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Abstract—Real-time human activity recognition is facing an
ever-growing need for efficient sensor setups. Identifying a
minimal sensor configuration can lead to cost savings and less
intrusive equipment, ultimately improving the quality of the
collected data. In this study, we introduce and assess a sensor
selection approach that ranks sensors based on their relevance
in human activity recognition (HAR) tasks. Our methodology
utilizes the Shapley value – a widely adopted metric inspired
by game theory – of sensor measurements to determine the
importance of each sensor. To validate our approach, we assess
the impact of sensor removal on the accuracy of XGBoost
tree models, which are trained on a publicly available HAR
dataset. Our experiments indicate that our Shapley-based sensor
ranking achieves a favorable cost-accuracy tradeoff allowing for
a reduction by more than 50% in the number of exploited sensors.

Index Terms—Human activity recognition; Wearable sensors;
Feature selection; Game theory.

I. INTRODUCTION

The utilization of wearable sensing technology has emerged
as a crucial tool for the collection and analysis of human
data across various fields such as sport analytics, e-health,
and more [1], [2]. One of the most significant applications of
this technology is in human activity recognition (HAR), which
encompasses tasks related to identifying different activities
using sensor data [3]–[5].

HAR is typically carried out by machine learning models
using data gathered from wearable sensing devices [6]. These
devices are often inertial measurement units (IMUs) that are
attached to different parts of the body [7]. IMUs measure linear
and angular acceleration in multiple directions, providing a
comprehensive view of an individual’s movements [8].

Recent years have seen a notable increase in real-time
applications of HAR, where balancing the quality and quantity
of collected data is paramount [9]. While a comprehensive
sensor setup typically leads to more accurate predictions,
it also necessitates enhanced processing capabilities, longer
prediction times, more expensive equipment, and more obtru-
sive impact on the user [10], [11]. This tradeoff highlights
the importance of carefully considering the requirements of
individual applications when selecting the wearable sensor
configuration.

In this paper, we introduce and evaluate a methodology to
effectively choose a subset of sensors among those available

for HAR applications. We rank different wearable sensing
units, such as IMUs and temperature sensors, according to
the importance of their measurements (i.e., the features cap-
tured by each sensor). Feature importance is evaluated using
SHapley Additive exPlanations (SHAP) [12], a game theory-
inspired metric that estimates the additive contribution of a
feature to the final prediction of a machine learning model.
Our approach can be used to limit the setup to a fixed number
of relevant sensing units, thereby significantly decreasing
computational complexity, and allowing for lightweight real-
time management of data [13].

Differently from the existing literature that mostly focuses
on offline extraction methods [14] or considers the optimiza-
tion of sensor placement and control [15], our aim is to develop
a zero touch form of control over the IMU units, which are
independently placed prior to the data collection and over
which we have no control at run time. We are interested in
a limited selection of sensor based on their relevance and
leveraging their redundant content in the decision process [16].
The evaluation of the Shapley values is meant to highlight the
most relevant sensors so as to decrease the handling of data
without significantly affecting accuracy, as we will show [17].

We evaluate our approach on HuGaDB, a publicly available
HAR dataset comprising data captured by 8 different sensing
units for a total of 38 measurements per sample. We rank
the sensing units in HuGaDB via our Shapley-based approach
and gradually discard them, starting from the lowest ranked
up to the highest. Our evaluation suggests that a Shapley-
based sensor selection provides a favorable tradeoff between
number of adopted sensors and activity recognition accuracy,
i.e., better accuracy compared to a random sensor selection.
In particular, our effective choice mechanism allows for a
decrease in the number of sensors used by 50% without
significantly impacting the resulting accuracy, but at the same
time heavily simplifying the coordination of data collection,
and possibly allowing for a more systematic treatment [18].

II. BACKGROUND

A. Human activity recognition and sensor selection

Human activity recognition (HAR) is a subfield of machine
learning aimed at automatically identifying human actions



such as walking, running, climbing and more, using measure-
ments collected by sensors [4]. Given a tuple of measurements
xi = (xi,1, . . . , xi,F ) ∈ RF , the objective is to correctly
identify the corresponding activity yi among a number of
possible activities Y = {1, . . . ,m}. In many applications,
measurements are analyzed as time series using sliding win-
dow methods or within specific time frames [19]. Nevertheless,
in real-time situations, conducting time series analysis can
be impractical, and it may be more advantageous to opt for
sample-wise inference approaches. This paper concentrates on
the latter approach, predicting the activity based on individual
samples. This limits the computational complexity required by
our approach while maintaining high accuracy levels [9].

Each sample includes different measurements collected by
multiple sensing units S1, . . . , SK , which can be either IMUs,
temperature sensors, or other sensory devices. Each sensing
unit is characterized by the features collected by it, i.e., σk =
{jk,1, jk,2, . . . }. Formally, the sensing units form a partition
of the feature set F = {1, . . . , F}, meaning that

σk ∩ σk′ = ∅,∀k, k′ and
K⋃

k=1

σk = F . (1)

B. Shapley value and SHAP

Shapley value is a metric inspired by cooperative game
theory that measures the individual contribution of players in a
coalition [17]. In machine learning, Shapley value is frequently
used to evaluate the impact of individual features to the final
prediction [18]. This impact value is known in literature as
SHapley Additive exPlanation (SHAP) [12]. SHAP scores for
each feature j ∈ F are computed on a data point xi as follows

ϕj(xi) =
∑

S⊆F\{j}

|S|!(F−|S|−1)!

F !

(
v(xi,S∪{j})−v(xi,S)

)
(2)

where v(xi,S) is the model’s output for xi when restricting
the features to a subset S ⊆ F .

In a binary classification problem v is the positive class
score computed by the model. In a multi-class classification
problem, instead, a tuple of model outputs v1, . . . , vm is used,
one for each class, and a separated SHAP score is computed
for each output: ϕj,1(xi), . . . , ϕj,m(xi). A SHAP score can
be either positive or negative, since the model’s output can
either increase or decrease. However, the impact is measured
in terms of its absolute value. The overall SHAP value of a
feature is determined by averaging the SHAP score magnitudes
over a validation dataset x1, . . . , xn and summing them across
all classes, i.e.,

ϕj =
1

n

n∑
i=1

m∑
ℓ=1

|ϕj,ℓ(xi)|. (3)

Albeit widely used in academia, one main obstacle in the
practical use of SHAP values is computational complexity
[20]. In model-agnostic scenarios, evaluating SHAP has com-
plexity O(2F ), i.e., exponentially increasing with the number
of features. Nevertheless, when the model structure is known,
it is possible to take advantage of it and obtain a more efficient

evaluation. This is the case for tree-based models, for which
the SHAP value can be computed in O(D2), where D is the
maximal depth of the tree, using the TreeSHAP algorithm [21].

III. RELATED WORK

Although many studies have highlighted the importance of
effective sensor selection for HAR, few practical methods have
been proposed thus far in the scientific literature.

For example, [6] discusses effective sensor placement, thus
presupposing that data collection has a degree of freedom
available beforehand, but in the end all of the sensors are used,
which may be impractical for real-time control of multiple
units. Conversely, [3] suggest that jointly handling intercon-
nected signals may benefit in compressing the reading, but
this analysis is very application-specific to the actual features,
which related to EMG and EEG data, and not multiple sensors.

We also remark that most HAR studies focus on sport
activities [2], [7], where it is quite common to have multi-
ple redundant sensors [5]. However, applying dimensionality
reduction in these cases would be preferrable than collecting
huge amount of data that would make a real-time control
impractical [8], [16]. Thus, identifying an effective yet limited
subset of sensors to use for practical purposes is an extremely
interesting issue. Moreover, as argued in [9], reducing the
amount of used sensors helps in reducing battery consumption
and prompts a better coordination with energy harvesting [22].

Finally, it is also to remark that data redundancy is often so
deeply inherent in biometry sensors that even physical layer
protections such as perturbation with artificial noise often fail
to hide the anonymity of data [23]. While out of scope of
the present analysis, a better understanding of the explainable
characteristics of HAR can assist towards privacy goals.

The idea of using Shapley values to unveil the decision
process based by ML is also not new, and many contributions
used a similar approach to explanable AI [14], [17], [20].
However, a notable difference with the present contribution
is that those approaches usually considers the importance of
different features inside a dataset. The general aim is to derive
an explanation of an intelligent model seen as a black box [18].

While applying a similar reasoning, our approach is dif-
ferent, as we are not interested in deriving an explanation
of the adequacy of ML methodologies applied to IMU data
for HAR, which is exhaustively proven by other contributions
[10]. Instead, we propose to use this explanatory tools towards
the identification of the most relevant sensors for an effective
yet lightweight representation [13]. Computing the Shapley
values of specific sensors, instead of just features, may also
reflect better under dynamic measurements as HAR [19],
allowing to identify the more critical nodes in detecting
changing conditions, thereby improving resource allocation
and/or energy efficiency [4].

IV. METHODOLOGY

Efforts to limit the amount of sensor reading without
affecting the accuracy can be connected to several advantages,
including the improvement of computational complexity as



well as energy saving. To some extent, this can also improve
the experience for the users, if some sensors can be avoided
or made less invasive [24]. For this reason, we propose a
methodology for the selection of the top-N sensing units,
i.e., a limited number N of sensors is used for the evaluation
among those available, and they are chosen as the ones with
highest Shapley values [14].

Our proposed methodology can be summarized as follows.
First, we divide the available sensor data in training and
validation sets. The training data is used to train a machine
learning model for activity classification. The validation data,
instead, is used to compute the SHAP values ϕ1, . . . , ϕF

for all features. After computing all SHAP values, these are
aggregated by sensor into values φ(σk). The aggregation can
be done by considering the sum of the feature SHAP values
for each sensing unit σk, k = 1, . . . ,K, i.e.,

φ(σk) =
∑
j∈σk

ϕj (4)

or by taking the maximum value

φ(σk) = max
j∈σk

ϕj . (5)

A mean aggregation of the feature SHAP values may also be
considered, which is the same as the sum, but normalized by
the number of features for each sensor.

The sensing unit can thus be ranked according to their φ
value, and an top-N sensor setup can be obtained by choosing
the N units with highest φ values. As demonstrated by the
experimental results shown in the next section, this procedure
is quite effective in finding the most relevant sensors.

V. PERFORMANCE EVALUATION

A. Dataset

We evaluate our proposed pipeline on HuGaDB, a widely
used HAR dataset [25]. The dataset comprises wearable sensor
records collected from 18 individuals engaged in various
activities such as walking, running, sitting, standing, and more.
The dataset includes measurements obtained from six wearable
IMUs, along with two EMG sensors. The IMUs were placed
on both thighs, shins, and feet, while the EMG sensors were
positioned on the quadriceps.

A summary of the dataset is reported in Table I, which
displays the total number of samples, activities, features, and
sensing units. With “sensing units” we refer to the physical de-
vices that were used to take measurements. Each sensing unit
may comprise one or multiple sensors, which in turn may take
multiple different measurements (i.e., features). For example,
an IMU is a sensing unit comprising an accelerometer and a
gyroscope, and yields a total of 6 features (the X, Y, and Z
components of acceleration and angular acceleration). EMG
sensors, on the other hand, are one-sensor units and produce
one single measurement.

TABLE I
DESCRIPTION OF HUGADB DATASET USED IN OUR EVALUATION

# samples 1,137,986
# activities 10
# sensing units 8
# features 38

B. Experiments

In order to evaluate our approach, we split HuGaDB into
training, validation, and test sets using an 80/10/10 ratio. We
replaced null values in the features with the average value
and performed a standard scaling of the features. Clearly, all
feature averages and standard deviations required for standard
scaling and filling null values were computed on the training
data. All the (xi, yi) pairs where the label yi was missing were
instead simply removed.

We applied our methodology described in Section IV, com-
puting the SHAP values of all features and aggregating them
by taking the maximum value for each sensor σk to compute
ϕ(σk). We explain further this decision in the discussion
section. The model used to compute the feature SHAP values
was an XGBoost tree [26]. We opted for using the default
hyperparameters rather than further splitting the training data
in order to fine-tune them. The model was trained on the
training data and SHAP values of the features were estimated
using the validation data.

The overall SHAP weight of each feature is obtained by
computing the Shapley values for all samples and classes,
summing their magnitude across classes, and averaging across
samples. The SHAP values of the top 20 features are shown in
Fig. 1. The figure also displays the contribution of the different
classes to the overall SHAP value of each feature. The name
of the sensors follow the standard nomenclature of HuGaDB
[25], i.e. <sensor>_<unit>_<coordinate>. For exam-
ple, the feature with highest SHAP value is acc_ls_z, which
is the z-axis accelerometer value measured by the left-shin
IMU, immediately followed by the z-axis accelerometer value
measured by the right-shin IMU. Both these features seem to
largely impact the prediction for walking and running, which
is expected by sensors that are placed close to the knees.

As apparent from the figure, the top 20 features are all pro-
duced by the different IMUs, suggesting a limited contribution
of EMG sensors to the model’s prediction. The final ranking
of the sensing unit obtained by the aggregation of the SHAP
values was as follows: left shin, right shin, left thigh, right
thigh, left foot, right foot, left-quadricep EMG, right-quadricep
EMG. As expected, the low SHAP values of the EMG features
caused them to be ranked last.

After determining the SHAP-based sensor ranking, we
evaluated the performance of the top-N sensor setup for
N = 1, . . . , 8. We compared the accuracy (calculated on
the test data) of the top-N SHAP-ranked features against N
randomly selected features. The results of a random selection
were obtained by averaging the results of a Monte Carlo
simulation with 10 random sensor rankings.
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Fig. 1. Top 20 absolute SHAP values (summed across classes and averaged
across samples).

Fig. 2 shows the accuracy curves for SHAP-based and
random selection. Clearly, both curves approach the same
accuracy level for N = 8, since all sensing units are being
used. The biggest difference can be observed for N = 1 and
N = 2, where the ranking of the sensing units has the highest
impact. Overall, these results suggest that SHAP values can
indeed be used as an indicator for the most relevant sensors.
Additionally, the use of just N = 3 sensors leaves the accuracy
above 80% but reduces the management costs by more than
50%.

The validation of our SHAP-based sensor ranking was
further confirmed through a comparison of the follow three
setups: an overall setup utilizing all sensing units; a minimal
setup consisting of the top-3 ranked sensing units; and a
minimal setup consisting of the bottom-3 ranked sensing units.
Evaluation was carried out using global metrics such as accu-
racy, balanced accuracy, and weighted F1-scores (Table II), as
well as class-specific metrics like precision, true-positive rate
(TPR), true-negative rate (TNR), and F1-score (Table III). Our
findings indicate that the top-3 ranked sensing units achieve
predictive performance similar to the complete setup on all
classes, whereas the bottom 3 units exhibit lower performance
levels compared to randomly selected sensors.
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Fig. 2. Comparison of achieved test accuracy via Shapley selection versus
random selection.

TABLE II
GLOBAL CLASSIFICATION METRICS FOR ALL, TOP-3, AND BOTTOM-3

SHAP-RANKED SENSING UNITS

Accuracy Balanced accuracy Weighted F1-score

All sensors 0.8467 0.8058 0.8337
Top 3 0.8174 0.7724 0.8008
Bottom 3 0.6351 0.4808 0.5995

C. Discussion

a) Choosing the aggregation type: As per Section IV,
SHAP values can be aggregated by sensing unit in three ways:
taking the sum, the average, or the maximum. A ‘max’ aggre-
gation can be advantageous when there is a great disparity in
the number of features produced by different sensing units, as
in the case of HuGaDB. In these cases, sensing unit with a
single highly relevant features may score lower in the ranking
compared to units with several irrelevant features. The ‘sum’
and ‘mean’ aggregation types might be more suitable for cases
where the number of features is comparable across all sensing
units.

b) Limitations of Shapley-based selection: While our
experiments show that using Shapley-based selection can be
effective for sensor selection, it may not guarantee an optimal
configuration. For example, this method does not account for
potential correlations between sensors [16]. Future research
should explore combining Shapley evaluation with correlation-
based selection techniques such as [5]. In general, a similar
methodology can be used in a trans-directional way, encom-
passing multiple dimensionality reductions both in the number
of sensors and the features used.

VI. CONCLUSIONS

We discussed a mechanism based on Shapley values to rank
sensors collecting HAR-related features to discriminate the
most relevant of them and achieve minimal management [5].



We proved the effectiveness of a selection mechanism
based on said ranking, where using the highest Shapley-valued
sensors significantly outperform a random dimensionality re-
duction, and obtaining an extremely favorable tradeoff, where
less than half of the sensors can be used without significant
losses in the resulting accuracy.

While this confirms the general validity of our approach,
future work is still possible in the directions of expanding
the dataset and dealing with heterogeneous sensors [13].
Moreover, we plan to investigate the provision of concrete
implementations of our proposal mechanism, for a possible
use in real devices.

TABLE III
CLASSIFICATION METRICS FOR EACH ACTIVITY USING ALL (ABOVE),
TOP-3 (MIDDLE) AND BOTTOM-3 (BELOW) SHAP-RANKED SENSING

UNITS

Precision TPR TNR F1-score

Walking 0.9313 0.9432 0.9734 0.9372
Running 0.9843 0.9514 0.9991 0.9676
Going up 0.9152 0.9030 0.9887 0.9091
Going down 0.9024 0.8948 0.9886 0.8986
Sitting 0.9904 0.9928 0.9992 0.9916
Sitting down 0.9716 0.9396 0.9996 0.9553
Standing up 0.9239 0.8835 0.9987 0.9032
Standing 0.6815 0.9331 0.8939 0.7877
Up by elevator 0.6016 0.3322 0.9813 0.4281
Down by elevator 0.6806 0.2849 0.9914 0.4016

Walking 0.8853 0.9356 0.9536 0.9097
Running 0.9625 0.9347 0.9978 0.9484
Going up 0.8942 0.8697 0.9861 0.8818
Going down 0.8802 0.7788 0.9875 0.8264
Sitting 0.9856 0.9903 0.9989 0.9880
Sitting down 0.9326 0.9121 0.9989 0.9222
Standing up 0.9040 0.8689 0.9983 0.8861
Standing 0.6549 0.9255 0.8814 0.7670
Up by elevator 0.5927 0.2727 0.9841 0.3736
Down by elevator 0.5956 0.2355 0.9897 0.3375

Walking 0.6703 0.8670 0.8368 0.7561
Running 0.7851 0.5766 0.9903 0.6649
Going up 0.6045 0.4730 0.9583 0.5307
Going down 0.6199 0.4057 0.9707 0.4904
Sitting 0.8335 0.8043 0.9874 0.8187
Sitting down 0.4348 0.2747 0.9942 0.3367
Standing up 0.4571 0.2330 0.9949 0.3087
Standing 0.5623 0.8963 0.8302 0.6910
Up by elevator 0.5587 0.1975 0.9867 0.2919
Down by elevator 0.5670 0.0799 0.9961 0.1401
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