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Abstract—Mobile computing faces challenges due to the re-
source constraints of mobile devices, such as limited computing
power, energy, and connectivity. These limitations hinder the
use of high-complexity classifiers and wireless transmissions. To
address this issue, we propose a novel collaboration paradigm
between mobile devices and edge servers, where the edge server
assists the mobile devices by dynamically retraining a low-
complexity classifier to adapt to temporal changes in data distri-
bution. We propose a novel approach called drift control protocol
(DCP) which is inspired by TCP congestion control mechanism.
DCP aims to strike a balance between low-complexity classifier
retraining frequency and communication costs with the edge
server. It adjusts the update rate of the classifier on the mobile
device based on distribution drift characteristics and controls
the number of input samples sent to the edge server to improve
accuracy. We evaluate and study different versions of DCP using
synthetic and real datasets We demonstrate that DCP keeps the
error bound, while reducing the burden of the communication
cost by 90% for the mobile nodes, which makes our proposal
suitable for online domain adaptation.

Index Terms—Online Domain Adaptation, Data Drift, TCP,
Edge computing

I. INTRODUCTION

Machine learning (ML) is becoming an increasingly central
component of a broad spectrum of mobile applications [1],
ranging from autonomous vehicles and mobile health to smart
manufacturing [2]–[4]. However, as the complexity of the
input data and algorithms grows, the demands of such ap-
plications clash with the limited capabilities and resources of
mobile devices, e.g., computing power and energy reservoir.
This can be mitigated through edge computing [5]–[7], where
an infrastructure level compute-capable devices – the edge
server (ES) – takes over the execution of the ML algorithms.
However, this necessitates the transfer of information-rich data
streams over capacity constrained wireless links that are likely
shared by multiple mobile devices (MDs) [8], [9].

To address this impasse, a small number of recent contri-
butions propose a different paradigm for the MD-ES collab-
oration, where the ES actively assists the MDs in dynami-
cally adapting low-complexity classifiers that are specifically
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trained to focus on the current – and hopefully more localized
– distribution of input data perceived [10]–[13]- which is often
referred to as context. This offers the benefit that the MD can
use a feasible ML model to process the input data flow, or a
portion of it, thus decreasing the volume of data sent to the
ES, and possibly reducing latency.

The key to the success of this strategy is the ability of
the low-complexity classifier (which we refer to as local
classifier in the following) to adapt to the specific operational
context of the MD, which is likely associated with a more
focused distribution of the input data [14], [15]. Thus, such
approaches refer to the general area of domain adaptation
[16], but transpose this concept in the realm of online, rather
than offline, operations of the system. The hope is that by
adapting the parameters of the local classifier to localized
input distributions that are drifting over time the MD can
achieve high task performance in spite of resource and channel
constraints.

However, such an architecture may still suffer from prob-
lems when the domain changes over time [17], [18], which we
try to address in the present paper. The proposed architecture
would be efficient as long as the local domain at the MD
is precisely defined. The presence of a dynamic domain drift
may alter the local classification and make it inaccurate. One
of the core technical challenges, then, is to detect and precisely
quantify the drift. This calls for also monitoring the drift at
the ES, which must be done carefully since it may negate the
principle of the architecture to avoid a frequent supervised
intervention of the ES.

For this reason, in this paper we propose a domain control
protocol (DCP), which, as the name itself suggests, is inspired
by the well-known transmission control protocol (TCP), used
in the transport layer of the Internet suite to dynamically adjust
the amount of exchanged data across an end-to-end connection
[19]. Our purpose is to detect the need for a retraining of the
local classifier at the MD, performed by the ES, and force an
update of its parameters, by relying on minimal information
and with low frequency. Compared with a periodic update of
the local classifier, we show that our approach is able to detect
increasingly drifting data, in a similar way to the congestion
detection characteristics of TCP, and reduce the exchanges by
limiting them to when they are needed. As a result, we obtain



an accurate classification even in the presence of a variable
domain drift, without resorting to constantly retrain the local
classifier.

In more detail, our contribution is two-fold. First, despite the
true extent of the domain drift being inaccessible to the local
classifier, we mathematically derive an upper bound that al-
lows for a mechanism akin to congestion control, with additive
increase multiplicative decrease properties, that intensifies the
training of the local classifier following strong domain drifts.
Second, we formalize the DCP procedure, for which we can
actually identify variants, aptly named Tahoe and Reno since
they follow the same rationale of their counterparts in TCP. We
perform comparative evaluations of DCP techniques with other
alternative benchmarks, namely constant-interval updates, Q-
learning based approach and the Drift Adaptive Deep Rein-
forcement Learning based Scheduling (DA-DRLS) technique
[20], in both synthetic datasets that simulate various types of
drifts with tunable parameters and the room occupancy dataset
described in [21]. We prove that DCP is a practical low cost
solution for real implementations, as it achieves a better cost
vs. accuracy trade off with a 90% cost reduction with respect
to a 1-persistent update schedule.

The rest of this paper is organized as follows. In Section
II, we review related work. Section III presents the model of
the computing architecture with edge offloading and domain
adaptation, introducing the problem of dynamic domain drift;
inspired by formal theoretical results, we introduce DCP
as a practical approach to address it. Section IV contains
the comparative performance evaluation of DCP and other
different approaches. Finally, Section V concludes the paper.

II. RELATED WORK

Domain adaptation is an umbrella term for different meta-
optimization techniques used to adjust global knowledge to a
specific target domain with special distribution characteristics
[22], since the data used to train a model may be different
from what is encountered at run time.

Such techniques are relevant in the context of multimedia
applications, where domain adaptation is necessary to address
the differences in data distribution due to different ambient
conditions of images, videos, and audio content [14]. For
example, a machine learning model trained on images captured
in a well-lit environment may not perform as well when
applied to images captured in low-light conditions. Domain
adaptation can adapt the model to the new distribution of data
encountered in the target domain [23]. Domain adaption is also
relevant for natural language processing [24], as contextualized
word embedding techniques may provide a more expressive
interpretation of words, which is very relevant for sentiment
analysis or entity recognition. Finally, a field where the fine-
tuning of a classifier on a local domain received considerable
recent interest is that of chemical sensors [3], [25], since
monitoring of analytes and recalibration to different environ-
ments is important in smart healthcare, manufacturing, and
pharmaceutical industry.

In IoT scenarios, domain adaptation can similarly play an
important role in optimizing the performance of ML models
deployed on devices with low computational and storage
capabilities, where it is often not feasible to train and deploy
complex models. Thus, models can be trained on more power-
ful servers and then adapted to the target domain. This would
account for the specific characteristics of the data encountered
by the MD, such as sensor measurements from IoT devices,
so as to obtain high accuracy and reliability even on devices
with limited capabilities.

When adapting the domain to what observed in a specific
context, the local data distribution is commonly referred to as
target domain or drift distribution [25]. The literature is abun-
dant with proposals for adjusting a source domain to its drifted
version, essentially consisting of a layered application of ML
with multiple low-complexity techniques being regarded as
available at the local classifier, as well as performing domain
adaptation [26], [27].

Reference [23] proposes a unified framework to analyze
domain adaptation techniques from a holistic perspective.
Its focus is on multimedia applications, where the problems
mostly consist of the unavailability of annotated data, which
are impractical to obtain for many different domains [15], as
well as perform domain adaptation when the drift distribution
is unknown, which calls for state of the art techniques for
unsupervised learning [22]. All of these issues pertain to data
availability, not to their dynamic change over time or the
bottlenecks created in the network infrastructure.

In general, domain adaptation is mostly performed in the
literature to simplify learning in the presence of abundant data
with different contexts [17], [24], [26], [28]. The dynamic
acquisition of these data is not present, or anyways not a
concern as there are no real-time features to account for the
time dynamics, just a loose requirement for low complexity.
There are a few notable exceptions in this sense [18], [25],
where the domain drift is dynamic and time constraints are
present to adjust the domain in the fastest possible way. This
is especially the case for industrial applications, e.g., detection
of chemical hazards [3].

Chowdhury et al. [20] propose DA-DRLS which is a deep
reinforcement learning solution to a drift in demand through
time in a dense IoT scenario. However, in this case the objec-
tive clashes with making a sparing use of the computational
resources, as is instead our concern, motivated by the edge
offloading architecture [5], [6]. In [10], the authors use a
small “pioneer” neural network to select the neural network
used for the machine learning task. In other words, the few
existing works accounting for with the time dimension of the
drift compensation are trying to catch up with it as rapidly
as possible, whereas we argue that a pervasive computing
architecture would need instead to track it precisely, yet within
the limits of not overloading the channel [12].

This explains why we look for solutions that, in agreement
with the rationale of computational intelligence in IoT [2],
perform limited exchanges of information but try exploiting
them in the best possible way.
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Fig. 1. System model. An ES and an MD are connected via a wireless
channel. The ES sends model weights to the MD and the latter sends back
new measured points.

III. MODEL AND PROPOSED APPROACH

We consider a mobile computing scenario with two main
actors: a resource-constrained MD sensing the environment
and analyzing the collected data, and a compute-capable ES
connected through a wireless link [6] (see Fig. 1). The MD
is tasked with the classification of data points acquired by its
internal sensors, that acquire information from heterogeneous
data sources with different distribution across them. Due to its
resource limitations, the MD leverages edge offloading to the
more powerful ES.

Formally, we consider m to be the number of sensors the
MD is equipped with and n is the total number of points the
MD has access to at the end of the procedure. We denote
with X = {xi}ni=1 ⊆ Rn×m the set of the points measured
by the sensor, where xi ∈ Rm are the single measurements,
and Y = {yi}ni=1 ⊆ {0, 1}n×1 as the set of binary labels
associated with each point. Fig. 2, illustrates the normalization
of the parameter space, after which we obtain X̃ = {x̃i}ni=1 ⊆
[0, 1]n×m where all the features are normalized within [0, 1].

Due to its limited capabilities, the MD can support the
execution of low-complexity classifiers, which here we set
to be a linear model ℓ, e.g., a linear support vector machine
(SVM) [7]. In many settings and tasks, such low-complexity
classifier results in low performance when applied to general
input distributions. Conversely, the ES is implementing a high-
complexity classifier f capable of achieving high classification
accuracy. More formally, let F be the set of all the possible
classifiers and A a function that evaluates the accuracy of a
model, f can be defined as

f = argmaxc∈FA(c). (1)

Because its accuracy is optimal, we can consider it to be
our ground truth. Similarly ℓ is the best linear approximation
of f . Formally, let L be the set of all the linear classifiers
approximating f

ℓ = argmaxl∈LA(l). (2)

In the collaboration paradigm we propose, the ES performs
online parameter adaptation of the linear model of the MD to
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Fig. 2. Operation schematic. The ES uses previously evaluated points as a
prior and incrementally adds new points, whenever the MD sends them. This
incremental database is used to train the best possible linear classifier.

enable an efficient local classification. Thus, the ES optimizes
the parameters m and q, that is, the vector of the slope
and intercept of the m-dimensional linear decision function,
respectively. Because ℓ is derived from f and the latter is
arbitrarily complex, the local classifier introduces an error. To
mitigate this issue, in addition to parameter adaptation, the
MD can offload some data points to the ES. The choice of the
points to offload is left to the MD itself which selects them
in areas where its classification is less accurate (e.g., in the
region between the decision boundary and the support vectors
in an SVM). Both updating the classifier and offloading data
operations have a cost (e.g., bandwidth usage), and should be
kept to a minimum.

We consider slotted time, where the slots have the same
duration equal to the round trip time (RTT) of the channel
between MD and ES, independent of whether the MD starts
a communication attempt or not. All the communications
between the MD and the ES are always initialized by the MD
at the beginning of the slot and end with the reply of the
ES, which marks the end of the time slot. For the remainder
of the paper, we will use “round” instead of “slot” when it
is important to include the decision of the MD to start a
communication.

A. Dynamic Data Drift

Standard approaches to domain adaptation usually consider
a different context for the local classifier that needs to be
adapted only once [22]–[24]. Conversely, we assume that the
MD is placed within a dynamic environment, and for this
reason its data are subject to changes in distribution over
time. This phenomenon will hereby be referred to as the
online domain drift. Because of the continuous changes in the
data distribution, there is the need for the MD to periodically
update its internal classifier. In order to do so, the MD collects
measured samples and classifies them, at the beginning of each
round the MD decides whether to offload to the ES samples
that are very close to the decision boundary x̃ and asks for
the linear model to be retrained. These points are then used by
the ES to update its own internal classifier f and to produce a
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Fig. 3. Time evolution of the local classifier model. Upon request by the
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newer version of the linear classifier ℓ to be sent to the MD,
see Fig. 3 for a visual representation. We use ℓi and fi to
indicate the linear model and the complex classifier at round
i. We define the error introduced by the linear approximation
as

Ei,k =

∫
∥fi(x̃)− ℓk(x̃)∥dx̃ (3)

and we also define the error made by the MD as the difference
of its most recent classifier and the previous one

ei =

∫
∥ℓi(x̃)− ℓk(x̃)∥dx̃,with k < i. (4)

Because f changes through time it holds that Ei,k > Ei,i. We
aim to jointly minimize two utility functions: the error made
by the linear model and the total cost of updates. Because the
first one is steadily increasing and concave and the second
one is also steadily increasing and convex, we need to design
update policies that find Pareto efficient solutions.

Note that the MD does not know the accuracy of its local
classifier it can only infer the current error by using the most
recent value of ei.

B. Main findings

The purpose of this subsection is to prove some theoretical
motivations for the proposed procedure, i.e., that the MD can
quantify the magnitude of the drift by comparing the linear
model parameters between different rounds.

We preliminary observe that the MD ought to pre-process
the raw data coming from the sensors by normalizing its input
multi-dimensional data, to have coherent representation in all
dimensions.

We further state the following, in order to have a non-trivial
classification problem.

Definition 1. At any time instant at least one point for each
category is present in the considered space.

Otherwise, the classifier would have a perfect accuracy as
there would be only a category to choose from.

Now, let M ⊆ [0, 1]
m be a m-dimensional Borel space

[29]. Let fi : M → R be an arbitrary decision function and

ℓi : M → R be the corresponding best linear approximation
at round i. Let

∫
M∥·∥ be the measure applied to measurable

functions fi and ℓi. We can exploit the following results.

Theorem 1. The difference (i.e., the error) between fi and the
linear approximation ℓi is lower bounded by the difference
between fi and the linear approximation obtained in the
previous round ℓi−1, and upper bounded by the same quantity
plus the difference between the linear approximations over two
subsequent slots, i.e., ℓi−1 and ℓi. The latter is an upper bound
of the increment in the difference over consecutive slots.

Proof: For indices i and k < i, consider

Li,k =

∫
M
∥ℓi(x̃)− ℓk(x̃)∥dx̃ (5)

The first part of the theorem using the notation of (3) states
that

Ei,i ≤ Ei,i−1 ≤ Ei,i + Li,i−1 , (6)

which is immediate since the first inequality is a conse-
quence of ℓi being the best linear approximation of fi, thus
Ei,i = mink Ei,k, whereas the second part holds due to the
triangular inequality. Also, through an algebraic manipulation
of subtracting Ei,i, we get

0 ≤ Ei,i−1 − Ei,i ≤ Li,i−1 . (7)

Corollary 2. Theorem 1 can be promptly extended to the case
of non-consecutive slots.

Proof: With the same definitions of (3) and (5), and
iterating the reasoning, one can promptly get

0 ≤ Ei,k − Ei,i ≤ Li,k . (8)

In the previous result, the ground truth fi is not known
to the MD, but linear approximations possibly are, as they
are received from the ES at updating instants. The MD
cannot precisely evaluate the goodness of the current linear
approximation, it just knows it to be the best possible choice
made by the ES at the time of the update, nor it can assess the
error due to using an old linear estimate ℓk. However, it can
exploit Li,k to bound the increase in the error due to using
the old estimate, which is an indicator of how fast the domain
is drifting. This is what prompts us to a general approach for
domain adaptation strategies, where Li,k gauges the frequency
of requests for retraining the linear classifiers, depending on
this drift. These theoretical results imply that the drift in the
data will be bounded.

Theorem 3. Given an m-dimensional Borel space M ⊆
[0, 1]

m and a set of n points sampled from M X̃ = {x̃i}ni=1 ⊆
[0, 1]n×m with a set of binary labels Y = {yi}ni=1 ⊆
{0, 1}n×1 changing through time, the hyperarea (i.e. the error)
included between two hypersurfaces that perfectly separate the
two categories at any given time instant is finite.

Proof: Assume that there exists a pair of linear hyper-
planes whose distance measure is infinite, i.e., Li,k = ∞ . This
can only happen when the separating hyperplanes coincide



with the opposite parallel bounds of the Borel space M. Thus,
all points inside the considered space are in the same category.
This contradicts Definition 1, thus the separating hyperplanes
have finite slope and Li,k < ∞. By Corollary 2 also the
difference of the hypersurfaces is bounded.

This implies that a periodic updating of the classifier
achieves bounded average error in the presence of a drift, as
a direct consequence of Theorem 3. Yet, we can do better
than a periodic updating, in the sense of achieving the same
error with fewer updates, by tracking the drift through the
estimate given by the difference of the linear approximations.
In the following theorem, we prove that tracking the linear
approximations keeps the drift within the same bounds of a
periodic sampling (but with fewer updates).

Theorem 4. An aperiodic sampling triggered by the violation
of a bound on the difference between the linear approximations
achieves bounded drift. The periodic sampling achieving the
same average drift performs on average more updates.

Proof: Note that we compare a periodic and an aperiodic
update of the classifier. We follow (5) to denote their error
terms, but we add superscripts (p) and (a), respectively, to
distinguish between them.

Consider a periodic updating with period P and error
bounded to ε, i.e., E(p)

i,k < ε for k−i < P . Take E
[
E

(p)
i,i

]
=

φ < ε. Define an aperiodic updating that triggers a retraining
from the ES whenever the error of the linear approximation
L
(a)
i,k ≥ ε − φ and k−i ≥ P . By construction, the aperiodic

updating retrains the classifier less frequently than the periodic
one, and according to Corollary 2, E

[
E

(a)
i,k

]
< ε.

All of these results prove that tracking the difference of the
linear approximations is a good indicator of how the domain
is drifting, and less expensive than a periodic retraining. The
problem is that we do not have the linear approximation
available at every round, unless we perform a retraining with
period 1, which would invalidate the whole procedure. Thus,
we devise practical strategies to make good use of the linear
approximations when available (i.e., when the retraining is
actually performed), which leads to the development of DCP.

C. DCP Algorithms

We take inspiration from the congestion control mechanism
of the TCP protocol [19] in designing an online policy
to follow the domain drift. The main rationale behind this
transport layer protocol is that it is possible to send multiple
packets across a communication link without waiting for the
relative acknowledgement packet to be received by the sender
before a new packet is sent over the channel. This time interval
is commonly referred to as the round trip time (RTT).

The goal of TCP congestion control procedure is to auto-
matically adjust the number of segments sent in an RTT to the
network state. To this end, TCP uses two key parameters: the
congestion window (cwnd) that keeps track of the MSSs sent
over the communication channel at each RTT and the slow
start threshold (ssthresh) which indicates the end of the slow

start phase. Slow start is the first phase of the protocol where
the cwnd grows exponentially in the number of passed RTTs.
When the congestion window reaches the slow start threshold,
the former keeps growing linearly at each RTT according to
the number of received acknowledgements.

The setup of these parameters depends on different error
situations that can occur and are interpreted as problems due to
congestion. For example, a packet can be lost and the receiver
never receives an acknowledgement (timeout error); or, the
receiver keeps receiving the same acknowledgment for 3 times
(3-DUPACK). The main difference between versions of TCP
lies in how the protocol handles these events.

Our rationale is similar, in that we need to adjust the
number of rounds between two requests for retraining the
linear classifier. Ideally, if we detect that the domain drift is
static, i.e. the change is constant over time or it is completely
nonexistent, we can perform a sparser retraining. Conversely, if
a fast dynamic drift is perceived, the frequency of retraining
must be increased, to avoid that the linear classifier is not
accurate at all. Of course, this is adjusted to a different
scenario, since we consider rounds of the classifier as opposed
to segments, and especially we need to define the condition
considered as erroneous that triggers the congestion control
procedures.

In light of the previous results, upon performing an update
at round i, we consider the error between the current linear
approximation and the previous one performed at round k,
i.e., Li,k. Moreover, we introduce a system parameter called
precision threshold, just referred to as “threshold” in the
remainder of the paper and denoted as θ, that indicates the
maximum discrepancy between the linear decision models
over different updates that we are allowing before forcing a
new one. In other words, the threshold is violated whenever
Li,k exceeds θ.

We propose three procedures to update the linear model of
the mobile device:

DCP Tahoe: The MD requests an update to the ES accord-
ing to the evolution of the congestion window (cwnd) in the
TCP Tahoe protocol. If the threshold is violated, we treat this
as a TCP loss event, which results in halving the slow start
threshold and resetting the cwnd to 1 round. In practice, we
restart from the beginning every time an error occurs, while
reducing the duration of the slow start phase of the protocol
until we are in the linear phase after each restart.

DCP Reno: The approach is similar to DCP Tahoe, but
we consider the case of an error as receiving three duplicate
acknowledgements in TCP Reno, meaning the slow start
threshold is halved and the congestion window is set to
ssthresh plus 3 units. Thanks to this, the number of update
requests after an error event is reduced, as the updating policy
always waits at least 4 rounds before attempting a new update.

Moving average DCP: This is meant to automatically set
the threshold θ. At the start of the procedure, and at randomly
chosen instants thereafter, the method performs a series of
consecutive updates to estimate the mean error made by the
approximation, then the result is fed to a DCP Tahoe.



IV. PERFORMANCE EVALUATION

A. Key Performance Indicators

We ought to evaluate the performance of a procedure aimed
at finding the best update schedule with the following key
performance indicators (KPI):

Mean error: the mean of the errors made across all rounds.
It serves to grasp the ability of the techniques to follow
the drift during the whole experiment. Let ei be the error
performed at round i and let N be the total number of rounds
in the considered experiment:

ē =
1

N

N∑
i=1

ei (9)

Cumulative mean error: the cumulative mean of the error
made during the experiment, averaged over multiple experi-
ments, to limit the effect of random parameters generation at
model initialization and, in the specific case of the synthetic
dataset, to reduce the variability of different sequences of
weights generated with the same parameters. Let K be the
total number of experiments and e

(k)
i be the error performed

in the i-th round in the k-th experiment. For round n the
cumulative mean error takes the form:

Ēn =
1

Kn

K∑
k=1

n∑
i=1

e
(k)
i (10)

Cumulative standard deviation error: the cumulative
standard deviation of the cumulative mean error made across
the whole duration of the experiment. It is also the result of
a further mean across different experiments to limit the effect
of random generation. Let ē(k)1:n be the mean error from round
1 to round n in k-th experiment:

σ̄n =
1

K

K∑
k=1

n∑
i=1

√√√√(
e
(k)
i − ē

(k)
1:n

)2

n
(11)

Cumulative cost: the cumulative sum of all the instances
when the MD asks for a model update at the ES. We
assume the same unitary cost per each update indicated by
the indicator function 1(·).

C =

N∑
i=1

1(ℓi ̸= ℓi−1) (12)

Incremental cost: the first order discrete derivative of the
cumulative cost. It shows the expected cost of a round at
different times during the execution of the policy. To avoid
noisy plots, and since it serves as an average indicator, we
actually consider its mean value over a sliding window of size
k. We further define C1:i which is the cumulative cost from
round 1 to round i.

∇Cn =
1

k

n∑
i=n−k+1

(C1:i − C1:i−1) (13)

We now present and discuss the results obtained by applying
the proposed methods in both synthetic and real datasets.
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Fig. 4. Time evolution of a function generated for the synthetic dataset. The
speed at which the function changes is not constant across rounds and there
are some visible rapid changes, in particular in the first rounds. Bold red
curves indicate the exact shape at a given round.

B. Datasets

We evaluate the proposed approaches for (a) a synthetic
dataset, to test the ability of our methods to follow a con-
trolled variation of the parameter space; (b) a real dataset, to
test the performance in a concrete application scenario. The
synthetic dataset is constructed by a linear combination of
two randomly chosen multidimensional polynomial functions
of a pre-defined degree. The weights assigned to each function
at each time step are generated according to a parameterized
arbitrary non continuous function with tunable parameters for
the steepness and error rate by switching at any round to a
different sequence of weights. One of such parameters is the
correlation factor ρ that controls the probability that at any
given time the weight is the same of the one at the previous
round. This simulates, for instance, the position tracking of a
user that is going from point A to B with some random errors
introduced for example by a poor GPS connection. Another
example may be a thermometer in a partly cloudy day that
rapidly changes the measured temperature when exposed to
direct sunlight. Fig. 4 shows the evolution through rounds of a
synthetic 1D function. The change in magnitude through time
is evident, meaning that we can simulate large drifts and in
some regions the surface presents sudden jumps. This allows
us to simulate unexpected changes in the data distribution due
to erroneous readings of the sensors.

The real dataset [21] contains aggregated data from multiple
sensors monitoring temperature, CO2, humidity and light, to
infer occupancy of a research lab. The data is presented as
time series sampled every minute.

C. Benchmark Methods

We hereby describe the other methods we will compare our
DCP procedures with.
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Q-learning: The choice of whether to update or not is left
to a Q-learning agent which is trained with an epsilon-greedy
policy over the course of the simulation. The learning process
is described by a Bellman equation [30]

Qnew (st, at) = Q (st, at) (14)

+ α ·
(
rt + γ ·max

a
Q (st+1, a)−Q (st, at)

)
where st and at are the state of the system and the action taken
at time t respectively, Q (st, at) is the Q-value given the state
and the action pair, α ∈ [0, 1] is the learning rate that controls
how much new information overrides the current one, rt is
the reward obtained by the agent at time-step t and γ ∈ [0, 1]
is the discount factor which is in charge of controlling the
importance the model gives to future rewards. After some fine
tuning, in our experiments we will use α = 0.3 and γ = 0.99,
which leads to the best minimization of the model error.

In the epsilon-greedy policy, we also need to set ϵ ∈ [0, 1]
for the exploration-exploitation tradeoff of the agent, where
ϵ = 0 means that the agent always chooses the best action,
and ϵ = 1 forces the agent to choose an action at random,
thus exploring the state space. We chose an exponentially
decreasing ϵ to guarantee good exploration at the beginning
of the procedure and more exploitation as the knowledge of
the state space improves [31].

The agent is subject to a negative reward when it decides
not to transmit which is proportional to the error performed by
the model with respect to the last update and a less negative
reward when it decides to perform an update. This choice
is determined by the fact that we want to encourage the
model to learn the optimal point at which the error made by
the approximation is not too big without it being negatively
impacted by the communication cost alone.

Deep Q-Learning: We implement the update strategy of
DA-DRLS described in [20] adapting the reward to our model.

Constant-Interval Updates: We define constant update
procedures that ask for updates of the linear model at constant
interval. We use these methods as benchmarks to see how
a genie-aided method would perform knowing the optimal
constant update pattern to follow for the specific data drift.
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Fig. 6. Synthetic dataset: incremental cost averaged over a 200-round window.
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Fig. 7. Synthetic dataset: cumulative standard deviation of the error. Dotted
black lines represent the performance of constant interval updates from bottom
to top every 1, 2, 3, 5 and 7 rounds.

D. Results

In this subsection, we present the graphs obtained by
applying our proposed methods to the datasets introduced
in Section IV-B. We compare our procedures with constant
update policies, where the ES periodically retrains the MD
after a fixed number of rounds. We perform this comparison
with non-adaptive solutions, to highlight the ability of our
protocols to autonomously adjust the frequency for updating
the classifier. For our plots, we choose updates every 1, 2, 3,
5 and 7 rounds. These methods are reported in Figs. 8 and 12
as circle markers and with dotted lines in Figs. 5, 7, 9 and 11.

Figs. 5 and 7 show the cumulative mean error achieved by
the different methods in the synthetic dataset. It is noticeable
how all the methodologies are able to follow the changes
in the error while automatically identifying the good range
of constant updates to follow. Moving DCP, DQN and the
Q-learning based method follow closely the constant update
every two epochs, both from the mean and the standard devia-
tion standpoint. This behaviour may suggest their advantage in
following closely drifting domains while adapting accordingly.
Conversely DCP Tahoe and Reno obtain values close to the
constant update every 5 rounds, meaning that they follow the
drift less closely than their competitors.

Fig. 6 reports the incremental cost for the different tech-
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Fig. 8. Synthetic dataset: cost-error tradeoff.
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Fig. 9. Real dataset: cumulative mean of the error. Dotted black lines represent
the performance of constant interval updates from bottom to top every 1, 2,
3, 5 and 7 rounds.

niques. It is evident that Q-learning, DQN and Moving DCP
have a per round cost near 1 meaning that they require almost
always an update. DCP Tahoe and Reno show a less constant
cost change, meaning that they adapt the rate of update
according to the drift changes during the experiment.

Fig. 8 shows the tradeoff between the mean error and
the cumulative cost of the models. The Q-learning approach
does not obtain low mean error values, like constant update
techniques, even though its cumulative cost is comparable to
making updates every 1 or 2 rounds. In this dataset also DQN
shows similar performances, but with even higher cost neglect-
ing the initial training. Moving DCP performs very similarly
to a constant update every 2 rounds. DCP Tahoe and DCP
Reno manage to keep the mean cumulative cost significantly
lower (almost half) than the constant update methods and, as
previously shown with Figs. 5 and 7, they bound the error to
values comparable to constant update policies. This suggests
that they can effectively keep a contained error even in the
presence of a dynamic drift, while drastically reducing the
global cost making them a viable solution to our task.

Figs. 9 and 11 show the mean cumulative error and standard
deviation obtained by the different approaches in the real
dataset. Also in this case all the methods effectively follow
the mean error made by the drift. In this dataset, a big spike
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Fig. 10. Real dataset: incremental cost averaged over a 200-round window.
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Fig. 11. Real dataset: cumulative standard variation of the error. Dotted black
lines represent the performance of constant interval updates from bottom to
top every 1, 2, 3, 5 and 7 rounds.

of the dynamic drift is in the near vicinity of round 7000.
Thus, DCP Tahoe and Reno encounter a sudden increase in
the error and the standard deviation, due to their attempt to
decrease the update frequency as much as possible. However,
it is important to notice that, despite this localized disruption,
they recover very rapidly and converge to a stable trend.

Fig. 10 displays the incremental cost. It is evident that the
DCP methods experience periods with fewer updates followed
by bursty sections of fast updates. This behaviour is also
typical of TCP when the network is strongly congested [19].
Q-learning and DQN show almost a constant update pattern
meaning that they have issues in understanding when to
effectively intensify the updates.

Fig. 12 shows the tradeoff between error and cost required
for the policies. Q-learning approach proves to be too expen-
sive and unable to bound the error when compared to constant
updates. DQN achieves a very low value for the mean error,
but it is nonetheless very expensive to be applied. All the DCP
solutions are in the region below constant update policies, as
they effectively bound the error and reduce the cost without
needing prior knowledge the optimal inter-updates schedule.

Fig. 13 displays the number of rounds where the error made
by the DCP methods go over the threshold value θ set as a
parameter for the method. When compared to a model that is
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Fig. 12. Real dataset: cost-error tradeoff.
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Fig. 13. Synthetic dataset: number of rounds where the error of the linear
approximation is over the given threshold (θ = 0.03).

fully pre-trained and never updates itself according to the drift,
the DCP solutions outperform it by an order of magnitude. The
interesting remark is that for the most part of the experiments
the methods do not perform model updates and they focus
then in the sections where the drift changes more rapidly, i.e.
the same regions where the mean error is growing in Fig. 5.

Fig. 14 shows a similar behaviour of Fig. 13, meaning that
even in the real dataset, which has a milder but burstier drift,
the proposed methods actively reduce the update frequency
when it is not needed. The global saving in update requests is
again of 90% when compared with an update at every round.

Fig. 15 presents the mean error for different experiments
when changing the θ parameter for DCP Tahoe. By increasing
the threshold value the curves increase in magnitude but they
keep the same shape. This suggests that the method follows the
drift but tolerates larger errors before triggering the retraining.
Conversely, if the threshold value is set too low for the
natural drift of the dataset the error mechanism activates much
more frequently rendering the TCP inspired procedure almost
useless in bounding the error effectively.

Fig. 16 displays the execution of DCP Tahoe and Reno over
the synthetic dataset for different choices of the correlation
factor ρ. This result shows the adaptability of our methods to
different drifts as DCP Tahoe and Reno’s curves for the same
ρ are located in close proximity with one another and, more
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Fig. 14. Real dataset: number of rounds where the error of the linear
approximation is over the given threshold (θ = 0.03).
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Fig. 15. Synthetic dataset: behaviour of the error’s cumulative mean of DCP
for different values of the model threshold parameter θ.

importantly, they show the same behaviour. Side evaluations
confirmed these results when applying the two protocols in a
subsampled and supersampled version of the real dataset.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

Edge offloading can be leveraged in pervasive communi-
cation scenarios to enable simple MDs to perform complex
tasks. However, communication bottlenecks prevent heavy or
too frequent data exchanges to or from the ES. Our proposal
is to solve this problem by having the ES performing online
domain adaptation of the simple classifiers available at the
MDs thanks to the richer data representation available.

Still, this opens the question of how often to update the pa-
rameters of the classifier in the presence of a dynamic domain
drift. To tackle this issue, we introduced DCP, a technique
that mimics the well-known approach of TCP to dynamically
adjust the data exchange between the MD and the ES in the
presence of errors caused by a domain drift. We proved that
our proposed approach is effective in keeping the classification
errors contained without clogging the communication channel,
triggering domain updates only when necessary.

Possible extensions of the present work may actually take
inspiration from the present approach to push the similarities
with TCP further. It is well known that TCP suffers in
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Fig. 16. Synthetic dataset: behaviour of the error’s cumulative mean of DCP
Tahoe and Reno for different values of the ρ parameter, that is used during the
dataset construction. It is the probability that at any given round the previous
point is reused, meaning that there is no drift.

wireless environment [32] to its inability of discriminating
local losses due to the wireless channel from heavier losses due
to congestion. To this end, some extensions for wireless TCP
have been proposed. In our future work, we plan to leverage
these proposals to similarly discriminate isolated losses due to
errors caused by the lower complexity of the local classifiers
from systematic losses due to a domain drift, which requires
a more substantial intervention.
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