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Abstract—Energy delivery within smart microgrids often re-
quires prompt reaction to the system state. In the presence of
multiple energy sources, inefficiency may arise due to their lack of
coordination. In this paper, we frame the task of efficient energy
management as a dynamic program, and we further expand it
to the case of multiple agents. We combine this approach with
game theory and we leverage the similarity between Markov
games concerning information and energy exchanges in networks.
This methodological motivation allows us to identify distributed
control techniques for efficient energy delivery. Specifically, we
highlight how a naive distributed and selfish control of individual
nodes may be inefficient from a game theoretic perspective. Yet,
a decentralized strategy that combines energy availability and
global network cost as shared objectives can significantly improve
the outcome, approaching the performance of a centralized
resource allocation still in a distributed manner.

Index Terms—Smart Grid; Energy management; Distributed
control; Markov games.

I. INTRODUCTION

Smart microgrids (SMGs) are localized networks that in-
tegrate environmental energy harvesting, battery storage, and
connectivity to the main grid. Their primary objectives are
to enhance energy availability and optimize the utilization
of renewable sources [1], [2]. To achieve such objectives,
a careful monitoring of the system conditions is required,
particularly in terms of energy demand and availability in the
current network capacity. This, in turn, requires intelligent
management techniques to meet the energetic requirements
and avoid network downtimes [3].

Even though an SMG operates on a smaller scale than a
conventional power grid, it is generally better able to provide
energy tailored to the user needs thanks to its combination of
advanced sensing, control, and communication technologies
[4], [5]. Thus, we can think of adapting the trends character-
izing many cyber-physical systems pertaining to digital health
[6], the Internet of things [7], or vehicular networks [8], all of
them being driven towards timely monitoring and management
in the latest research trends. This last point can be addressed
by considering that timeliness in information systems is often
quantified through age of information (AoI) [9], [10], a metric
that characterize the freshness of status updates exchanged by
nodes.
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Strategies for prompt delivery of data to the end user, which
is of utmost importance for real-time content in context-driven
applications, can be applied to a similar extent also in the case
of SMGs. While energy delivery and AoI minimization may at
first seem different problems, which pertain to different kinds
of intangible goods, they are in fact very similar due to their
tractability as dynamic programs [11], [12].

In this work, we address the problem of scheduling a finite
number of power charging opportunities within a given time
window, aiming to maximize energy availability [13]. While
this problem was originally conceived for an AoI framework
[14], it can be transposed to the case of microgrid management
by leveraging the previously mentioned similarities. In our
analysis, multiple concurrent sources try to maximize an
average reward depending on energy availability and outage
avoidance. We consider that multiple sources act indepen-
dently, which may result on inefficient redundant charging. We
also include the impact of the current state of charge (SoC)
of the SMG in the optimal policy so as to obtain a stateful
solution [15]. While the solution with a single source present
could be obtained by dynamic programming, the less efficient
solution in the presence of multiple sources can be addressed
as a Markov game [16].

Despite the different resulting formalization, we can still
gain precious insights by leveraging such an analytical ap-
proach [17], and its extension to strategic multi-source inter-
action. In particular, we can investigate whether a distributed
solution can be made efficient and approach, if not in the
energy transfer rule, at least in the resulting performance, a
fully coordinated approach [18].

Game theory can also play a key role in this context,
and more advanced strategic investigations can be used to
this end [19]. More in general, our reasoning for the energy
provisioning in a smart grid can be extended to include multi-
agent scenarios, outlining advanced distributed algorithms that
can effectively handle real-time dynamics within the uncertain
and complex SMG environments. This results in extending
a standard Markov decision process scenario to a Markov
game, where the locally optimum choice is replaced with a
Nash equilibrium (NE) choice, based on best responses of the
players [20]. In this context, we highlight how a carefully
tailored choice of the player objectives, which reflects in a
different NE, may end up being very close to the optimum



allocation that can only be achieved through a centralized
approach. This gives the takeaway message that distributed
control of an SMG is possible if properly designed.

The remainder of this paper is arranged as follows. Section
II presents some background on the scenario and Markov
games application to inventory problems. The problem for-
malization and the proposed solution are discussed in Section
III. Numerical results are shown in Section IV. Finally, we
conclude in Section V.

II. BACKGROUND

SMGs integrate energy harvesting, powerline technologies,
and communication networks to enhance electricity genera-
tion, delivery, and usage [2]. Their key issue can be arguably
related to the maximization of energy availability at any given
time, so as to match peak demands and exploit energy reservoir
[21]. In particular, the maximization of the energy stored can
be regarded to as an instance of inventory problem.

At the same time, the seemingly unrelated research line of
AoI aims at quantifying, and possibly maximize, freshness
of status updates in a sensing/communication network. AoI
is a metric enjoying recent popularity and representing the
time elapsed since the last update [9]. Despite their apparent
differences, the task of minimizing AoI and maximizing the
energy storage of an SMG can be both framed as a (reverse)
inventory problem. Aside from minor variations in the setup,
such as the formalization as a cost minimization or reward
maximization, the goal and the possible strategies to approach
the problems are very similar.

As pointed out in [11], due to their nature of inventory
problems, both energy availability maximization and AoI
minimization can be cast as dynamic programs with properly
chosen reward function. This also allows to exploit Bellman
optimality conditions and recursion, so as to obtain a divide
et impera approach. The inventory problem is indeed broken
down into smaller problems applying analytical techniques that
are well consolidated for its solution [22].

However, instead of pure dynamic programming, we include
the role of multiple agents corresponding to the possible
different sources of energy for the SMG system. This changes
the formalization from a plain Markov decision process to
a Markov game, which implies an extension to the realm
of multi-agent optimization [16]. In a Markov game, agents
interact with each other and the environment, so that, instead of
choosing locally optimal solutions, the goal becomes to follow
Nash equilibria (NEs) where each agent’s choice is optimal
given the strategies of the other agents. Quite logically, this
implies new challenges compared to traditional single-agent
MDPs.

III. PROBLEM SETUP

The problem of energy supply from external sources in
an SMG can be framed as an inventory-like problem where
the energy resources are viewed as inventory items and the
microgrid has a maximum storage capacity equal to B. The
value of B represents the capacity of the energy storage
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Fig. 1. Example of N energy sources powering a smart microgrid (SMG).
The value of cn is set to 1 if the n-th source handles the energy replenishment.

units, such as batteries. Since the goal is to manage the
availability and utilization of resources over time, we set
a reward function that simply represents the energy level
available to the microgrid. In addition, we include a corrective
term to penalize energy outages [23].

The energy demand within a SMG can vary according to
various factors, including user consumption patterns, weather
conditions, and time of day. On the supply side, the en-
ergy availability from external sources is affected by factors
such as grid connectivity, grid stability, and energy purchase
agreements. Solving the resulting resource allocation problem
generally requires awareness of these conditions [24], while
at the same time balancing energy supply and demand within
the microgrid requires to efficiently manage the inventory of
external energy resources [5]. For the sake of simplicity, in this
analysis we consider a linearly decreasing constant usage of
energy availability, in line with standard inventory problems,
until energy is replenished by an external source [11].

For an SMG, energy needs to be replenished by external
sources to maintain a sufficient supply to meet the energy
demands. This can be achieved, e.g., by purchasing energy
from the main grid or receiving energy from other connected
grids. The process of replenishment ensures that the microgrid
has an adequate inventory of external energy resources [25].

We consider a slotted time axis, where a time slot is the
decision period of a single energy source, and in addition
it corresponds to the vulnerability interval during which a
concurrent transmission is not detected. On top of this require-
ments, we also introduce an externality in the form of a cost
C for the energy transfer. Replenishment can be made at will,
even though a constraint is implicit in setting a cost that sums
with the user’s welfare. The objective of the management can
be directly related to the energy level available to the SMG,
as this translates to optimizing the utilization of energy from
external sources to minimize energy loss or oversupply [21].

In the following, we assume that an individual reward
gained by source n ∈ {1, . . . , N} is equal to the energy



level of the SMG, minus outage penalties and individual costs
[16]. We denote with ℓt ∈ [0, B] the energy level at time t
and with K the proportional reward coefficient of the energy
level. We use Ω for the outage penalty constant, and C for the
transmission cost. The instantaneous reward of the nth source
at time t can be thus written as

Rn,t(ℓt) = K(ℓt/B)− Ω1[ℓt = 0]− C1[cn = 1] (1)

where 1[·] denotes the indicator function, which is equal to
1 if the argument is true, 0 otherwise. The indicator function
models the fact that transmission cost is included if cn = 1,
i.e., only if the source itself is handling the replenishment.

In the following, we set the normalized reward as K/B =
10, the outage penalty as Ω = 5, and the transmission cost C
in the range [0.5, 10]. We also assume that, in the absence of
a replenishment event, the energy level of the SMG decreases
by 5% at each slot. All these numerical choices just relate to
getting a sufficiently dense time granularity but are not

We model the evolution of the energy level as a Markov
chain, where the energy level ℓt is the discretized system
state and its evolution follows a transition probability qij =
P[ℓt+1 = j|ℓt = i] that depends on the probability pi that
an energy source replenishes the SMG when the level ℓt is i.
From state i, only states B and i−1 are accessible in one slot.
Given that all energy sources are symmetrical, the transition
probabilities are

qi,j =


(1− pi)

N ∀ i ∈ Z+ j = i− 1

1− (1− pi)
N ∀ i ∈ Z+ j = B

0 otherwise.
(2)

Then, according to [16], we can define the expected dis-
tributed selfish reward as E [Rs

t (i)] when the state is i and the
action taken is described by pi. Due to the symmetry of the
problem, the expected reward is equal for all nodes, an we can
thus omit the node index n. Since the actions of the nodes are
independent, we can write

E [Rs
t (i)] = E

[
Ki/B − Ω1[i = 0]− Cqi,B

]
. (3)

However, we can also consider a centralized policy, which
implies that the nodes are coordinated, acting with the goal of
avoiding multiple concurrent replenishment. This corresponds
to an equivalent system with just one source, whose expected
reward replaces the system transition probabilities in (2) with
just pj (only one source is transmitting. Thus, the we can
modify (3) to consider a centralized reward Rc

t(i) whose
expected reward is

E [Rc
t(i)] = E

[
Ki/B − Ω1[i = 0]− Cpi

]
. (4)

Finally, we can define a distributed global policy chosen
as a kind of intermediate methodology. Here, even though
nodes act as individual agents, the local costs are considered
to be the ones incurred by the entire system. As before,
all the nodes share the objective of maximizing the reward,
i.e., keeping the energy level as high as possible, avoiding
outages, and minimizing replenishment costs. In this way, we

acknowledge that multiple sources are serving the SMG, while
still considering a distributed approach. We expect this to lead
to inefficiency due to lack of coordination [14], albeit more
contained than the selfish approach. In this case, the expected
reward becomes

E [Rs
t (i)] = E

[
Ki/B − Ω1[i = 0]−NCqi,B

]
(5)

The addition of the coefficient N in the cost function of the
latter distributed policy is meant to contain the problem known
as the tragedy of the commons [20], which affects distributed
management when individual players are moved by selfish
objecives.

The resulting Markov decision process built on top of this
chain is easy to solve when the agents act in a coordinated
fashion. However, for the distributed policies we treat it as
a Markov game, where we model the simultaneous choices
of the players as a static game of complete information. In
this case, we consider that multiple agents make independent
decision on whether to perform a replenishment, with the
objective of computing the inefficiency coming from their lack
of coordination [26].

Whether distributed or centralized, the problem can be
solved via value iteration [27]. This requires the introduc-
tion of discount factor γ ∈ [0, 1[ to obtain a finite expected
reward. In the following, we set γ = 0.99, but other values
provide analogous results. Then, we estimate the discounted
value of the present state ℓt = i under an optimal policy
π∗ : {1, . . . , B} → [0, 1] as

vh(i)
.
= E

[
+∞∑
k=0

γkRh
t+k+1

∣∣∣∣ ℓt = i, pk = π∗(i)

]
(6)

for states i = 1, . . . , B and reward type h ∈ {s, g, c}. In (6),
Rt denotes the reward obtained at time t by following the
optimal policy π. The state value is estimated by iterating the
following update rule until convergence:

vhk+1(i)
.
= max

pi

E
[
Rh

t+1 + γvhk (ℓt+1)| ℓt = i
]

= max
pi

E
[
Rh

∞(i) +

B∑
j=1

γ qi,jv
h
k (j)

]
.

(7)

IV. NUMERICAL RESULTS

We assess energy provision from N = 5 sources in an SMG
by assuming battery of B = 20 units and linear energy usage
of 1 energy unit per time epoch. We compare three possible
strategies to apply VI and derive the replenishment policies by
individual nodes, as well as the following performance met-
rics: (i) average probability of replenishment under the optimal
policy; (ii) average reward under the optimal policy. Both (i)
and (ii) are evaluated for variable costs of replenishment.

Fig. 2 shows the probability distribution of the three poli-
cies. Interestingly, the centralized policy is threshold-based,
with a sudden decrease to 0 in the probability of replenishment
when the state is high. Moreover, this transition point depends
on the cost (the higher C, the lower the threshold).
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Fig. 2. Comparison of different policies for N=5 energy sources for different
values of the energy transfer cost.
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Fig. 3. Average energy transfer probability vs. energy transfer cost, N = 5
energy sources.

Conversely, the distributed policies can only approach this
with a smoother behavior, as they have no control on who is
going to perform the replenishment since they have no direct
form of coordination.

Fig. 3 considers the average replenishment probability ob-
tained by the three policies, versus the replenishment cost.
One can see that the three policies offer a similar trend, i.e.,
replenishment actions become less frequent as they are more
expensive. It is worthwhile noting that the distributed selfish
approach is more aggressive than the centralized optimum.
A distributed global approach appears to closely mimic the
centralized optimum and qualifies as a better approach for a
centralized-like management.

To better elaborate on this trend, we consider in Fig. 4 the
expected energy level. Notably, the distributed selfish approach
is the one with highest level of energy but this also comes at a
cost. Indeed, this confirms that the distributed selfish approach
is at risk of overloading (a possible limitation to remove in
further versions of the approach is that the types are common
knowledge).
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Fig. 4. Average energy level of the SMG vs. energy transfer cost, N = 5
energy sources.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we applied the rationale of Markov games to
the problem of energy replenishment in an SMG with multiple
available sources [16]. This is meant to provide NE allocations
that come close to a centralized optimal strategy for delivering
energy to the SMG.

In general, the extension of dynamic programming to
Markov games for the case of multiple agents and the exploita-
tion of recursive procedures such as value iteration [27] makes
for a convincing distributed approach. Our work assumptions,
such as requiring full knowledge on the system state, are also
easy to extend to more complicated scenarios.

For this reason, future work will involve the extension to
energy replenishment problems within more elaborate game
theoretic scenarios, possibly including a Bayesian approach
[19]. In addition, game theory can also be applied to security
issues for SMGs, due to their susceptibility to malicious data
injection and attacks [28], [29].

In general, game theory provides a tool to model and
analyze the strategic interactions between multiple agents,
either collaborative as in the present paper, but also driven
by malicious intents [30]. The advantage of a game theoretic
investigation lies in its analytical character and its direct im-
plementation through distributed dynamic management [12].
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