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Abstract—The Metaverse is an immersive online world, ac-
cessed through headsets, seamlessly integrating virtual and
augmented reality. Users navigate this digital realm through
avatars, participating in real-time activities such as work, meet-
ings, concerts. The real-time nature of the Metaverse prompts
an analysis using age of information, a metric that tracks
information freshness. In this environment, where users actively
seek continuous stimuli, sustaining high attention is vital. We
propose a game-theoretic analysis of user-server interactions for
enduring cooperation, where we incorporate a discount factor
to quantitatively compare present and future actions. We derive
closed-form solutions for the infinite horizon game and obtain
lower bounds for the discount factor chosen by the entities
and upper bounds for the communication cost sustainable in
order to achieve long-lasting cooperation. This enriches our
understanding of temporal dynamics in ensuring information
freshness, providing insight into the dynamic interplay between
users and the Metaverse environment.

Index Terms—Game Theory, Metaverse, Age of Information,
Dynamic Games, Discount factor.

I. INTRODUCTION

The Metaverse is a new medium exploiting advanced
technologies such as cloud computing, artificial intelligence
(AI), as well as virtual and augmented Reality (VR/AR). It
constitutes a new horizon for the interaction between virtual
and natural worlds [1], [2]. The idea of MetaSocieties, existing
alongside real societies, greatly expands living and working
space for humans. The concept of digital twins is also based
on providing descriptions, predictions, and prescriptions for
the real counterparts through virtual and real interactions and
closed-loop feedback [3].

Quality of experience (QoE) is an important concept to
assess the participation of the users. In turn, it is influenced
by multiple factors at the service layer, user layer, and
environment layer, providing a direct reflection of the user’s
perception and recognition of the service. To optimize QoE,
it is essential to tailor the design of the resource allocation
scheme based on the diverse interests of users [4], [5].

The primary objective in the AR-VR design is to maximize
user retention, which ultimately requires a characterization of
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human behavior. This is generally addressed through predic-
tive models based on data analytics to anticipate user actions,
allowing for more precise customization of the interactions
[6]. One of such metrics is the attention focus index (AFI),
defined as the quantification of the user attention, i.e. the level
of the user interest for an object. User’s eye movement is one
of the key characteristics to reflect shifts in his attention. Alter-
natively, the head orientation is also an effective substitute of
user’s attention. Both eye movement and head orientation are
sensed in real time by sensors integrated into the VR headset
[7]. However, the issue of computational complexity emerges
as the system involves multiple users and therefore a whole
system characterization suffers from a dimensionality curse.

Modeling users interact in real time, presents a critical
challenge related to managing information freshness [8]. We
follow the most recent approaches in sensing networks and
real-time applications, which quantify it through age of infor-
mation (AoI) [9], defined as the period elapsed between the
generation of data and its actual utilization. This reflects that
the timeliness of updates is crucial to ensure a dynamic and
accurate experience for the user [10], [11].

Quantifying real-time update mechanisms can provide a
numerical assessment of the Metaverse’s efficiency. This guar-
antees that the virtual environment consistently reflects the
most recent information, ensuring temporal relevance of data
and ultimately improving the user’s experience [12].

The primary objective of communication exchanges is to
ensure timely transmission and maintenance of information
within the virtual environment. To evaluate this objective,
we employ an extension of AoI known as discounted age of
information (DAoI) [13], and extend its role to the cooperative
dynamics between separate entities. Specifically, we assess the
establishment and maintenance of cooperation by examining
various values of the discount factor through a game theoret-
ical analysis [14]–[17].

We derive closed form expressions for the discount factor
that agents have to apply to achieve long-lasting coopera-
tion as a function of the transmission probability and cost.
We argue that high discount factors are needed to foster
collaboration at regimes with high transmission rates when
communication is costly [18], [19]. We further derive upper
bounds for sustainable transmission costs as a function of the
transmission probability and the discount factor.



The remainder of this paper is structured as follows. Sec. II
examines the existing literature on the Metaverse applications
and the role of freshness of information in these scenarios.
Sec. III outlines the scenario of the interactive Metaverse
application. Sec. IV models the previously defined scenario
as a multistage game and derives the expressions of the
conditions for long-term collaboration. Sec. V discusses the
numerical results and finally Sec. VI draws the conclusions.

II. RELATED WORK

The rise of the Metaverse is expected to impact on the
way we conduct business, interact with brands and others,
and develop shared experiences. The line between physical
and digital will be more and more faded and many challenges
related to governance and ethics will arise [2].

Therefore, the Metaverse has brought forth a multitude of
studies covering diverse areas of knowledge. Notable exam-
ples include new educational methodologies [20], which have
the potential of exploiting the Metaverse to promote inclusion,
especially in cases of motion impairments or other physical
disabilities. Enterprises and societies are closely monitoring
the development of a completely new virtual world, with a
keen interest in opening MetaEnterprises and MetaCities [3].

However, growing involvement of digital twins in these
areas raises significant privacy and security concerns. Recent
studies [1], [21] delve into critical challenges in security
defenses and privacy preservation within the distributed Meta-
verse architecture. Additionally, potential solutions involving
the design of security and privacy countermeasures are also
explored. This can also lead to game theoretic approaches,
where the strategic roles of network users and adversaries are
explored [14], [22].

The Metaverse also entails real-time interactions, translating
into stringent requirements for a fully immersive experience,
large-scale concurrent users, and seamless connectivity. Chal-
lenges associated with the sixth generation (6G) wireless
system are discussed in [23].

Due to the importance of exchanging up-to-date information
among digital twins, it would seem natural to consider AoI
in related evaluations, as argued in [10]. However, we notice
that AoI is rarely addressed by papers dealing with multimedia
applications in the Metaverse. AoI was introduced in seminal
works such as [9] to extend concepts of information fresh-
ness/staleness [8] and finds natural applications in scenarios
with process monitoring in real time, as is the case for
vehicular networks [24], [25].

This may be the case for several different scenarios in
the internet of things (IoT), which are envisioned to support
many aspects of our daily lives, requiring real-time monitoring
and tracking. However, data exchanges among Metaverse
devices involve various tradeoffs, for example between re-
liability and timeliness. Retransmission-based error control
techniques need to be adaptively managed depending on
network conditions and application requirements, possibly
leveraging incremental redundancy and correlation [26], [27].

Fig. 1. Graphical representation of the scenario between the MSP and the
user. The user sends to the MSP its attention information and the server
provides the user with personalized graphical rendering based on user’s data

A limitation against frequent updates is the energy con-
sumption of wireless devices that are not powered through
cables. The updates have to be managed, and the power
expenditure of different policies must be taken into account
in order to choose the best solution for every situation [19],
[28]. For scenarios involving the Metaverse and digital twins,
personalized devices are willing to receive loads of informa-
tion for better context awareness, yet they may be shy to share
their data to save energy.

This can lead to a game theoretic approach for AoI in the
Metaverse, where we observe how the Nash equilibrium (NE)
of a game can change if the objective is to minimize a sum
of AoI and a cost [17]. In this context, Metaverse agents act
selfishly, i.e., driven by their own interests, their ideal scenario
being to be fed with plenty of data by other agents without
necessarily contributing and draining their communication re-
sources. However, the emergence of collaboration, as common
in network scenario, is necessary to establish a satisfactory
QoE [15], [16].

III. SYSTEM MODEL

We consider a scenario where a Metaverse server provider
(MSP) and an immersed are exchanging information. The
MSP is responsible for delivering details about the virtual
world, while the user is sharing his/her attention focus index
(AFI) data. This exchange of information is advantageous
for both parties involved: leveraging user-provided data, the
MSP can deliver the virtual world’s appropriate perspective
to the user, with each element rendered at an optimal level
of detail based on the user’s AFI. This approach prevents the
unnecessary allocation of resources by tailoring information
to what the user is currently viewing [11]. Simultaneously,
the user seeks immersive engagement in the Metaverse, and
gameplay fluidity is a critical parameter for assessing the QoE.
Furthermore, the MSP is motivated to collect user data for
self-improvement through the creation of a dataset for learning
to predict users’ attention transactions. A high-level graphical
description of this scenario can be seen in Fig. 1. Since in a
real-time application, information freshness is essential, and
similarly in our scenario, it is crucial that the user’s view
is consistently updated and remains coherent, the AoI is a
suitable metric to assess the entities’ performance throughout
the interaction [29]. By defining the entity’s transmission
probability p and the reliability of the information channel
Psucc, the probability of performing correctly an information



update is ρ = Psuccp Therefore, the expected AoI for entity i
E[δi] can be computed as [17]

E[δi] =
1

ρ
− 1 . (1)

A high update rate appears to be a good choice for low AoI,
yet we want to also include that each transmission incurs a
cost. To this end, we assume a price c paid by the entity
that attempts to transmit. This factor accounts for both the
energetic resource consumption and confidentiality concerns,
as private data are shared by users [18], [30].

We evaluate this information exchange over an infinite
horizon to investigate the establishment of cooperation be-
tween the two entities. Thus, we include a discount factor
θ ∈ [0, 1] in the utility received by the MSP and the user in
future interactions. This leads us to adopt discounted age of
information (DAoI) Dθ as defined in [13], i.e.,

Dθ =

∞∑
k=0

 k∑
j=0

jθj

 ρ(1− ρ)k

∞∑
k=0

 k∑
j=0

θj

 ρ(1− ρ)k

(2)

which in our case can be reduced to

Dθ =
θρ(1−θ+θρ)

(1−θ)2

(
1

ρ
− 1−θ+θρ+θ(1+θ)(1−ρ)

(1−θ+θρ)2

)
. (3)

IV. GAME THEORETIC ANALYSIS

The scenario described in the previous Section is mod-
eled as a multistage game which is a finite sequence of
normal-form stage games. Each stage game is an independent,
well-defined game of complete but imperfect information (a
simultaneous-move game). These are played sequentially by
the same players, and the total payoffs for the sequence of
games are evaluated using the sequence of partial outcomes
[15]. After each stage is completed, all the players observe
the outcome of that stage, and this information structure is
common knowledge.

The players of our multistage game are the user and the
MSP. In each stage, they both can choose between two actions:
Collaborate (C) or Defect (D). Playing C involves performing
an information update with probability ρ, whereas playing D
is equivalent to deciding not to transmit. We assume that the
players choose simultaneously in each round of the game and
that the game is symmetric, meaning that probabilities and
costs are equal for both players.

We define the utility rewarded to the player that plays C
for a one-shot interaction, that is transmit an update, as

uC
j = −E[δj ]− cp = −1

ρ
+ 1− cp . (4)

Similarly, the utility for playing D is

uD
j = −E[δj ] = −1

ρ
+ 1 . (5)

TABLE 1
STAGE GAME: ROWS REPRESENT THE ACTIONS SELECTABLE BY THE
USER, WHILE COLUMNS REPRESENT THE ONES AVAILABLE TO MSP

C D

C − 1
ρ + 1− cp, − 1

ρ+1− cp − 1
ρ + 1− cp, − 1

ρ+1

D − 1
ρ + 1, − 1

ρ+1− cp − 1
ρ + 1, − 1

ρ+1

Note the minus sign for the expected AoI and the transmission
cost as they both have to be minimized.

In the scenario where both players choose C, if we consider
an ideal transmission channel and ρ → 1, we get δ → 0. In
this case, the utilities are influenced solely by the transmission
costs. If both players choose D, both experience an increase in
AoI, but they do not incur any cost. If one player plays C and
the other plays D, the latter benefits from the cooperation of
the other and does not bear the transmission cost. Conversely,
the player who played C pays the transmission cost and ends
up with higher AoI. The utilities of the two players in the stage
game are presented in Tab. 1. We can observe, therefore, that
the best response for both players is to choose Defect. Simi-
larly to the Forwarder’s dilemma [31], the problem presents a
unique Nash equilibrium coinciding with the best response of
the two players and does not involve mixed Nash equilibria
[16]. In a finite-horizon multistage game consisting of T stage-
games played in each of the periods 1, 2, . . . , T . Let ut

i be
player i’s payoff from the anticipated outcome in the stage-
game played in period t. We denote by ui the present-time
total payoff obtained by i from playing a certain sequence of
moves, defined as

ui = u1
i + θu2

i + θ2u3
i + . . .+ θT−1uT

i =

T∑
t=1

θt−1ut
i , (6)

i.e., the discounted sum of payoffs that the player expects to
get. For the assessment of the multistage game with an infinite
horizon, we introduce a grim trigger strategy to enforce
cooperation between players. The grim trigger assumes that
each player initially cooperates and continues playing this
way as long as all the interacting players also cooperate
[15]. However, if a defection (failure to cooperate) happens
at any point in time, the player implementing the grim trigger
strategy responds by defecting for the remainder of the game.
This is a form of punishment for defection, and aims to
sustain cooperation in repeated interactions. The key idea
is that players are deterred from deviating from cooperation
because the consequences of defection are severe and long-
lasting. If two interacting players play a grim trigger strategy,
they initially cooperate and receive the benefits of mutual
cooperation, which creates a positive outcome for both, and
the grim trigger maintains cooperation for future interactions.
Thus, in game theoretic terms, this represents a subgame
perfect equilibrium, if and only if a single deviation, bearing
ever lasting consequences, does not provide a better present-
time advantage, which is computed through discounting future
utilities as in (6).
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Fig. 2. The grim-trigger strategy, dependent on p, with two different fixed costs. (a) c = 5, (b) c = 20

In the multistage analysis, we consider DAoI as the main
component of the utility for the users. As argued in [13], the
standard quantization of AoI diverges for ρ → 0, whereas
DAoI is bounded, allowing us to consider infinite iterations
and evaluate ρ values close to zero. It can be noted that with
θ → 0, these two metrics correspond, and in the assessment of
the discounted infinite game, the DAoI proves to be consistent.

To establish and maintain cooperation, it must be more ad-
vantageous than the possibility of deviating from cooperation
by playing Defect. If ρ tends to zero, corresponding to playing
(D,D) at each stage indefinitely, the DAoI becomes

Dθρ→0+ =
θ

1− θ
. (7)

Therefore, under the hypothesis of a perfect communication
channel (ρ = p), the following inequality must be satisfied

−1

p
+ 1− θ

1− θ
≤ −Dθ − cp. (8)

The first term of the inequality represents the scenario
in which a player decides to play D in the first round to
avoid incurring the cost associated with playing their best
response in the stage game but subsequently faces punishment
in all subsequent iterations that is the forever defect of the
other player. The second term depicts the scenario in which
collaboration is established in the first round and maintained
throughout the game.

The goal is to identify the values of the discount factor that
ensure cooperation over time, so we have to isolate θ from
(8), and after some algebra:

θ ≥

c p3

2
− c p2 + p

√
c2 p4 + 2 c p2 + 4 p− 3

2
− 3 p

2
+ 1

c p3 − c p2 − 2 p+ 1
.

(9)

To deepen the dependency of the cost from the transmission
probability we have also computed the threshold value of the

cost as a function of p and θ, that is:

c =
θ2 p2 − 2 θ2 p+ θ2 + 3 θ p− 2 θ − p+ 1

p2 (−θ2 p+ θ2 + θ p− 2 θ + 1)
. (10)

V. RESULTS

We present a series of visual assessments designed to un-
derscore the key findings of the previously discussed analysis.
First of all, we have to clarify that the transmission probability
p is independent from player choices: they can decide whether
to transmit with a certain transmission probability or to not
transmit at all. Central to our investigation is the examination
of the influence of the discount factor θ as it can be tuned
to devalue the future over the present. The focus is on the
grim trigger inequality (8), examining when the inequality is
satisfied, i.e., when the curves of the collaboration utility go
below zero. Fig. 2 illustrates how a higher value of θ allows
the selection of higher transmission probabilities, while with
a lower θ, the curves intersect the x-axis with progressively
lower values of p. This behavior is significantly influenced
by the cost. In Fig. 2b, we have quadrupled the cost value to
observe how the transmission probability changes. We observe
that the function is monotonically increasing, so it does not
have points of maximum and minimum. This emphasizes the
importance of tuning θ and p, since there is not a globally-
optimal working point for the system. The inequality is
satisfied when the curves for the cooperation utility go below
zero, so we need to choose the appropriate threshold value in
order to maximize the utilities of our players depending on
the current transmission probability.

It has to be noted that a higher transmission probability
implies an increase in cost paid by the entities. Consequently,
even with a high value of θ, as the cost increases, the
transmission probability satisfying the inequality begins to
decrease. We can also observe that there is a significant gap
between curves corresponding to values for the discount factor
that are very close (e.g., θ = 0.9/0.95), while the gap is
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Fig. 3. The grim-trigger strategy, dependent on θ, with two different fixed costs. (a) c = 5, (b) c = 20
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smaller between 0.3 and 0.5; this indicates that variations
around small values of θ have limited impact, but the system
becomes highly sensitive to variations in θ when the value is
close to 1.

In Fig. 3, we set different values for p and vary the discount
factor. As previously stated, the solution for the inequality is
when the collaboration utility goes below zero. With p = 0.8,
the curves intersect the x-axis at θ = 0.8, whereas, with a
higher cost, the same curve crosses the threshold at θ = 0.94.
This indicates the need for a higher discount factor to enable
players to transmit with high probabilities; otherwise, the high
cost will lead to mutual Defect.

Fig. 4 illustrates the relationship between θ and p, providing
a visual representation of (9) under equality sign. This means
that θ(p) is the minimal discount factor that allows collabora-
tion given the transmission probability. As expected, growing
cost values lead to increasing discount factors for the same
transmission probability. Interestingly, for the considered cost
values, it is always possible to tune the discount factor in order
to achieve infinite-horizon collaboration between the players.
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Fig. 5 displays the solution of (10) as a function of p.
By setting a specific value for θ, we gain insight into the
maximum cost that can be imposed to foster collaboration,
depending on the given value of p. It should be noted that
only values of θ close to 1 allow long-lasting collaboration
to emerge. Conversely, small discount factors are more prone
to inducing anti-collaborative behavior of the players. This
is especially true when c ≈ p as in this case, the cost of
transmission should be aided by an incentive given to the
player to communicate as in these scenarios communication
is considered very hard to establish.

VI. CONCLUSIONS

We analyzed cooperation dynamics between users in the
Metaverse through a quantitative investigation [15]. We con-
ducted a game-theoretic analysis, modeling the scenario as a
multi-stage game with infinite horizon, introducing a discount
factor, and a Grim Trigger strategy. We used discounted
AoI and assessed for which discount factor cooperation is
sustained, an important aspect for the users’ QoE.



We observed that a higher discount factor is always prefer-
able to ensure and sustain long-term cooperation as it is
more robust to higher costs associated with the transmission.
We have also derived the minimal threshold for the discount
factor for which we can guarantee collaboration between the
players, based on the transmission probability p and the cost
factor c. We have also derived an upper bound for the cost
factor that allows long-term collaboration to emerge with the
threat of a grim trigger strategy. We also argued that for
low discount factor values and high transmission probability
collaboration between the players can only emerge when an
incentive mechanism is in place to encourage transmission.

Future studies more targeted towards data collection could
be instrumental in expanding our analysis to gain a richer
understanding of cooperative dynamics and optimize user
experiences within virtual environments, for instance consid-
ering digital twins to simulate interactions in the digital world.
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