∣∣∣λi].
(4)

From (3), the expected utility for player i is computed as

Eλ−i

[
ui
(
τi, τ−i;λi, λ−i

)∣∣λi] =

= Eλ−i

[
(ηi − λi)τi − λi

∑
j 6=i

τj − λiNA− γτ2i
∑
j 6=i

λj

∣∣∣λi]
= (ηi − λi)τi − λi

∑
j 6=i

τj − λiNA− γτ2i Eλ−i

[∑
j 6=i

λj

∣∣∣λi]
where the properties of the expectation have been applied, and
the shorthand notations λ−i and τ−i are used to denote the set
of types and actions of i’s opponents, respectively.

Recalling that the types of the players are independently
drawn from Poisson distributions with mean Λi, i = 1, . . . , N ,
it follows that

Eλ−i

[
ui (τi, τ−i;λi, λ−i)

∣∣∣λi] =

= (ηi − λi)τi − λi
∑
j 6=i

τj − λiNA− γτ2i
∑
j 6=i

Λj .

(5)

Once the values τj , j 6= i have been set, the expected utility
is a parabola in τi with downwards opening and intersection

with the vertical axis at −λi
(∑

j 6=i τj +NA
)

. This suggests
that the best response for player i can be computed as the
value of τi that attains the single maximum of (5). Imposing
the first-order necessary condition on the derivative of (5) with
respect to τi yields

τ∗i = BRi (λi) =
ηi − λi

2γ
∑
j 6=i Λj

. (6)

Therefore, the best response of player i does not depend on
the actions of i’s opponents. Once the type of player i is fixed,
the best response is uniquely determined.

Remark 4: The observation in Remark 2 is confirmed by
the best response function tending to infinity for γ → 0+ and
decreases as γ approaches 1.

Once the types of the players have been drawn, the unique
Bayesian NE of the stage-game corresponds to the profile
of actions (τ∗1 , . . . , τ

∗
N ). Since the stage-game has a unique

Bayesian NE, also the whole multi-stage game has a single
NE as the sequence of the stage-games NEs.

The game defined in the previous section relies on a
simplified model, and therefore the efficiency of the proposed
solution might decrease when it is implemented. However,
such a simple model allows us to define a game with com-
putationally lightweight solution, which is fundamental if the
algorithm is deployed on simple hardware. This characteristic
is missing, for instance, in the approaches presented in [7],
[14], which require solving a complex optimization problem.
Moreover, the choice of a utility function that only depends on
the flow of vehicles allows for the use of simple sensors, such
as inductive loop sensors [22]. Many previous works, on the
other hand, assume the availability of complex visual systems
that would be necessary to estimate for instance the lengths
of the queues or of the possibility of communication between
infrastructure and vehicles, as in [13] or [26].

The structure of the game allows for a decentralized imple-
mentation of the control scheme, which is especially useful
in a vehicular network context [16]. Indeed, the traffic lights
are assumed to turn green in a fixed order, therefore it is
necessary to transmit only the length of the green for the traffic
light that currently has control of the intersection to the next
in line. Furthermore, the stage-game is Bayesian, and hence
the information that a player needs is minimal. In particular,
assuming the traffic conditions to be periodic, it is sufficient
to store the prior distribution of types over the period, which
is also easy to infer.

For the structure of the game to be common knowledge, no
exchange of information is required among the players during
the game. Indeed the game is static, so that a player chooses its
action without the need to know the time that was allotted to
the players with turns before its own. Finally, the best response
of a player does not depend on the type of its opponents and
hence it is not necessary to transmit such informations.

IV. SIMULATION RESULTS

We present numerical results obtained in Matlab for an
intersection with two approaching roads. The performance
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Fig. 1. Means of each hourly distribution for the two players.

of our contribution is compared with the proposal of [13],
where the overall game is split in intervals of fixed duration
T and at the beginning of each interval the players need to
chose the time that will be allocated to them. The authors
propose a static game of perfect information based on the
Cournot duopoly game [27]. However, the formulation of the
game requires that the queue lengths and the arrival rates of
all players be common knowledge. Our analysis instead just
requires an estimate on their probability.

To assess the performance, the share ratio metric will be
used, denoted as R and defined as the average over all stages
of the ratio between the time reserved to player 1 in the round
and the total duration of the round. Let K be the number of
stages of a game and τki the action of player i at round k,
then the share ratio is

R =
1

K

K∑
k=1

τk1
τk1 + τk2

. (7)

Notice that an equivalent definition can be given for player 2,
and the two ratios complement to one.

This first experiment was carried out in order to compare
the performance of our proposed algorithm and that of [13]. A
simulation was devised to test the algorithms when faced with
a realistic profile of priors. The means used for the Poisson
arrival distributions are depicted in Fig. 1, one for each hour of
the day. This profile of priors is meant to emulate the typical
traffic during a work-day, with two rush hours around 7:00
am and 6:00 pm [21]. Moreover, we assumed service rates
η1 = 12 and η2 = 13, and for the Bayesian stage-game the
“altruism coefficients” were γ1 = γ2 = 0.75. For both games,
the amber phase was neglected. The length of the Cournot
stage-games was set to be equal to the corresponding Bayesian
stage-game, once the latter was solved.

The data employed to model the prior distributions of the
players were taken from the hourly traffic intersection volumes
in Adelaide City, published by the Adelaide City Council [28],
where an hourly traffic profile is available for each day of the
year. Therefore, an average profile was computed over all the

workdays of the year, and the resulting profile was rescaled
to estimate the rates per second.

The simulation performed 1000 stage games, i.e., 1000
simulations of a daily traffic control schedule. Each game is
a sequence of stage-games that span the arc of a day, but the
number of these stages depends on the actual types that are
drawn. In particular, at the beginning of each stage the types
are drawn from the distribution relative to the current hour
and independent of what drawn in the previous stages. Hence,
based on the actual draws each game had a different number
of stages. The queue lengths at the beginning of a round were
those observed at the end of the previous round; the initial
rounds started without vehicles in the queues.

The average queue lengths µi, average standard deviations
σi and peak queue lengths Pi of the two players for the two
games are reported in Table I.

TABLE I
AVERAGE AND STANDARD DEVIATION OF QUEUE LENGTHS.

µ1 σ1 P1 µ2 σ2 P2

Bayesian 0.85 2.9 21 0.35 1.7 15
Cournot [13] 0.03 0.29 3.5 0.06 0.42 4.5

Thus, our proposed algorithm is slightly worse for what
concerns the mean number of vehicles in queue at any given
time. However, µ1 and µ2 are very small for both games,
meaning that on average both schedules manage to service
the most part of the vehicles that arrive at the intersection.

From inspection of the simulations, off the rush hours
the queue lengths are very close to zero, meaning that the
intersection is cleared at the end of the stage-games. However,
during the rush hours the player experiences some saturation,
meaning that part of the vehicles arriving in a stage-game
are serviced in the following round or (rarely) after two
rounds. This is reflected by the standard deviations reported
in Table I, that are larger for the Bayesian game. Finally, the
maximum queue lengths reached over all the repetitions Pi
are much larger in the Bayesian case, further highlighting that
overflowing might be an issue for the proposed algorithm.

One last remark can be made about the share ratio of the
games. In particular, the Bayesian game shows an average
share ratio of 0.42, while the Cournot game of [13] an average
of 0.51. This shows that the Bayesian game is more sensitive
to the characteristics of the players and effectively allocates an
amount of time to players that is related to their mean arrival
rate. Indeed in this case the share ratio is skewed in favour of
player 2 because on average it has a larger mean arrival rate
2.2, against 1.6 for player 1.

The analysis showed that the proposed algorithm has on
average performances only slightly worse than the Cournot
game, suffering however from oversaturation issues in some
cases. What is worth remarking, though, is that the Cournot
game was developed in [13] with a connected intersection
in mind. That is, all traffic lights can communicate with
each other and moreover the vehicles themselves alert the
intersection controller of their arrival. This makes a huge
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amount of data available, such as the queue length and the
arrival rate, to all the players involved. On the other hand,
the formulation presented in this work does not require the
same amount of information, since traffic light controllers do
not need to communicate but just release control to the next
one. Furthermore, the Bayesian formulation does not require
that players be aware of the arrival rates of their opponents.
Therefore, the proposed schedule achieves a performance very
close to a Cournot game but with much fewer information
exchanges among players.

The results above show that players experiencing average
thinner traffic flows are allocated less time during each round.
This follows from the fact that τi inversely depends on Λj ,
see (6), and hence a player with larger traffic flows induces
smaller τis in its opponent. To evaluate this phenomenon, a
set of simulations were carried out, changing the parameter
Λ1 in [0, 5], while Λ2 remained constant at 5. Moreover, η1 =
η2 = 12 and for both players γ = 0.75. For each value of Λ1,
100 independent stage-games were played, and the average
share ratio computed.2 Fig. 2 depicts the results. The share
ratio increases steadily as the ratio Λ1/Λ2 increases, reaching
0.5 when the two players have the same characteristics.

Recall that the utility function in (5) includes a penalty term
weighted by γ, and the action at the equilibrium depends on
its inverse. Thus, it is interesting to evaluate the share ratio
as a function of the penalty coefficient, which was the aim of
the following simulation. In this case the arrival and service
parameters of the stage-games were chosen to be constant, and
are reported in Table II. Moreover, γ2 = 0.75, while γ1 took
values in [0.1, 1] distanced by 0.05. Fig. 3 depicts the average
share ratio as a function of the different values of the altruism
coefficient. The figure was obtained by drawing the types of
the players and then simulating a stage-game for each value
of γ1, repeating this procedure 1000 times and then averaging.
Notice that the time share of player 1 decreases steadily as its
“altruism” increases, as was expected. Moreover, given that

2‘Independent stage-games’ means that, for each stage, types are indepen-
dent, and the queue lengths are reset to 0 and not related through (2).

TABLE II
PARAMETERS FOR THE STAGE-GAME.

i Λi ηi

1 5 12
2 8 13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Share ratio as a function of the “altruism coefficient”.

the traffic flow of player 1 is lower, the share ratio falls below
0.5 even before γ1 becomes larger than or equal to γ2.

In many works on the subject, the amber phase of the
traffic lights is neglected, as was done in the previous parts of
this section. To develop an algorithm that can be deployed in
practice, the amber phase needs to be accounted for. Hence,
the following simulation was devised to test the proposed
algorithm in the presence of amber phases. The parameters
of the intersection were chosen according to Table II, with
γ=0.75 for both players. The duration of the amber light
varied between 0 and 1, with the same unit of measurement
as for the arrival and service rates. Fig. 4 represents the mean
queue length over 1000 independent stage-games for each
value of A, drawing new types at each repetition. As the figure
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Fig. 4. Mean queue length for player 1 as a function of the amber duration.



demonstrates, the influence of the amber phase increases the
mean queue length as it increases the span of time during
which a player cannot service vehicles in the queue. However,
the proposed algorithm proves to be reliable to this extended
idle period, as the queue length, although increased, does not
diverge. To give a gist of the performance of the proposed
solution, the mean stage-game duration (amber excluded) was
1.3 during the simulation, which means that the amber phases
tested reach up to 77% of its value.

V. CONCLUSIONS

We presented a game-theory inspired approach to adaptively
and efficiently controlling an intersection in a smart city. The
solution proposed is based on the repetition of a Bayesian
static stage-game, used by the traffic controllers to assign the
occupancy for the intersection. The game just requires limited
information and is designed to encourage cooperation among
the players so as to obtain a fair time sharing.

Our proposed approach is simple in both its definition and
its solution, making it a good candidate for practical imple-
mentation that can be deployed even on hardware with limited
functionalities. Moreover, the schedule relies on a Bayesian
stage-game, which means that the information required for
rational gameplay are very limited, avoiding the need for
information exchanges with the other players, and possible
strategic exploitations or error propagations [29].

Simulations were carried out to compare the proposed
solution with the solution presented in [13]. We obtained
good results with a considerably small amount of information.
Other simulations were carried out to analyze the effect of
the intersection characteristics on the division of the time
allocated to each player. The proposed schedule fairly shares
time considering the mean arrival rates of the players.

The formulation of the stage-game includes a parameter for
players to sacrifice some of their allocations in favor of their
opponents [24]. This is useful if the schedule needs to be
modified, e.g., to account for prioritized traffic lanes. Finally,
we analyzed the impact of the amber phase on the efficiency
of the proposed schedule. The schedule proved to be robust
to different local regulations of traffic light frequencies and
reliable even in the presence of relatively large amber times.

Further work should seek increasing reliability in the pres-
ence of heavy traffic, to avoid oversaturation. Moreover, the
same approach adopted in this work could be applied to
more refined models of the intersection, e.g., including other
road agents such as pedestrian and their safety issues [30],
[31]. This way, the benefits of the proposed algorithms would
combine with more accurate traffic modelling.
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