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Abstract—Remote sensing is a key component of control for
cyber-physical systems, and is susceptible to the injection of
false data by adversaries. We consider a transmitter sending
status updates about a physical process to a receiver, incurring
a cost for each transmission. We use a two-state Markov chain to
represent whether the receiver has correct information about
the process or not. In normal conditions, transitions to the
wrong state happen because the physical process drifted away
from the last reported value and the transmitter did not update
the receiver yet. However, an adversary can also inject false
data to increase the rate of such a transition. The receiver
cannot tell the malicious updates apart from the legitimate
ones, but, upon detecting a higher arrival rate of data, can
counteract it by requesting additional legitimate updates from
the transmitter. The ensuing interaction can be examined using
game theory, treating both the receiver and the adversary as
strategic players. Specifically, they act as a minimizer and a
maximizer, respectively, of the age of incorrect information at
the receiver’s side, while also minimizing their activity costs.
We analyze the equilibria of the game and evaluate the impact
of strategic decision-making on the system performance.

Index Terms—Cyber-physical systems; False data injection;
Markov processes; Age of incorrect information; Game theory.

I. INTRODUCTION

Cyber-physical systems (CPS), combining physical com-
ponents with communication networks, represent a paradigm
to provide new functionalities for remote control, especially
in the context of critical infrastructures or industrial facilities
[1], [2]. For example, within the industrial environment, pro-
grammable logic controllers (PLCs), regularly used to control
the physical process, can periodically transmit updates to a
remote supervisory control and data acquisition (SCADA)
system [3]. This allows operators to monitor the evolution of
the physical processes without needing on-site presence.

Unfortunately, this fusion of the physical and cyber realms
introduces potential complexities, most notably an expanded
attack surface for cyber threats [4]. The expansion of the
network communication, together with the lack of human
assistance, is prone to cybersecurity vulnerabilities, such as
jamming, eavesdropping, and false data injection [5]–[9].

This has prompted research into the performance evalu-
ation of status update exchanges over communication chan-
nels. A metric widely used in the recent literature to quantify
the information timeliness at the receiver’s side is Age of
Information (AoI) [10], [11], defined as the time elapsed
since the last received update. AoI is useful to assess whether

the receiver can make appropriate control decisions since
it has fresh information available. However, it is often not
appropriate for scenarios where relevant new information
is scarce and sporadic. Indeed, AoI assumes that every
status update is bringing relevant information, whereas, in
typical industrial systems, updates may be unnecessary unless
system conditions change [12].

To account for this discrepancy, some researchers proposed
age of incorrect information (AoII) [13], which measures the
time elapsed since the first change in the process state after
receiving an update. This may be more relevant in systems
where information accuracy is critical, such as control or
safety-related applications [14], [15], as a high AoII can
indicate that the information being used is inaccurate [16].

We consider a scenario involving the exchange of state
updates between a transmitter and a receiver over a network,
considering the presence of a malicious agent injecting false
data in the communication. The receiver is assumed to be un-
able to distinguish between regular and malicious data, but it
can overall react to the anomaly, and implement a corrective
action. This scenario is versatile and applicable to various
cyber-physical systems in IoT or tactical environments.

The transmitter sends updates to the receiver so as to
monitor the current system state. The transmission rate is
set to minimize AoII at the receiver’s side, yet the malicious
agent’s intervention increases AoII. The receiver is reactive,
i.e., it can not only detect the anomalously larger data rate
when the attack occurs but also intervene by requesting the
transmitter to increase the rate of updates. This setup calls for
a game-theoretic approach [17], [18], where the receiver and
the adversary act as rational agents with opposite objectives:
minimizing and maximizing AoII. The resulting game is non-
zero-sum, as both players incur transmission costs in addition
to their objective related to AoII [19].

Our key finding is that, under rational behavior, the adver-
sary’s attacks can be reasonably contained. This analysis is
valuable for improving the security of CPSs and can guide
further investigations into strategic interactions [20].

The rest of this paper is organized as follows. Section II
discusses the state of the art. Section III introduces the system
model, and Section IV presents the game theoretic analysis.
Numerical results are shown in Section V. The paper is
finally concluded in Section VI.



II. RELATED WORK

AoII expands the AoI concept to combine information
freshness and correctness, weighing the drift toward in-
correct data with an increasing function of elapsed time
[13]. Previous research [12], [16], [21] primarily focused on
enhancing AoII performance or reading it as an extrapolation
of error and delay metrics. For example, [12] considers AoII
minimization through proper scheduling of updates, whereas
[21] explores the minimization of AoII by optimizing slotted
ALOHA parameters. Conversely, [16] discusses the relation-
ship between reporting errors and AoII for specific signals
and updating policies, i.e., random updates and linear piece-
wise signals in the former, and a binary Markov source and
different update policies in the latter.

Differently from these previous studies, we consider an
adversarial setup that is studied through game theory [17].
Game theory is a powerful tool that has been successfully
used in cyber-physical systems to model strategic interactions
and refine agent behavior. For instance, it has found extensive
application in multi-robot systems coordination [18] or the
shared exploration of structured workspaces like building
floors [14]. Nevertheless, the literature is scarce for what
concerns addressing AoII within the overall problems of data
security and adversarial scenarios.

Most existing game theoretic approaches for AoI and AoII
just consider symmetric problems with competing sources
trying to deliver their own data under limited resources
or mutual interference [22]. From the perspective of secu-
rity, this can only serve to evaluate situations like privacy-
preserving crowdsensing, but does not address malicious
strategic agents. When adversarial attacks are considered,
they most often focus on jamming [5], [7], [23], rather than
malicious data injection [8]. This contrasts with our research,
which addresses the latter more sophisticated attack.

Our study introduces an original perspective by applying
game theory to analyze the counterposition between a le-
gitimate agent and an adversary, considering their strategic
interplay in the context of AoII and malicious data injection.
This is reminiscent of other studies previously performed
by some of the authors, such as [6], where we considered
a similar interaction but taking place between a legitimate
transmitter and an eavesdropper, so that the ultimate task of
the attacker is to compromise data confidentiality but not
their integrity.

In [9], we also studied false data injection for vehicular
networks, which is a context where accuracy and timeliness
of data is important. However, the payoff of the players is not
directly related to AoII and the entire strategic interaction is
much simpler than what we did here. Conversely, [4] explores
the techniques to detect and counteract malicious injections
in practice, but does not take a game theoretic stance, since
the adversary is not reacting to the network defenses.

Finally, in [19] we considered a scenario similar to the
one analyzed in this paper. We utilized game theory for a
game over a two-state Markov chain, with an adversarial

setup of two players acting as minimizer and maximizer of
AoII, respectively. However, there is an important difference
related to the reactive role of the receiver in the present
paper. Indeed, that previous analysis just considered all the
strategic capabilities for the legitimate network agent as
concentrated at the transmitter’s side. In the present study, we
consider the additional feature of the receiver detecting the
increased data injection and triggering countermeasures from
the transmitter. As we will show in the mathematical analysis,
this changes the equilibrium conditions significantly and
allows for different outcomes to be achieved, whereas in [19]
the only way to defeat the adversary is to hope that its cost
is too high. This makes our approach particularly relevant
in the context of CPSs, since it may lead to constructive
implementations of network defense mechanisms.

III. SYSTEM MODEL

In this study, we explore a transmitter that sends periodic
updates to a receiver. For instance, the transmitter might be
a PLC that periodically communicates the system’s output
and the control input to a remote SCADA system in order to
allow remote monitoring of the plant.

At a certain instant, denoted as t∗, an adversary gains ac-
cess to the communication channel and injects false updates
to the remote at a certain rate. It is assumed that the receiver
cannot distinguish between these false and legitimate updates.
However, it can detect anomalies and can attribute them to
the malicious entity’s actions. In our previous work [19], we
assumed that right from the beginning the transmitter was
aware of the presence of the malicious agent. This assumption
was very strong and does not represent a possible interaction
in the real world. However, many technologies and devices
nowadays allow anomaly detection alerting when detected.
Therefore, the setup proposed in this paper better represents
an intervention by a malicious agent that could occur in the
real world. In response to such anomalies, the receiver takes
corrective action by requesting the transmitter to increase
its transmission rate. In this scenario, we consider that the
adversary can access the communication channel between the
transmitter and the receiver, but not vice versa.

The following equations mathematically describe the un-
derlying dynamics of the system:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t)),
(1)

In this context, the variable x(t) represents the state of the
system at time t, u(t) signifies the control input, and y(t)
denotes the output at time t. The f(·) and h(·) represent the
state transition and output selection functions, respectively.

The transmitter sends updates to a receiver denoted as R
within our framework. The communication involves transmit-
ting the output measurement y(t) with a rate p. We assume
negligible propagation delay between the transmitter and the
receiver, enabling us to work with time calculations from
either end of the communication channel.



R W

d+ q

p+ r

Fig. 1. Continuous time Markov process with the respective rates of moving
from one state to one another. The sum of d (i.e., the natural drift rate) and
q (i.e., the transmission rate for the malicious agent M) gives the transition
rate from R to W. The sum of p (i.e., the natural drift rate of the physical
system) and r (i.e., that is, the increase of transmission rate requested by
R) gives the transition rate from W to R.

AoI is employed to gauge the timeliness of the informa-
tion. At time t, it is defined as

γ(t) = t− tu, (2)

Here, tu represents the time corresponding to the reception
of the most recent update just before time t, inclusively.

To effectively model the system’s behavior, we introduce
a continuous-time Markov chain with two distinct states:
“right” (R) and “wrong” (W). The transitions between these
states depend on the system’s dynamics and various actions,
as graphically illustrated in Fig. 1. The same transitions are
subject to the dynamics of the system and actions taken.
The malicious entity, also termed an adversary and referred
to as M, can increase the rate of transitions to state W . The
injection rate of the adversary is denoted by q. In contrast, by
detecting the adversary’s presence, the receiver can respond
by requesting the transmitter to boost its transmission rate
and thus increase the rate of transitions to state R. The
transmission rate increase is denoted by r. If the nominal
transmission rate of the receiver is referred to as p, after the
corrective action it is p+ r.

In our model, the corrective action implemented by the re-
ceiver R is driven toward the general objective of minimizing
its AoII, whose value δ(t) at time t is defined as

δ(t) = f(k) · g(y(t), y(tu), y(tm)), (3)

where function g(·, ·, ·) quantifies the discrepancy between
the current system output y(t), the most recent correct update
transmitted y(tu), and the latest false update sent by the
malicious agent M, denoted as y(tm). The function f(·)
incorporates the penalties that increase as the discrepancy
measured by g(·, ·, ·) escalates.

We consider a specific form of g(·, ·, ·):

g(y(t), y(tu), y(tm)) =

{
1 if |y(t)− y(ts)| ≥ ϑ

0 otherwise
, (4)

This function quantifies the disparity between the present
system output y(t), the most recent correct update y(tu), and
a defined threshold ϑ. Following a system drift or a malicious
transmission, we assume this disparity persists until a new
update occurs.

The linear time-increasing penalty f(·) is defined as:

f(t) = t− td (5)

where td is the last time-instant over a period where
g(y(t), y(tu), y(tm)) = 0. To gain insight into the system’s
dynamics, we analyze the expected value of AoII, represented
as ∆ = Et

[
δ(t)

]
, computed as:

∆ =
1/(2 · (p+ r)2)

1/(p+ r) + 1/(d+ q)

=
d+ q

2(p+ r)(d+ p+ q + r)

(6)

In (6), the numerator 1/2(p+r)2 represents the average area
below the AoII function, specifically denoted by (4), within
a given period. In fact, choosing a linear function f(t) as (5),
the area to be calculated is that of a triangle. The denominator
1/(p + r) + 1/(d + q) signifies the expected value of the
time elapsed between two consecutive updates, referred to as
a period. See also [19] for further details. Furthermore, we
introduce cost terms associated with the nominal transmission
rate of the transmitter, the increase of transmission rate
requested by agent R, and the injection of false data by agent
M. These terms can be interpreted as energy expenditures
or limiting factors on the frequency of their activities. We
assume that these costs are linearly proportional to their
activity rate, denoted as r and q for agents R and M,
respectively. The linear coefficients (representing the unit
prices) are denoted as K > 0 for the transmission rate
increase and αK > 0 for the malicious injection.

Based on these definitions, we formulate utility functions
for both the receiver and the malicious agent:

uR(q, r) = −∆−K · r, uM(q, r) = ∆− αK · q. (7)

In this context, uR(q, r) represents the utility function for
the receiver, aiming to minimize the combined metric of the
expected AoII and the cost of increasing the transmission
rate. Conversely, uM(q, r) is the utility function for the
malicious agent to maximize the expected AoII experienced
by the transmitter while considering the associated cost of
malicious injections.

In ideal conditions, where no malicious entities exist, the
transmitter can arbitrarily choose the transmission rate p, and
in this paper, we assume that it does so to minimize AoII.
However, we assume the transmitter faces a transmission
cost Jp, i.e., proportional to p with unit price J , when
transmitting. To find the optimal transmission rate p, we can
optimize a single-variable function that balances AoII and
the associated transmission cost:

p = argmax
p

{−∆− J · p} (8)

where in ∆, r = 0 and q = 0. Note, that (8) is a single-player
optimization, and is not involved in the strategic interaction.



In our previous work [19], we showed that in the absence
of a malicious agent, there is only one value of p that
maximizes (8), which is

p =
1

6
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where:
s = d2 +

d4J

t
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J

and
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(
27d2J
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3
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√
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√
d4J2(27 + 4d4J2)

) 1
3

.

Table I lists the notation used.

TABLE I
NOTATION SUMMARY

Parameter Symbol
Cost of increasing the transmission rate K
Injection cost for the malicious agent αK
Nominal transmission cost for the transmitter J
Natural drift rate of the physical system d

Variable Symbol
Nominal transmission rate for transmitter p
Increase of transmission requested by R r
Injection rate for M q

IV. GAME-THEORETIC ANALYSIS

We designate the receiver and the adversary as two ratio-
nal agents, denoted as R and M, respectively. We assume
that upon the commencement of an adversary’s attack, the
receiver can promptly detect the adversary’s presence and
take corrective actions.

Due to the simultaneous presence of R and M, their
interaction can be formalized as a static game of complete
information G = (P,A,U), defined by the set of players
P = {R,M}, their respective set of actions A where player
R chooses r ∈ [0,∞) and M chooses q ∈ [0,∞), and the
utility set U = {uR, uM}.

We characterize the game as static, which implies that the
players just choose one value of their action independently
and unbeknownst to each other. The sustainable outcome for
a distributed control is typically characterized as the Nash
equilibrium (NE).

For the specific game under exam, the NE obeys the
properties formalized by the following theorem.

Theorem 1 (Existence and Uniqueness of the NE). Game G
admits a unique NE.

The proof is provided in Appendix A.
Now, we are ready to derive numerically the NE for the

problem at hand. To this end, we simultaneously maximize
the objectives of the two agents, which is equivalent to set:

∂uM(q, r)

∂q
= 0

∂uR(q, r)

∂r
= 0 (10)

which implies:
∂∆

∂q
= αK

∂∆

∂r
= −K. (11)

Rearranging these terms in (11) gives:q = 1√
2αK

− d− p− r

r = 1√
(1+α)2K

− p
. (12)

Within (12), K and α must be such that the requirement
that q and R are positive is met. If (12) results in q < 0,
the adversary has no advantage in injecting false data and
is silent. Similarly, if (12) results in r < 0, for the receiver
is too expensive to take countermeasures and increase the
transmission rate.

From the second equation in (12), we obtain that if

K <
1

2αp2
− 1

then the receiver gains an advantage in requesting the trans-
mitter to increase the transmission rate.

In other terms, considering the second equation in (12),
we can write

r + p =
1√

(1 + α)2K
. (13)

We can interpret 1√
2K(1+α)

as a saturation point for the

transmitter’s transmission rate. When p alone equals this
saturation point, pushing the transmission rate any higher
becomes unfeasible.

From the first equation in (12), we know that the malicious
agent gains an advantage in transmitting if q > 0, and
therefore

1√
2K

(√
1 + α−

√
α√

α(1 + α)

)
− d > 0 .

And, defining

h(α) =

(√
1 + α−

√
α√

α(1 + α)

)
,

we conclude that the malicious agent gains an advantage in
transmitting if

h(α) > d
√
2K.

Note that

∂h(α)

∂α
=

−1− 2a− a2 + a
3
2

√
1 + a

2
√
1 + a(a(1 + a))

3
2

< 0 ,

holds for all α > 0, and this implies that h(α) is monotoni-
cally decreasing.

Based on those observations, the NE is as follows:

q =

{
1√
2αK

− d− p− r if h(α) > d
√
2K

0 otherwise
(14a)

r =


1√

(1+α)2K
− p if K > min{ 1

2αp2 − 1, h2(α)
2d2 }

0 otherwise
.

(14b)



Fig. 2. Optimal transmission rate p in the absence of an adversary.

Fig. 3. Increase of transmission rate R and injection rate q at NE, for α =
0.5. The nominal transmission cost for the receiver was set J = 1, thus (8)
results in p=[0.4791, 0.5869, 1.0341] for d=[0.05, 0.1, 0.7], respectively.

V. NUMERICAL RESULTS

In Fig. 2, we plot the optimal transmission rate p in the
absence of an adversary versus the nominal transmission cost
J , as resulting from (8). From this plot, it is visible that
for higher values of the drift rate, the optimal solution is
to increase the transmission rate to reduce the average AoII
at the receiver. On the other hand, as the transmission cost
increases, the optimal transmission rate decreases.

Figs. 3, 4, and 5 analyze how the data injection attack
affects the NE, depending on the cost of increasing the trans-
mission rate, the injection cost, and the network drift. These
figures consider scenarios where the injection cost of the
adversary, compared to the cost of increasing the transmission
rate, is halved, the same, or doubled, respectively. The plots
show the values of p and R at NE versus the cost of increasing
the transmission rate, and all three scenarios were analyzed
in the case where the drift rate d is 0.05, 0.1, and 0.7.

As also emerged when analyzing Fig. 2, the effect of

Fig. 4. Increase of transmission rate R and injection rate q at NE, for α = 1.
The nominal transmission cost for the receiver was set J = 1, thus (8) results
in p=[0.4791, 0.5869, 1.0341] for d=[0.05, 0.1, 0.7], respectively.

Fig. 5. Increase of transmission rate R and injection rate q at NE, for α = 2.
The nominal transmission cost for the receiver was set J = 1, thus (8) results
in p=[0.4791, 0.5869, 1.0341] for d=[0.05, 0.1, 0.7], respectively.

increasing the drift rate is an increase in the transmission rate.
For the adversary, on the other hand, having a higher drift
rate implies that the receiver more frequently has incorrect
information about the current state of the system, thus
implying a lower injection rate. This phenomenon can be
seen in all three analyzed cases. The effect of an increase in
the adversary injection rate, on the other hand, is a leftward
shift of the K threshold value that causes the adversary to
not intervene. In Figs. 3, 4 the rate R goes to zero before
the injection rate does, and this implies that for a range of
values for K, the adversary will inject false data without
allow the legitimate agent to intervene. Only in Fig. 5, for
d = 0.7 the injection rate q go to zero faster than the increase
of transmission rate R, and therefore in our simulations this
is the only scenario where the receiver can defend for all
possible values of K.



VI. CONCLUSIONS

We analyzed a CPS, where a transmitter sends updates to
a receiver, and an adversary can compromise the commu-
nication by sending malicious updates to the receiver. We
assume that the receiver can detect the attacker’s presence
but cannot differentiate between genuine and fake updates.
To counteract this attack, the receiver can request an increase
in the transmission rate from the transmitter.

We modeled the interaction between the transmitter and
the adversary using game theory. The malicious agent incurs
a cost that is proportional to the rate of injection, while the
legitimate agent incurs a cost that is proportional to the in-
crease in the transmission rate. The objective of the malicious
agent is to maximize AoII at the receiver while minimizing
its own cost. The legitimate agent aims to minimize AoII at
the receiver and its own cost. We computed the NE, which
is both unique and guaranteed to exist in our scenario.

This reveals that three possible scenarios can unfold based
on the system parameters, such as the nominal drift rate,
transmission cost, increase in transmission rate, and injection
cost. In the first scenario, the receiver can successfully
request an increase in the transmission rate, thereby reducing
the attack’s impact on the system. Alternatively, it may be too
costly to request an increase in the transmission rate, allowing
the adversary to intervene without hindrance. Finally, it may
also be too costly for the adversary to intervene.

This underscores the importance of vigilant monitoring to
detect potential threats early and to remain aware of their
presence. Furthermore, future research can expand upon these
findings by considering more general scenarios and exploring
advanced strategic interactions.

APPENDIX A
PROOF OF THE EXISTENCE AND UNIQUENESS OF THE NE

Existence: The utilities in (7) are continuous and rational.
Consistent with our adversarial framework, they display a
strictly monotonic response to the choices made by the
respective players. In other words, for a fixed value of one pa-
rameter, uT(r, q) is strictly increasing in the other parameter,
while uM(r, q) is strictly increasing in the opposite parameter.
Furthermore, these functions possess concave properties, i.e.,
the first and second derivatives are positive, and negative,
respectively [24]. Thus, Glicksberg’s theorem [25] guarantees
the existence of a NE in the continuous domain.

Such an NE can be identified as a ”0-Nash equilibrium,”
which is effectively an ε-Nash equilibrium with ε set to 0.
This serves as the limiting point of a sequence of actions that
alternates between the best responses of the players. The ε-
convergence to a fixed point is guaranteed by the properties
of continuity, monotonicity, and concavity.

Uniqueness: It directly results from the utilities maintain-
ing monotonic behavior across their entire range. As a result,
the ε-fixed point they converge to remains constant, ensuring
the existence of a single solution.
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