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Abstract—We explore the use of machine learning,
specifically Random Forest classifiers, combined with
SHapley Additive exPlanations values, to detect Android
malware. We leverage diverse datasets, including the An-
droid Genome Project and Drebin, to distinguish between
benign and malicious applications. Emphasizing feature
importance through SHAP analysis, we aim to enhance
model interpretability and effectiveness in cybersecurity.
This approach not only improves threat detection accuracy,
but also contributes to the broader field of explainable AI in
cybersecurity. The paper is structured to cover theoretical
foundations, methodology, results, and future directions
in this evolving area of study. Also, based on practical
findings, we highlight the importance of the data source
and transmission patterns as a way to identify malware.

Index Terms—Machine learning, Random forest classi-
fier, Shapley value, Android Malware, Cybersecurity.

I. INTRODUCTION

Over the last few years, the Android operating system
(OS) has gained widespread and pervasive diffusion, not
only in mobile phones and tablets, but also for heavily
heterogeneous Internet of things (IoT) devices, thanks to
its versatility and adaptability [1]. However, its success
also implies a heavy vulnerability to cyberattacks, which
may be connected to several factors.

First of all, since Android systems are designed for
a vast audience, security misconfigurations are quite
common, as pointed out by many studies [2], [3]. This
can be due to several possible flaws in the chain from
developers to manufacturers and end users, which may
make Android platforms susceptible to cyberattacks that
simply leverage the inexperience of security countermea-
sures over a large number of users. Especially, Android’s
permission system that implies each piece of software
asking for authorization to access personal information,
can be exploited by malware developers [4].

Combined with a general lack of user awareness about
cybersecurity, and the extensive operating time that
Android-based devices are commonly operating without
being directly interacted with, this might allow hackers
to extract sensitive information without detection [5],
which may further lead to data exfiltration, theft, and
spoofing [6], [7].

This study harnesses machine learning (ML) to fortify
defenses against cyber threats and successfully detect
malware applications, particularly focusing on Android’s
application and network layers [8]. Leveraging the vast
data generated by Android’s open-source ecosystem,
supervised ML techniques as a random forest classifier
are employed to discern between benign and malicious
applications [9]. The core of the analysis is the ap-
plication of Shapley values [10], [11], derived from
cooperative game theory and quantified through the
SHapley Additive exPlanations (SHAP) toolbox [12], to
evaluate the contribution of individual data points. This
approach is essential in understanding the significance
of each feature in the dataset, thereby enabling more
accurate threat detection and analysis [13], [14].

We use a dataset [15] encompassing a wide array
of Android applications, both benign and malicious. It
includes various open data available to the research com-
munity, from the Android Genome Project (MalGenome)
[16], which contains 1260 applications categorized into
49 families, and Drebin [17], which offers 5560 samples
across 179 families. Furthermore, it comprises a signifi-
cant number of applications from AndroZoo and samples
from VirusShare and DroidCollector, enriching the anal-
ysis with web traffic captures in virtual environments.
This collection allows for a comprehensive examination
of Android malware, with the goal of developing ML
models for effective threat detection [18].

The concept of Shapley value, dating back to [19],
is guided by the desire of identifying the most relevant
features in a decision-making process. Recent applica-
tions in ML context suggest its usage for the identifi-
cation of the most significant features that contribute
to the classification of data points [20], [21], in our
case as malicious or non-malicious. This method not
only enhances the understanding of feature influence on
malware detection, but also guides the optimization of
ML models for more effective performance. By applying
SHAP, the average marginal contribution of each feature
is calculated across all possible combinations [22]. Thus,
we can provide a meaningful evaluation of data points
in this cybersecurity-focused ML application [23]–[25].



Furthermore, the approach extends beyond mere fea-
ture importance. It offers insights into identifying out-
liers, corrupted data, and guides the acquisition of future
data to refine the predictor’s performance. This not
only bolsters the capabilities of cybersecurity measures,
but also contributes to the broader discourse on data
evaluation in ML [26].

The remainder of this paper is organized as fol-
lows: Section II reviews the theoretical underpinnings
of cooperative games, the Shapley value, and related
work in ML and cybersecurity. Section III outlines
the methodology, dataset details, and application of
the Shapley value in malware recognition. Section IV
presents the findings, emphasizing the effectiveness of
approach applied. Finally, Section V concludes the paper
and discusses future research directions.

II. RELATED WORK

In the realm of machine learning for cybersecurity
threat recognition, an array of studies [21], [23] has
underscored the efficacy of forest classifiers, notably
Random Forest and XGBoost. These classifiers have
garnered significant attention due to their robustness and
remarkable capacity to handle voluminous and intricate
datasets. This extends across diverse domains, encom-
passing areas such as cybersecurity, transportation, and
healthcare [20], [27], [28]. The inherent capability of
these techniques to scrutinize a multitude of features and
evaluate their relative importance in predicting outcomes
renders particularly suitable for this task.

The integration of Shapley values, rooted in the do-
main of game theory [13], [29], has emerged as a valid
tool for augmenting the interpretability of machine learn-
ing models, particularly within the SHAP framework.
Shapley values introduce a systematic methodology for
quantifying the individual contributions of features to
a model’s predictions, shedding light on the model’s
decision-making process. This can be especially bene-
ficial in the context of large datasets [21], [30], where
comprehending and enhancing the model represents a
serious challenge, but on the other hand can significantly
simplify further data collection and understanding.

Within the domain of cybersecurity, the synergy be-
tween machine learning models and Shapley values can
assist in gaining a better understanding of cyber attacks
at multiple levels, analyzing features from physical,
access, network, and application layers [4], [6], [31].
Indeed, differently from other classification problems,
the presence of malicious cyber threats reflects a se-
mantic intention of the attacker to harm the system
functionalities. The incorporation of ensemble methods
such as boosting and bagging, coupled with the use
of Shapley values, has yielded results in mitigating
misclassifications in malware detection [25]. Beyond the
realm of bolstering accuracy in threat detection, these

methodologies have contributed to the elucidation of the
pivotal features that exert the most pronounced influence
on model predictions [23].

The adoption of such multifaceted approaches un-
derscores the burgeoning importance of explainable ar-
tificial intelligence (AI) in sensitive domains, where
the comprehension of the underlying rationale behind
predictions holds tantamount significance to the predic-
tions themselves. These methods, supported by forest
classifiers, Shapley values, and the SHAP framework,
constitute an arsenal for advancing the frontiers of
interpretable AI in the landscape of cybersecurity and
related fields.

III. THEORETICAL MODEL

To analyze feature importance in malware classifica-
tion, we present a cooperative game wherein to define
and calculate the Shapley value [19].

A. Cooperative Game

We define a cooperative game where players corre-
spond to model features, and the payoff function mirrors
predictions [22]. We individuate a finite player set as
N = {1, . . . , n}, with each player representing a model
feature. We introduce coalitions S, defined as non-empty
subsets of N and define their magnitude c = |S|. Note
that the union of all coalitions forms the entire set of
players N . For each coalition S, a set v(S) ⊂ Rc

is specified, containing c-dimensional payoff vectors,
serving as the characteristic function. The pair (N , v)
constitutes a cooperative game [32].

The characteristic function, v(S), represents the coali-
tion’s gain. It adheres to v(∅) = 0, signifying that an
empty coalition yields no payoff. When a non-empty
coalition, S 6= ∅, forms with player j ∈ S , we examine
whether player j can rightfully claim a share of v(S)
due to enhancing the coalition’s payoff, quantified using
the Shapley value [11], whenever

v(S \ {j}) < v(S) . (1)

B. Shapley Values

Shapley value, originally a concept from game theory,
has found application in ML as part of the SHapley
Additive exPlanations (SHAP) framework [12]. In this
context, it is employed to interpret model predictions.
The analogy drawn here is that the game is replaced by
the model itself, and the players in the game are the
features of the model. The primary objective of SHAP
is to provide explanations regarding the contribution of
each individual feature towards the model’s prediction.

This study leverages the SHAP framework to elucidate
the functioning of a tree-based model within the domain
of cybersystems. SHAP, being a local feature attribution
method, attributes contribution scores to each feature
based on a single input sample or trial input data,



typically represented as x. In simpler terms, SHAP aims
to explain a prediction, denoted as f(x), concerning a
specific input vector x.

To connect the concept of the characteristic function
in cooperative games to the model prediction, v(S) is
considered as analogous to f(x). In cooperative games,
v(S) represents the payoff of a coalition, while in
the SHAP framework within ML, f(x) assesses the
predictive value of a combination of features in an input
sample x, translating the value assessment from game
theory to feature importance in ML models.

To determine the Shapley value for a feature j, all
possible combinations of the n features, excluding j,
are considered. The model f is evaluated both with
and without feature j (i.e., f(S ∪ {j}) and f(S)), and
the difference in predictions for x quantifies feature j’s
marginal contribution. The input data x comprises c+1
features in f(S ∪ {j}) and S features in f(S). This
process is repeated for every possible combination of
features.

The Shapley value for feature j is calculated as
the average of these marginal contributions over all
permutations, using the formula

φj(f) =
∑

S⊆N\{j}

[
c!(n− c− 1)!

n!
(2)

·
(
f(S ∪ {j})(xS∪{j})− f(S)(xS)

)]
.

Here, N is the total feature set, S a subset excluding
j, n the total number of features, and c the size of S.
The formula computes the average marginal contribution
of j in all combinations of characteristics, considering
differences in the predictions of the model with and
without j. The factor preceding the brackets accounts
for the combinatorial possibilities of forming S [33].

IV. MACHINE LEARNING PIPELINE

We used a specific Kaggle dataset [15], “Network
Traffic Android Malware.” The dataset consists of fea-
tures from both the application and network layers of
Android systems. It emphasizes the use of data from the
Android Genome Project and Drebin, as well as samples
from AndroZoo, VirusShare, and DroidCollector [8].

A. Dataset Overview

The dataset presented in the Table I consists of the
following features:
• tcp pks (TCP Packets): Number of TCP packets

transmitted in a session.
• port tcp (Distinct TCP Ports): Count of distinct

TCP port numbers in communication.
• external ips: Number of external IP addresses

contacted.

• volume bytes: Total data volume transmitted, in
bytes.

• udp pks (UDP Packets): Number of UDP packets
transmitted.

• tcp urg pk (TCP URG Packets): Count of TCP
packets with URG flag set.

• source pks (Source App Packets): Packets sent
from the source application.

• remote pks (Remote App Packets): Packets re-
ceived by the remote application.

• source bytes: Data volume sent from the source
application in bytes.

• remote bytes: Data volume received by the remote
application in bytes.

• source pks 1 (Source App Packets - Alternate
Count): Alternate count of packets from the source
application.

• dns query: Number of DNS queries made during
the session.

• type: Session classified as ’malicious’ or ’benign’,
indicating traffic nature.

In summary, the dataset, as shown in Table I, en-
compasses a range of pertinent features essential for
the analysis. These features include key network and
communication metrics, which collectively constitute
the foundation upon which analytical investigations and
subsequent modeling are constructed.

B. Data Preprocessing

The preparation of the dataset for the analysis encom-
passed a series of preprocessing steps designed to ensure
data quality and suitability for subsequent analytical
procedures. These preprocessing steps were diligently
executed to maintain the integrity and relevance of the
dataset.

As a first step, any columns containing missing values,
represented as NaN, were systematically eliminated from
the dataset. This is done to mitigate the problem of
incomplete or unreliable data, even though we remark
that possible extensions of this approach include data
completion approaches [34].

Furthermore, columns characterized by the presence
of a singular variable, thus offering no meaningful
variance or discriminatory power, were judiciously omit-
ted from the dataset. This curation process aimed to
streamline the dataset by retaining only those features
that held substantive value for subsequent analyses.

Subsequently, the data underwent a normalization pro-
cess employing the MinMaxScaler from sklearn
module. This normalization procedure standardized the
feature values, ensuring that all variables resided within
the bounded interval of [0, 1]. This normalization avoids
issues related to varying scales among features and
facilitates the meaningful comparison of features within
the ensuing analytical framework.



TABLE I
DATASET SAMPLE

tcp pks port
tcp

external
ips

volume
bytes

udp
pks

tcp urg
pk

source
pks

remote
pks

source
bytes

remote
bytes

source
pks 1

dns
query

type

12 12 4 888 0 0 14 2 395 1046 14 2 malicious
0 0 0 0 0 0 2 2 545 155 2 2 malicious
19 0 1 1993 0 0 21 18 5159 2155 21 2 benign
318 0 5 21709 0 0 324 336 458241 22154 324 6 benign
6 0 1 1308 0 0 7 7 1947 1383 7 1 benign

TABLE II
DATASET NORMALIZED

tcp pks port
tcp

external
ips

volume
bytes

udp
pks

tcp urg
pk

source
pks

remote
pks

source
bytes

remote
bytes

source
pks 1

dns
query

type

0.000323 0.005538 0.093023 0.000210 0.0 0.0 0.000350 0.000044 0.000006 0.000231 0.000350 0.002191 1
0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.000027 0.000044 0.000008 0.000020 0.000027 0.002191 1
0.000512 0.000000 0.023256 0.000472 0.0 0.0 0.000538 0.000392 0.000076 0.000493 0.000538 0.002191 0
0.008562 0.000000 0.116279 0.005136 0.0 0.0 0.008695 0.007316 0.006716 0.005224 0.008695 0.006572 0
0.000162 0.000000 0.023256 0.000309 0.0 0.0 0.000162 0.000152 0.000029 0.000311 0.000162 0.001095 0

In the context of supervised learning, labels were
assigned to the data points, with a classification schema
wherein ’1’ denoted malicious instances and ’0’ signified
benign instances. This labeling procedure is preliminary
to the subsequent training and evaluation of ML models.

Finally, the dataset was partitioned into distinct train-
ing and test sets, observing an 80-20% ratio, respectively.
This partitioning strategy was instrumental in enabling
model training on a substantial portion of the data while
reserving an independent subset for rigorous model
evaluation. Such a segregation of data facilitates the
assessment of model performance, ensuring that the
model’s predictive capabilities are rigorously scrutinized
against unseen data instances.

In summary, these preprocessing steps collectively
show the robustness and reliability of the dataset, setting
the stage for rigorous analytical investigations and the
subsequent development and evaluation of ML models.
The final dataset is presented in Table II.

C. Classifier

In this paper we employ a Random Forest Classi-
fier from the sklearn library for cybersecurity threat
detection. We configure the classifier with 20 trees
(n_estimators=20) and a maximum depth of 50
(max_depth=50). We fixed this values after an ex-
tensive grid-search in the hyperparameters space to bal-
ance comprehensiveness and overfitting prevention. We
further fixed a random state (random_state=45) to
ensure result reproducibility.

After training the model on the training set util
convergence, the model’s predictive performance was
assessed on a separate test set. The classifier achieved

a noteworthy accuracy of 89.42%, underscoring its effi-
ciency in accurately classifying cybersecurity threats.

To interpret the RandomForestClassifier’s predictions,
SHAP analysis was conducted. Feature importance was
initially evaluated, visualized in a bar chart to depict
each feature’s relative importance. SHAP values for
the test set were computed, offering insights into in-
dividual predictions. This analysis was extended with
shap.summary_plot, providing an overview of fea-
ture contributions. The most significant features were
further explored using shap.dependence_plot, il-
lustrating the relationship between feature values and the
model’s output.

V. RESULTS AND DISCUSSION

The analysis of SHAP values in this study reveals the
critical importance of specific features such as “Source
App Bytes” and “Remote App Packet” in the context
of malware detection. These features, prominently pre-
sented in Fig. 1 and Fig. 2, demonstrate a significant
impact on identifying malware, aligning with typical
malware behaviors involving anomalous data transmis-
sion and reception patterns.

“Source App Bytes”, indicating the volume of outgo-
ing data from an application, emerges as a key indicator
in distinguishing between benign and malicious soft-
ware. This observation is aligned with common charac-
teristics of malware, which often engage in atypical data
transmission behaviors. Similarly, “Remote App Pack-
ets”, signifying incoming data to an application, stands
out as another significant predictor. This highlights the
criticality of monitoring data traffic in both directions
for effective malware detection.



Fig. 1. SHAP values. Impact on model output.

The application of Random Forest classifiers enables
to successfully interpret complex data patterns, as they
consistently identify “Source App Bytes” and “Remote
App Packets” as significant features in various models,
emphasizing their recurring role in differentiating be-
tween benign and malicious software.

An interesting aspect of this study is the comparison
between SHAP values summary plot in Fig. 2 and global
feature importance plot in Fig. 3. The two method-
ologies diverge in their approach to evaluating feature
significance. Global feature importance may not fully
capture the complex interplay between features, whereas
SHAP values provide a more detailed and nuanced
understanding of each feature’s influence on the model’s
predictions, both individually and in combination with
other features. This distinction often leads to different
interpretations of feature importance between these two
methods.

To sum up, the analysis enhances the understanding
of key features in malware detection, highlighting the
importance of features that characterize unique commu-
nication patterns associated with malicious behavior. As
a result, it represents a contribution towards the develop-
ment of more effective and robust classification models,
emphasizing the utility of SHAP values in providing a
comprehensive understanding of model predictions for
cybersecurity.

VI. CONCLUSIONS

We assessed the use of Shapley values as a support to
the use of Random Forest classifiers for the detection of
Android malware [8]. This research can provide insights
into the influence of individual features on the model’s
predictions and contribute to the broader understanding
of feature importance in complex datasets.

Key findings include the important roles of features
pertaining packet number and sizes as primary indicators

Fig. 2. Average impact on model output.

Fig. 3. Global feature importance for the dataset.

in malware detection, implying the relevance of data
transmission patterns in identifying malicious activities.
The application of SHAP values refined the model’s
interpretability, ensuring a comprehensive understanding
of how each feature impacts the classification process
[14], [21].

Moving forward, this research can open further av-
enues for the exploration in the field of explainable AI,
particularly in cybersecurity [26]. Future work could
involve expanding the dataset, experimenting with dif-
ferent ML models, and refining the SHAP analysis
technique to improve the accuracy and interpretability of
the model. The ultimate goal remains to develop robust,
transparent, and efficient tools for cybersecurity threat
detection, making significant steps forward in safeguard-
ing digital infrastructures against malware threats [5].
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