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Abstract—Provision of timely power supply to digital networks
through smart microgrids represents a relevant research chal-
lenge. In next generation communication systems, high power
demands are caused by the need for an efficient management
of real-time content and guaranteeing up-to-date context aware-
ness to computationally heavy applications. Such an integrated
communication-energy challenge is gaining momentum in the
research community, but, possibly due to different timescales,
the problems of energy provision and data networking are
often investigated with different approaches and mindsets. In
this paper, we argue that they both stem from a fundamentals
problem of efficient resource management that can ultimately be
treated via dynamic programming as a unifying analytical tool.
To this end, we show how the problems of energy management
in a smart microgrid can be tackled through a framework
conceived for the optimization of age of information. This allows
to infer useful conclusions and, at the same time, the similarity
can be expanded to leverage existing analytical procedure and
derive efficient approaches, especially concerning the insertion of
distributed intelligence in the control mechanisms.

Index Terms—Smart Grid; Energy management; Energy har-
vesting; Age of information.

I. INTRODUCTION

In the rapidly evolving digital age, the effective management
of information and energy has become crucial for various do-
mains. Next generation communication systems are expected
to provide many user-oriented services in contexts such as the
Internet of things (IoT) [1], autonomous vehicles (AVs) [2],
augmented/virtual reality (AR/VR) [3], eHealth and mHealth
[4], and smart grids (SGs) [5].

While the specific challenges of all these applications may
vary, some common trends can be identified. In particular,
energy provisioning represents a notable challenge, due to
the strong power-hungry character of many next generation
communication systems. This requires to leverage renewable
energy options to avoid an excessive use of fossil sources,
and energy storage units controlled by intelligent management
techniques for compensating downtimes [6]. For this reason,
the architecture of reference becomes that of a smart micro-
grid, i.e., a localized energy system that integrates renewable
generation as well as storage through batteries and connection
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to the grid, along with advanced monitoring, control, and
communication technologies [7]. It operates on a smaller-scale
than the conventional power grid, providing electricity to a
specific geographic area, possibly for communication oriented
and/or mission critical purposes. For these reasons, its prompt
availability of energy is important [8].

At the same time, most of the aforementioned applications
revolve around timely delivery of data to the end user, which
is key for real-time content and the exploitation of the correct
ambient awareness in context-based applications [9]. This also
prompts the search for representative performance metrics
characterizing the freshness of exchanged data. For this reason,
the Age of Information (AoI) metric is becoming increasingly
popular in the study of communication systems [10], [11].

AoI is a performance indicator used in networking to
quantify the timeliness or freshness of information at a receiver
in a communication system. It is defined as the time elapsed
since the generation or update of the most recent piece of
information at the source, measured at the receiver’s end [12].
As such, it is a crucial metric in real-time applications and
has gained significant attention in the field of information
theory and network optimization to analyze the timeliness of
information delivery. As a result, many studies exist where the
general goal is to minimize AoI, by controlling data injection
under specific constraints.

Although seemingly distinct, these two problems, namely
AoI minimization and energy management in smart micro-
grids, share commonalities that allow them to be framed as
inventory problems and analyzed as dynamic programs [13],
[14]. In this paper, we explore and compare them, highlighting
their similarities and discussing the application of dynamic
programming as a unifying analytical tool.

We consider a problem, originally conceived for AoI [15]
but actually translated to the case of microgrid management, of
scheduling a finite number of replenishment opportunities over
a given time window so as to maximize the average reward
given by energy availability. We consider a scenario where
some opportunities are lost with independent and identical
distributed failure rate, due, e.g., to lack of availability from the
grid. We compare an offline (pre-determined) solution and the
online optimal policy for this problem. The solution obtained
by dynamic programming within this formalization permits to



gain useful insight about the role of side information for the
system status when dealing with microgrid management. Also,
it emphasizes the importance of prediction mechanisms in the
energy supply [16].

In summary, the minimization of AoI and the optimization
of energy management in smart microgrids can both be framed
as inventory-like problems using dynamic programming tech-
niques. By framing these challenges within the inventory
management framework, we gain valuable insights into their
underlying similarities and leverage dynamic programming
as a unifying analytical tool [17]. This approach not only
enables us to address these complex problems efficiently but
also opens avenues for cross-domain knowledge transfer and
the development of innovative solutions at the intersection of
information theory and energy management.

We also envision that game theory can play a crucial role
in this context, due to the simultaneous presence of multiple
agents (e.g., consumers, producers, and grid operators) able
to make decisions that impact the overall system [18]. The
inventory problem can be extended to a multi-agent case
through a game-theoretic framework to model and analyze
the strategic interactions of distributed players [19]. Through
this approach, our considerations for the energy provisioning
in a smart grid can be extended to encompass multi-agent
scenarios, paving the way for the development of advanced
distributed algorithms that can effectively manage smart grids
in real-time, accounting for uncertainties and complexities
within the dynamic environment.

The rest of this paper is organized as follows. Section II
gives some background on the scenario and dynamic program-
ming applications. The problem formulation and proposed
approach is shown in Section III. Some sample numerical
results are shown in Section IV. Finally, the paper is concluded
in Section V.

II. BACKGROUND

Smart microgrids use advanced technology and commu-
nication systems to improve the efficiency, reliability, and
sustainability of electricity generation, distribution, and con-
sumption [20]. The key task in their management can be
seen as the maximization of energy availability at any given
time, which relies on energy storage to preserve excess energy
during periods of low demand and releasing it during peak
demand [21]. This can be seen as an inventory problem,
generally characterizing the reservoir of energy resources.
The challenge lies in determining the optimal allocation and
release of stored energy to meet fluctuating demands, striking
a balance between energy availability and cost-effectiveness.

AoI quantifies the freshness of information in a communi-
cation system, representing the time elapsed since the most
recent update at the receiver [10]. The problem of minimizing
AoI-related values, such as the average AoI over an operation
cycle, can also be viewed as a reverse inventory problem.
In traditional inventory management, the goal is to optimize
the allocation of resources over time to meet future demands,
while in the AoI problem, the focus is on minimizing the time

since the last update to maximize the freshness of information.
This poses intriguing parallels between the two problems.

Moreover, dynamic programming provides a powerful
framework for solving inventory problems by breaking them
down into smaller subproblems and finding optimal solutions
through recursive computations. Its application to the AoI
problem and energy storage in smart grids allows us to tackle
these complex challenges using a common analytical approach
[15].

In the AoI problem, dynamic programming can be employed
to determine the optimal scheduling of information updates,
minimizing the AoI metric over time. By formulating the
problem as a sequence of decision points, where each deci-
sion determines the next update time, dynamic programming
algorithms can be designed to optimize the update schedule
and minimize the AoI [11].

Similarly, in the context of microgrid management, dynamic
programming techniques can be used to optimize the allocation
and release of stored energy based on anticipated demands,
price signals, and other relevant factors. By considering the
trade-off between energy availability, cost, and system con-
straints, dynamic programming algorithms can find the optimal
energy release schedule that minimizes costs while ensuring
reliable energy supply [8].

Dynamic programming is a mathematical optimization tech-
nique used to solve problems that can be broken down into
overlapping subproblems. Both AoI optimization and energy
provisioning in a smart microgrid exhibit these characteris-
tics, making them suitable candidates for the application of
dynamic programming. Both can be seen as the overlap of
multiple subproblems. The decision to replenish the energy
storage or refresh the current status information is made
periodically based on the current energy level/AoI and the
expected system evolution [17]. The optimal decision strategy
can be determined by considering the future evolution into
smaller subproblems with shorter timespan and/or stocking
levels.

In this sense, one can think of applying Bellman optimality
criterion [22] exploiting that the best solution to the overall
problem can be constructed based on the optimal policies of
the individual subproblems. Dynamic programming allows for
the construction of an optimal solution based on the principle
of backward induction, i.e., a recursive formulation, where
the problem is decomposed into smaller subproblems and
solved iteratively. Moreover, the solutions for both problems
can be solved in practical cases through the memorization or
tabulation of an optimal policy based on the system state.
This allows to implement practical solution whose time and
space complexity is kept under control thanks to the recursive
formulation.

III. PROBLEM SETUP

The problem of energy supply from external sources in a
smart microgrid can treat the energy resources as inventory
items, where the smart microgrid has a maximum storage set
to a value B that can be thought of as the capacity of the



energy storage elements (batteries and the like). The goal is
to manage the availability and utilization of resources over
time, so we set a reward function that is just the energy level
available to the microgrid. Naturally, this can be changed, e.g.,
to severely penalize energy outages or overflows [23].

The energy demand within a smart microgrid can fluctuate
based on various factors, including user consumption patterns,
weather conditions, and time of day. On the supply side,
the availability of energy from external sources is subject to
factors such as grid connectivity, grid stability, and energy
purchase agreements. Balancing the supply and demand of
energy within the microgrid requires efficient management
of the inventory of external energy resources [24]. For the
sake of simplicity, in this analysis we consider a linearly
decreasing constant usage of energy availability, in line with
standard inventory problems, until energy is replenished by an
acquisition from an external source in the whole grid.

For a smart microgrid, energy from external sources needs
to be replenished to maintain a sufficient supply to meet the
energy demands. This can be achieved through mechanisms
such as purchasing energy from the main grid or receiving
energy from other connected grids. The process of replenish-
ment ensures that the microgrid has an adequate inventory of
external energy resources [25].

We also note that we set a limited number of such replen-
ishment opportunities. For the sake of formalization, we set a
whole time window observation of N time instances (hereafter
called slots) and the replenishment can only be performed on
at most m of such instances, with m� N . A similar problem
of scheduling refreshment instants has been tackled already
in [15] for AoI minimization over a finite communication
window. The similarities in the finite horizon are due to the
need of a tight-knit control for practical systems, whereas the
limit in the number of replenishment opportunities, which in
AoI minimization can be justified by the duty cycle constraint
of wireless devices, can be related in smart microgrid to
the need for limiting energy injection from external sources,
possibly due to the presence of multiple microgrids with the
same requirement.

The objective of the management can be directly related
to the energy level available to the smart microgrid, as
this translates to optimizing the utilization of energy from
external sources to minimize energy loss or oversupply [21].
One option would be to define an offline (stateless) plan of
replenishment, i.e., to identify m time instants out of the N
available as those where the replenishment from an external
source takes place. We assume that replenishments set the
available energy in the microgrid to a maximum available
capacity B, which is akin to the standard inventory problem.
Also, we assume that in between replenishment instants, the
energy availability decreases at the rate of 1 unit per slot.

If this is the case, the setup of the m replenishment
instants denoted as τ1, τ2, . . . , τm corresponds to choosing
m+1 variables y0, y1, . . . , ym, where yj = τj+1 − τj , with
the convention that τ0=0 and τm+1 = N and the constraint
that the yjs sum to N . This can be framed as a constrained

optimization, where the objective function is chosen as the
availability of energy in the smart microgrid, thus can be
formalized as

max R(y) (1)

s.t.
m∑
i=0

yi = N

where R(y) is the average reward, computed as

R(y) =
∑

c∈{0,1}m

m∏
j=1

(1− f)cjf (1−cj) (2)

·
∑

k:ck=0

(
2B −min(zk, B)

)
min(zj , B)

2N

where

zk =

min{N,k≤h:ch=1}∑
h=k

yh . (3)

To explain (2), one can observe that all the possible out-
comes of success/failure over m attempts are considered by
bitmap c, with 0 representing a failure and 1 being success.
The average reward is computed as the integral over N slots,
normalized to N . Given the linear descent of the reward, the
integral results in the triangular pattern computed in (2), where
the zjs terms are defined in (3) as the sum of all subsequent yj
with failures inbetween (since the summation stops at the first
successful replenishment instant). The minimum in (2) follows
from the energy level never going below 0, which causes the
maximum side of the pattern to be equal to B. Problem (1)
is easy to solve via numerical methods as, besides some non
linearities induced by the minima, it is actually a system of
quadratic equations, hence the gradient is pseudo-linear.

Conversely, an online optimization strategy can follow a
dynamic programming approach to determine the replenish-
ment. The problem can be cast into the definition of an
optimal control for a system state, also in the presence of
noise corresponding to missing replenishment due to energy
unavailability [22]. The system state at time t is set as
x(t) =

(
R(t), ξ(t)

)
, where 0 ≤ R(t) ≤ B is the temporary

reward at time t, and ξ(t) is the number of replenishment
opportunities left available at t, for which ξ(0)=m. The system
control u(t) results in a binary choice between replenishing at
epoch t or not [11], while noise is captured through the failure
probability f .

The system evolution from x(t) can be written as
(i) x(t+1) =

(
R(t)−1, ξ(t)

)
if no replenishment is attempted

at time t (i.e., u(t)=0). In this case, we assume that the energy
level simply decreases by one at each epoch. This can be
complicated with more advanced models.
(ii) x(t+1) =

(
R(t)−1, ξ(t)−1

)
if ξ(t) > 0 a replenishment

is performed at time t (i.e., u(t)=1), but it is unsuccessful,
which happens with probability f . The same energy descent
model as (i) is assumed here.
(iii) x(t+ 1) =

(
B,m(t)−1

)
if m(t) > 0 and replenishment

is successful, which happens with probability 1−f .
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Fig. 1. Comparison of online vs. offline scheduling of m=10 opportunities
over N=2000 slots for different inventory levels.

This is essentially an inventory problem that can then be
solved by finding the optimal control policy µt(x(t), f) to ap-
ply at state x(t) =

(
R(t), ξ(t)

)
, as the strategy maximizing the

expectation over N epochs of reward gt
(
x(t), u(t), f

)
= R(t).

To achieve this, the standard procedure is to exploit Bellman’s
optimality condition [22], since if the optimal policy is de-
scribed by µ0, µ1, . . . , µN−1, then for any value of x(t) at
time t, 0 < t < N , occurring with positive probability, the
optimal policy from t till N is µt, . . . , µN−1.

At a given state x(t), the reward-maximizing policy is

µt (x(t), f) = 1
[
(1−p) Ct+1

(
R(t)+1, ξ(t)−1

)
(4)

+ p Ct+1

(
B, ξ(t)−1

)
< Ct+1

(
R(t)+1, ξ(t)

)]
where

Ct
(
x(t)

)
=

N∑
i=t

gi

(
x(i), µ

(
x(i)

)
, f
)

(5)

and 1[·] is an indicator function, equal to 1 if the condition
inside is true, 0 otherwise. In other words, the optimal control
at time t is achieved by making the decision that minimizes an
expected total cost equal to the AoI, assuming future decisions
are optimally made and averaging over channel errors [15].

The only actions for the border cases x(N−1) = (R,m)
with m > 0 and x(t) =

(
R, 0

)
are to replenish and not

to replenish, respectively. Thus, one can start by assigning
µ for these cases and apply backward induction to find the
best online replenishment policy for all states at every t.
It is important to remark that such an approach assumes
fixed system parameters, yet even parametric drifts, which
are common in energy trading scenarios because of price
fluctuations and energy availability [24], can be accounted for
by leveraging on results available for other problems, such as
AoI [17].

IV. NUMERICAL RESULTS

We instantiated the problem of energy provision in a smart
microgrid by assuming linear energy usage of 1 energy unit
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Fig. 2. Ratio of online vs. offline scheduling rewards, m=10 opportunities
over N=2000 slots for different inventory levels.

per time epoch, and availability of energy replenishment that
follows a Bernoulli failure model, where every attempted
replenishment is failing according to an i.i.d. process with
probability f .

As sample results, we consider the case of N=2000 time
epochs, with an upper limit on the replenishment attempts m
equal to 10. We adopt different values for the maximum energy
storage in the smart microgrid B, taken equal to 300, 400,
and 500 energy units respectively. We compare the solution of
the offline problem with predetermined replenishment instants
with an optimal online policy achieved through backward
propagation in a dynamic program.

Fig. 1 considers the average reward obtained for different
values of the microgrid storage capacity and compares the
offline and online scheduling of replenishments. It is visible
that the two solutions are in agreement, being identical when
the failure rate f goes to zero, but even for significantly higher
failure rates, the difference is overall limited.

To better elaborate on this trend, we consider in Fig. 2 the
ratio of the two curves, which can be seen as a quantification
of the loss of efficiency due to setting the replenishment
instants in advance, as opposed to adjusting them online.
Notably, the loss of efficiency is within 10% and saturates
to higher values when f increases if the storage capacity is
limited. This happens because lower storage capacities result
in more frequent outages. A possible extension of this result
can consider an additional penalty if outages are encountered
and/or to include the minimization of the outage probability
in the problem’s objective [23], [25].

V. CONCLUSIONS AND FUTURE WORK

The inventory problem is a classic example of dynamic
programming as containing overlapping subproblems, which is
possible to solve through optimal substructure and recursive
formulation. Energy management in a smart microgrid can
be tackled by framing it within this context, and applying
dynamic programming principles. This allows the provision of



optimal strategies for managing energy demand and supply and
making informed decisions regarding energy replenishment
and control.

As preliminary results, we considered the scheduling of a
constrained number of replenishment opportunities in a smart
microgrid over a finite time horizon, with the objective to
maximize energy availability. We focused on a scenario with
linear energy usage over time and full replenishment of the
storage capacity, with i.i.d. probability of missing updates to
energy unavailability [15]. However, these assumptions are
easy to relax and more complicated models can be consid-
ered instead. We compared an offline and online solution to
the problem of scheduling replenishment instants, showing
that, for the considered model, the loss of efficiency when
considering a preliminary assigned replenishment pattern is
limited. However, it becomes relevant when the system is
more-failure prone, which seems to suggest that practical
solutions in contexts where energy supply is erratic require
a closely monitored stateful management [24].

Moreover, even a stateless optimization of the replenishment
pattern in a smart microgrid would require precise knowledge
of the system characteristics. Therefore, our results imply
that it is important to acquire an overall description of the
microgrid ecosystem, possibly through unsupervised learning
[16], to properly manage the energy supply.

Future work may involve a stateful optimization of the
energy replenishments, where the energy storage of the micro-
grid is taken into account through dynamic programming to
determine the optimal supply policy at run-time. Alternatively,
an interesting avenue for future studies is the application of
game theory to the case of multiple uncoordinated sources
[19]. This may lead to understanding the efficiency (or lack
thereof) of systems where multiple agents, e.g., associated
with multiple providers, traders, and/or energy sources, can
all contribute to the replenishment of the microgrid [26].

In its broadest meaning, game theory can also extend its
applicability to encompass security issues for smart grids
[27]. In the aforementioned scenario, where multiple agents
can provide energy to the microgrid, the system becomes
more susceptible to malicious threats and vulnerabilities [28].
Game theory provides a valuable tool to model and analyze
the strategic interactions between actors seeking to exploit
weaknesses in the smart grid or to obtain illicit financial gain
and defenders aiming to prevent this from happening.
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