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Abstract—We investigate the performance of concurrent re-
mote sensing from independent strategic sources, whose goal is
to minimize a linear combination of the freshness of information
and the updating cost. In the literature, this is often investigated
from a static perspective of setting the update rate of the
sources a priori, either in a centralized optimal way or with
a distributed game-theoretic approach. However, we argue that
truly rational sources would better make such a decision with
full awareness of the current age of information, resulting in a
more efficient implementation of the updating policies. To this
end, we investigate the scenario where sources independently
perform a stateful optimization of their objective. Their strategic
character leads to the formalization of this problem as a Markov
game, for which we find the resulting Nash equilibrium. This can
be translated into practical smooth threshold policies for their
update. The results are eventually tested in a sample scenario,
comparing a centralized optimal approach with two distributed
approaches with different objectives for the players.

Index Terms—Remote sensing; Age of Information; Game
theory; Stateful optimization.

I. INTRODUCTION

Pervasive real-time sensing is a key component of several
use cases for future generation wireless networks, such as mul-
tisensory communication for digital twins, augmented/virtual
reality (AR/VR), robots, eHealth, Industry 4.0 and so on [1],
[2]. Sensing capabilities are often not delegated to a single
terminal but distributed across the network among multiple
devices and even more numerous logical entities.

In such a context, freshness of information becomes very
relevant and can be characterized by the key performance
indicator of the Age of Information (AoI) [3], [4]. For these
aforementioned use cases, having up-to-date information is
possibly more interesting than optimizing raw throughput
or average latency, and can be often precisely quantified
through closed-form expressions, which makes it appealing
for analytical investigations.

At the same time, to obtain scalability and ease of imple-
mentation across pervasive multi-terminal scenarios such as
the Internet of Things, a distributed management with low
complexity algorithms is required [5], [6]. This motivates a
game theoretic approach to the evaluation of AoI coming from
multiple sources of information [7]–[9].
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In light of these motivations, in the present paper we
consider a scenario consisting of independent sources, tracking
the same process of interest for an information sink, to which
they may independently send periodic updates at the price of
incurring an individual cost [10], [11]. We also assume that
all sources can identically send a valuable information update
that refreshes the AoI at the sink node. At the same time, they
are also aware that sending redundant updates, when another
source is already doing so, causes extra costs and does not
further lower the AoI beyond the level already reached.

If we frame the strategic decision-making mechanism of the
devices through game theory, we obtain that they are facing a
classic dilemma. On the one hand, sending an update implies
a cost that each source would prefer not to pay, as the AoI
can be identically decreased if another source sends an update
(but there is no cost to pay in this case). However, if all nodes
decide not to update, they end up causing the AoI to soar,
which is not efficient either.

To solve this conundrum, we frame the problem as a Markov
game, on which we perform a distributed optimization from
the individual perspective resulting in a Nash equilibrium (NE)
[12], [13]. We can actually consider the strategic objective for
a single node to be a selfish optimization of the AoI under in-
dividual cost, or the overall minimization involving the update
cost for the entire network, but still from a local perspective.
Finally, we can take the global network optimization achieved
by a centralized approach as a benchmark.

Our analysis is original as only a handful of references study
a distributed strategic optimization of AoI, and they all assume
either competing terminals as in [9] or a stateless optimization
[11], while we are the first to consider a stateful minimization
of a common AoI objective.

Our results indicate that, compared with an optimal cen-
tralized approach, distributing the choice of updating causes a
smoothing of the individual transmission probabilities. Some
threshold effects are still present: the nodes do not update
when the information is fresh, but also may fail to update with
certainty when the information is stale. This is due to the lack
of coordination, i.e., nodes may be strategically transferring
the burden of updating to one another, to avoid paying the
cost, resulting in a high price of anarchy (PoA) [14].

As a consequence, a distributed selfish system achieves
worse performance with full online information than when
the sources are not aware of the system AoI, in which case



a close-to-optimal performance is achieved [8]. This can be
seen as a consequence of providing strategic players with
more information, which can be harmful in selfish setups [15],
[16]. Nevertheless, our results show practical consequences
that ought to be taken into account in the network design of
remote sensing protocols, possibly designing effective reward-
ing mechanisms to benefit the strategic users [17].

The rest of this paper is organized as follows. In Section
II, we characterize the system model to develop our game
theoretic analysis. Section III proves some theoretical findings
that are further quantitatively visualized in Section IV through
numerical results. Finally, Section V gives the conclusions.

II. SYSTEM MODEL

We consider a system where N sources S1, . . . , SN transmit
updates related to a common underlying process to a receiving
gateway R. We measure the value of such updates as the
“freshness” of its information, formally defined as the AoI, i.e.,
the difference between the current time and the instant of the
last update [3]. In our statement, these sources are not compet-
ing with one another nor actively collaborating. Instead, they
independently send updates to R, being aware that receiving an
update at the same time instant from multiple sources results
in wasting resources. To account for this, we consider that
each transmission incurs a cost c [18]. Indeed, without such
a term, the sources would be transmitting at every possible
instant, making the problem at hand trivial. Moreover, the
model would not be consistent with the physical world, where
sensors exhibit energy and processing limitations, especially
in Internet of things (IoT) scenarios [10].

In line with similar analyses, we sample the system at
periodic instants, obtaining a discrete-time axis of possible
update epochs. Accordingly, AoI δ at one such instant t reads:

δ(t) = t− max
((

{τ ≤ t}
)
∩
( N⋃

i=0

τi

))
, (1)

where the set τi collects the time instants of the i-th source
updates, i.e., τi

.
= {. . . , τ (1)i , τ

(2)
i , . . . , τ

(n)
i , . . .}. In each time

slot, the sources independently decide whether to transmit an
update with probability pi that depends on the current value
of the AoI, i.e., pi

.
= P [transmitting | δ = i]. The knowledge

of the AoI at the sources can be justified by assuming either
that R sends a broadcast acknowledgment whenever an update
is received, or that the sources eavesdrop the channel in a
carrier sensing multiple access (CSMA) fashion [19]. Then,
this information is used to keep track of the evolution of the
AoI over time1. Finally, we assume that updates are always
correctly received at R, since accounting for the presence of
errors is already done in many papers [21], and including it
here would distract the reader from the main focus of this
analysis, i.e., quantifying the loss in efficiency caused by a
lack of coordination.

We model the problem of finding the optimal transmission
probabilities as a static game of complete information G =

1The value of N can also be estimated in a distributed manner, for instance
using the approach of [20].

(S,A,R). The set of players S = {S1, . . . , SN} includes the
sources, as the gateway is only a passive receiver of updates,
incapable of making any move, hence it is not part of S.
The action set A contains the possible update probabilities
pi’s, equal for each source. In G, the players choose such
transmission probabilities in one shot, based on the expected
discounted reward over an infinite time horizon. Thus, we
model the evolution of the AoI as a discrete-time, countably
infinite Markov chain (MC) where the Markov property is
satisfied by definition of pi and the state-space includes all
possible values of the AoI, i.e., Z+. From a generic state
i, only states i + 1 and 0 are accessible in one step, as the
AoI either increases by one if no transmission occurs, or goes
to zero whenever at least one of the sources transmits. The
transition probabilities of the MC are

pi,j =


(1− pi)

N ∀ i ∈ Z+ j = i+ 1

1− (1− pi)
N ∀ i ∈ Z+ j = 0

0 otherwise.
(2)

Finally, we define the reward R considering the unilateral
payoff of each source instead of the system overall reward
[6]. We first define the overall expenditure K of a source as
the sum of the system AoI and the individual transmission
cost. Then, we define the expected distributed selfish reward
as E [Rs(i, pi)] from state i and given action pi as:

E [Rs(i, pi)] = E
[
Rs

t+1 | St = i,At = pi
]

= −E [K(i, pi)]

= −(i+ 1)(1− pi)
N − cpi.

(3)

We also consider a centralized policy, which implies that
the nodes coordinate, with the goal of avoiding multiple
concurrent transmissions. This corresponds to an equivalent
system with just one source, whose expected reward thus reads

E [Rc(i, pi)] = E
[
Rc

t+1 | St = i,At = pi
]

= −(i+ 1)(1− pi)− cpi ∀N ∈ Z+.
(4)

Finally, we define a distributed global policy that is some-
how intermediate, in that the costs incurred by the system
are locally computed and all the nodes share the objective
of minimizing the network AoI. In this way, we take the
existence of multiple nodes tracking the same process into
account, while still considering a distributed approach. In this
case, the expected reward reads:

E [Rg(i, pi)] = E
[
Rg

t+1 | St = i,At = pi
]

= −(i+ 1)(1− pi)
N −N · cpi.

(5)

The two distributed policies consider different approaches to
decentralized management; in distributed selfish, all the nodes
are anarchical [14], whereas in distributed global they have
the same goal but act without coordination, which may still
decrease the efficiency from a centralized control [11].

We define a Markov decision process (MDP) (Ŝ, Â, P̂, R̂)
on top of the MC, with the aim of computing the set(s)
of transmission probabilities leading to NEs. The set of
transition probabilities P̂ and the state-space Ŝ coincide



with their counterparts of the MC. The action space Â is
represented by the pi’s, equal for each source for symmetry
reasons, and stationary. For practical purposes, we discretize
the possible transmission probabilities into k values as Â .

=
{0,∆, . . . , (k − 1)∆} ; ∆ = 1/(k − 1). For similar reasons,
we bound the state space as Ŝ = {n ∈ Z+ |n < δmax}.

From the MDP parameters, we find the optimal
policy by using value iteration (VI) [22]. We introduce
a discount factor γ ∈ [0, 1[ to obtain a finite expected
return despite the infinite horizon. Then, we estimate
the discounted value-state function vn(s, π)

.
=

E
[∑+∞

k=0 γ
kRn

t+k+1 | St = s, π = {pπ1 , . . . , pπδmax}
]
∀ s∈Ŝ, n ∈

{s, g, c} by repeating the following update for K iterations:

vnk+1(s, π)
.
= max

pi

E
[
Rn

t+1 + γvnk (St+1, π)| St = i,At = pπi
]

= max
pi

Rn(i, pπi ) +
∑
j

γ p(j | i, pπi )vnk (j, π)


and obtaining the optimal policy π∗, where the transmission
probability for the i-th state pπ

∗

i satisfies a pseudo-steady-state
condition argmax

pi

vnK(i, π) ≈ argmax
pi

vn(i, π) .

III. THEORETICAL ANALYSIS

We now prove some structural results on the activation
threshold depending on the state of the AoI [18].

Define K̄(i, π)
.
= −vs(i, π) as the expected long-term total

discounted cost starting from state i, choosing policy π. Let
also p∗i

.
= pπ

∗

i , for the sake of readability. We prove Theorems
1 and 2 for the case of a single terminal sending data updates,
and then generalizing to multiple transmitters.

Theorem 1. For γ → 1, the optimal policy π∗ satisfies either
p∗i = 1 or p∗i = 0, depending on the specific state i and
following a threshold behavior, i.e., p∗i = 1 if and only if i is
greater than or equal to a threshold value, which depends on
the cost (the larger the cost, the higher the threshold).

Proof: At state i, the expected long-term discounted
cost is the sum of three terms, namely: the transmission
cost, which is equal to cpi since the node transmits with
probability pi; the expected discounted cost from state 0,
which is considered if the transmission is performed and
therefore is equal to γpiK̄(0, π), and finally the expected
discounted cost from state i + 1, which is considered if the
transmission is not performed instead, i.e., the related term is
γ(1− pi)K̄(i+ 1 + (i+ 1, π)). Thus,

K̄(i, π) = cpi + γpiK̄(0, π)+

γ(1− pi)(i+ 1 + K̄(i+ 1, π)),
(6)

that, in turn, can be re-arranged to obtain

pi =
γ
[
i+ 1 + K̄(i+ 1, π)

]
− K̄(i, π)

γ
[
i+ 1 + K̄(i+ 1, π)− K̄(0, π)

]
− c

, (7)

from which it is easy to conclude that: (a) the p∗i minimizing
the average cost K̄(i, π∗) is non-decreasing in i, due to the

only coefficient of pi in (6) that depends on i being −(i+1);
and (b) the limit value of p∗i for i → +∞ is 1.

Conversely, (6) can also be exploited to say that, for a fixed
value of i, the choice of pi results in a monotonic behavior
depending on the coefficients in front of the pi terms. Those
with a negative sign, i.e., decreasing the cost as pi increases
are i+1+ K̄(i+1, π), whereas those with a positive sign are
K̄(0, π) and the cost c. Thus, it follows that if the cost is 0,
the highest possible value of pi will be chosen, i.e., p∗i = 1.
The same will happen if c is small, i.e., not able to make
the sum of the positive coefficients greater than that of the
negative ones. When this happens, the cost-minimizing value
of p∗i will be 0. For a different i, the trend is still the same
but according to the previous reasoning a larger c is required
to activate the transmissions.

Theorem 2. For γ → 1, states s1 and s2 > s1:

K̄(s2, π)− K̄(s1, π) ≤ s2 − s1. (8)

Proof: Let A be the class of the MDP underlying MC
states such that their transmission probability pi is strictly less
than 1. It follows from Theorem 1 that this class is of the form
A = {n ∈ Z+ |n < ϑ ≤ δmax}. Hence, it is irreducible, since
all of its states communicate with each other:

ps2−s1
s1,s2 ≥ ps1,s1+1 · . . . · ps2−1,s2 > 0 (9)

and ps1+1
s2,s1 ≥ ps2,0 · p0,1 · . . . · ps1−1,s1 > 0, (10)

where pns1,s2 is the probability of reaching state s2 starting
from state s1 in exactly n steps. Thus, all states belonging to
A are eventually reached in a finite number of steps and the
MDP will collect, during its transition from s1 to s2, a finite
reward. From that state onward, the evolution of the MC is
statistically equivalent to that obtained when starting from s2
due to the Markov property. It follows that

lim
γ→1

K̄(s2, π)− K̄(s1, π) = 0. (11)

Then, the result follows directly from the definition of limit
in the (ϵ, δ)-sense, taking ϵ = s2 − s1.

These findings state that the single transmitter never updates
the information until the AoI is large enough, then it will
transmit with probability 1 once a threshold state i = ϑ
is reached. This means that all states i > ϑ will never be
reached and the transmitter will count from 0 to ϑ. Thus,
the long-term average AoI will be ϑ/2 and the long-term
average transmission cost will be c/(ϑ+1) since updates will
happen periodically every ϑ + 1 slots. Such ϑ must be equal
to ⌈

√
2c−1⌉, which means that a cost coefficient c below 0.5

will be ineffective in limiting the transmissions [11].
For multiple sources, a similar reasoning to Theorems 1 and

2 can be applied. It is convenient to use σi
.
= 1 − pi as the

probability of a terminal being silent in state i, and to define
the auxiliary variable yi

.
= σN

i .
If we proceed along the same lines of (6), we can write

K̄(i, π) = c(1− σi) + γK̄(0, π)(1− yi) (12)
+ γyi

(
i+ 1 + K̄(i+ 1, π)

)
,



which can be manipulated into

yi =
K̄(i, π)− γK̄(0, π)− (1− σi)c

γ
[
K̄(i+ 1, π) + i+ 1− K̄(0, π)

] (13)

and σi is simultaneously satisfying yi = σN
i and (13).

While these equations contain more involved terms than
(6), they can be used to derive similar, albeit less clear-cut,
conclusions. From (12), we can remark that the expected long-
term discounted cost at state i is increasing in σi and similar
conclusions to the previous case can be drawn from (13 )
as (a) under the optimal policy, the transmission probability
increases (i.e., σi decreases) in i, and (b) it ultimately tends
to 1 when i goes to infinity.

However, due to the exponent N that was not present in the
single-terminal case, the analogies are limited to the monotonic
character, whereas the binary behavior of the terminal being
always active or inactive no longer applies. On the contrary,
instead of the terminal becoming active once a sufficiently high
value of the AoI is reached, (12) implies a smoother increasing
behavior of the transmission probability versus the AoI of the
system that goes to 1 only asymptotically.

Still, if c is very large and the value of i is not high enough,
the minimization of the total cost would require a negative
value for pi, which is not admissible. Thus, we can prove that
the behavior of the transmission probability pi for increasing
i in a multi-terminal case is non-decreasing, possibly starting
from zero for low values of i, then gradually increases, and
only tends to 1 in the limit for very high values of i.

IV. NUMERICAL EVALUATIONS

We numerically evaluate the policies that arise from the
different system configurations, with the goal of validating the
theoretical results presented in the previous section. First, we
consider the update probabilities ui, defined as the probability
that at least one source is transmitting in a given state i, that
is, ui = 1 − σN

i = 1 − (1 − p∗i )
N . Then, we compute the

stationary probabilities πi of the underlying MC, given the
optimal policy, and we inspect the average behavior of the
system in terms of resulting average update probability Ū ,
AoI ∆̄, system cost C̄ and reward R̄, defined as

Ū =
∑
i

πiui ∆̄ =
∑
i

πii

C̄ =
∑
i

−πi [1 + (N − 1) ·D] · cp∗i

R̄ =
∑
i

−πi(i+ 1)(1− p∗i )
1+(N−1)·D − C̄,

where D is the indicator function which maps to 1 the dis-
tributed policies and to 0 the centralized one. Unless specified
otherwise, we focus on the distributed selfish policy.

Fig. 1 shows the update probabilities ui versus the AoI of
the system i. We consider N = 10 sources and the values of
the transmission cost are c ∈ {50, 200}. In general, a higher
state, i.e., a higher AoI, corresponds to an increased transmis-
sion probability, regardless of the specific policy considered,
in accordance to the results proven in the previous section.
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Fig. 1: Update probability ui versus AoI for the different reward functions,
for N = 10 and c = {50, 200}.

100 101 102
0

0.5

1

State [AoI]
U

pd
at

e
pr

ob
ab

ili
ty

u
i

c = 1 c = 50 c = 200

(a) N = 2 sources.
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(b) N = 10 sources.

Fig. 2: Update probability ui versus AoI for different values of the transmis-
sion cost c, N = {2, 10} sources, distributed selfish system.

Note that, given a fixed transmission probability, the expected
rewards are monotonically decreasing in the AoI. Therefore,
it is convenient to transmit with a higher probability. Notice
that ui is also the probability that the state is reset to 0.

If the cost is increased, all curves shift to the right, which
corresponds to a lower update probability. However, while this
and all qualitative behaviors of the three policies follow the
same monotonic trend, the shapes are different. This agrees
with the theoretical results found, since the centralized policy
has a sharp transition once a threshold value is reached.
Distributed approaches have instead a smooth increase around
the same threshold. It can also be noticed that the distributed
selfish policy leads to higher update probabilities compared
to the distributed global policy, since the cost incurred by
other sources is neglected, thus a more aggressive update
is obtained. This is not necessarily more efficient, since a
higher transmission cost is paid (and notably, the nodes are
not coordinated so redundant transmissions may happen).
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(a) N = 2 sources.
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(b) N = 10 sources.

Fig. 3: Average update probability Ū versus cost c for different reward
functions, considering N = {2, 10} sources.

Figs. 2a and 2b depict the update probabilities as a function
of the transmission cost c within a distributed selfish system.
For sufficiently low transmission costs, the optimal update
probability is non-zero even in the initial state. On the other
hand, as the cost increases ∂K̄(i,π)

pi
becomes negative for all

states below an age threshold. Thus, the optimal strategy is
to never transmit an update until such a state is visited, thus
corroborating the theoretical results of Sec. III. Finally, it can
also be seen how the update probability is directly proportional
to the number of sources, which is to be expected as the
distributed selfish reward function exhibits a myopic cost term
which takes into account the individual transmission cost only.

Figs. 3a and 3b report the average update probability of
the system Ū for N = 2 and N = 10 sources, respec-
tively. Throughout the whole range of considered costs c,
the distributed global and centralized policies lead to similar
update probabilities, with the latter transmitting slightly more
often. Conversely, the distributed selfish policy results in a
more aggressive source behavior. The gap in terms of update
probability with respect to the competitors is proportional to
N , validating our choice of comparing the different policies
only for low values of N . Furthermore, the distributed global
(centralized) policy leads to solutions which show little (no)
variability with respect to N , which suggests that these ap-
proaches are robust to estimation errors of N .

Fig. 4 presents the average cost C̄ incurred by the whole
system. It can be noticed that, as expected, the distributed
selfish policy leads to the highest cost. Indeed, in this case
the sources consider their individual cost only, thus overesti-
mating the optimal transmission probability. Conversely, the
distributed global and centralized policies result in similarly
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Fig. 4: Expected system cost C̄ versus transmission cost c for different reward
functions, considering N = 10 sources.
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Fig. 5: Average AoI ∆̄ versus cost c for different reward functions, considering
N = 10 sources.

lower costs, despite the different reward functions. In fact, even
though in (5) the cost term is proportional to N , the probability
of transitioning to a higher AoI decreases exponentially with
respect to the number of sources as well. The interplay
between these two phenomena leads to an update probability
which is similar to the centralized case.

The myopic behavior of the distributed selfish policy can
be seen also in Fig. 5, which reports the average AoI of the
system ∆̄. In fact, the distributed selfish policy achieves an
AoI which is approximately 20% lower than the competitors.
However, this decrease in AoI is obtained inefficiently and
thus leads to the worst system performance.

Overall, these phenomena result in the average system re-
ward R̄ depicted in Fig. 6. The centralized policy achieves the
best performance in terms of total reward, although followed
quite closely by the distributed global policy. The latter leads
to similar update probabilities and costs, but pays for its
inefficiencies related to a distributed management. Finally, the
distributed selfish policy ends up performing quite poorly, due
to its myopic overestimation of the transmission probabilities.
This is motivated by the fact that the lack of coordination
eventually leads to multiple concurrent updates by the sources,
which effectively represents a waste of resources.

This poor performance of the distributed selfish policy may
be regarded as surprising, at least in part. Even though [11]
argued that the PoA of multiple uncoordinated sources is
non-negligible even in the absence of an explicit competition
(here, all sources try to update the same process of interest),
the reason for the inefficiency seems to be more related
to the distributed management rather than to the lack of
awareness of the system state. Indeed, a stateful optimization
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Fig. 6: Expected system reward R̄ versus cost c for different reward functions,
considering N = 10 sources.

does not improve the situation and possibly may even make it
worse. This is actually a known counterintuitive conclusion of
many game theoretic approaches, most notably those involving
Stackelberg games [16], where the increase of information
gained by a selfish player does not necessarily improve the
system performance, as selfish players try to use this additional
knowledge to their own advantage and not to the system’s. This
may actually be a problem in massive IoT networks [23] and
will possibly prompt more theoretical investigations on how
to remove this inefficiency and compensate the PoA, so as to
obtain a better AoI-aware management of multiple sources in
pervasive scenarios. On a positive note, the distributed global
policy incurs a negligible performance degradation compared
to the centralized one, thus showing that a distributed system
where the sources are incentivized to cooperate can achieve
near-optimal efficiency despite the lack of coordination.

V. CONCLUSIONS AND FUTURE WORK

We considered a scenario with multiple sensing nodes trying
to update a single value of AoI at the receiver’s side. Even
when medium access intricacies are blurred and an idealized
collision-free distributed scheme is approached, the lack of
coordination of terminals may be harmful for the system AoI.
This result was proven even under a stateful optimization
policy, in which all nodes are aware of the value of this
AoI, and desire to minimize it. However, if they incur a cost
in sending updates and act in a distributed fashion without
explicit competition, but just individually following a selfish
objective, the overall result is a high PoA [14].

Extensions of this analysis include, from an engineering
standpoint, the investigation of more specific access protocols
[4], [24] to see whether the presence of collisions (and
schemes to recover from collisions) confirm, mitigate, or even
amplify this problem identified for an idealized scenario where
multiple transmissions never collide [11].

Further game theoretic investigations can explore how to
improve the network management by establishing explicit
collaborations among the players. An often exploited game
theoretic narrative seeks to establish collaboration through
dynamic iterations, without any explicit desire for cooperation
but just in accordance to the individual objectives of the selfish
players [25]. It is even possible that explicit rewarding mech-
anisms are foreseen and implemented [17]. In our opinion,

these can be practical ways to achieve network efficiency in
large scale systems, and as such should be certainly pursued.
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