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Abstract

Sensor data exchanges in IoT applications can experience a variable delay due

to changes in the communication environment and sharing of processing ca-

pabilities. This variability can impact the performance and effectiveness of the

systems being controlled, and is especially reflected on Age of Information (AoI),

a performance metric that quantifies the freshness of updates in remote sensing.

In this work, we discuss the quantitative impact of activation and propagation

delays, both taken as random variables, on AoI. In our analysis we consider an

offline scheduling over a finite horizon, we derive a closed form solution to eval-

uate the average AoI, and we validate our results through numerical simulation.

We also provide further analysis on which type of delay has more influence on

the system, as well as the probability that the system fails to deliver all the

scheduled updates due to excessive delays of either kind.
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1. Introduction

AoI is a performance metric that enjoys recent popularity in remote sensing

scenarios [1, 2, 3]. Defined as the difference between the present time and the

generation instant of the most recently received packet, it quantifies the fresh-

ness of the data available at the final endpoint. As such, AoI is an important

metric for evaluating the real-time performance of sensor networks, for ambi-

ent monitoring, surveillance, and automation in Industry 4.0 or smart living

environments, where timely and accurate awareness of events is crucial [4, 5].

Most AoI evaluations [2] assume a negligible delay between the request of

a status update and its activation. This approach also addresses situations

in which this delay is non-negligible but constant, as the resulting AoI at the

receiver’s side is just biased by a constant offset. Conversely, if the delay is

variable, it makes sense to include it and evaluate its overall impact [6, 7].

The delay may be variable, to the point of significantly impacting AoI. This

can happen due to multiple reasons, related to the acquisition technology or the

transmission chain process, in which case we will speak of activation delay, or

propagation delay, respectively.

The former kind of delay is typical of smart environments with sensing tech-

nology [8]. This variable delay could impact the performance of the real-time

system control. At the same time, other sensors may be used for closed loop

control, such as regulating temperature or humidity in a room, or water and

fertilizer in a smart greenhouse, by activating HVAC systems. In this situation,

the delay between the ambient parameters changing and the sensor detecting

their variation also depends on the effectiveness of the control systems adopted

[9].

Moreover, in sensor networks, it is frequent to utilize the same nodes for

multiple functions, so that they partake in many acquisition and transmission

chains [10]. This multitasking can lead to delays in response times, as the

sensor may be busy processing previously received requests when a new one

is received. Properly prioritizing tasks and adopting a fair resource sharing
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is often made complex by overhead in practical scenarios, and uncoordinated

approaches frequently obtain inefficient allocations [11]. Thus, the global delay

may be variable because of congestion or queueing delay at the sensor’s buffer,

depending on the queue discipline and whether multiple users are accessing the

same link [12, 13].

Depending on the type of sensors, the technology used, the environmental

conditions, and possible multitasking congestions, the activation delay can span

several orders of magnitude, from milliseconds to seconds [14].

Propagation delay is usually due to external factors, not directly related to

the data acquisition system. A common cause can be weather and atmospheric

conditions in aerial links, which can lead to significant fluctuations in AoI as

perceived at the receiver’s side [15]. Another cause of propagation delay are

systems with long delay channels, as, for example, underwater [16] or satel-

lite communications [17], or even terrestrial radio links at high frequencies [18].

Another possible source of propagation delay is the offload of computation to

servers in the cloud [19, 20]. This may cause random delays with analogous

characterization as the previously mentioned propagation phenomena. Also,

even when the transmission time is negligible but the receiving server is con-

gested, the server access discipline can lead to further delays [12, 14, 21]. Lastly,

propagation delay can arise in the case of data updates that consist of pack-

ets retransmitted over multiple attempts, following an automatic repeat request

(ARQ) procedure, as shown in [22].

The extent of propagation delays highly depends on the scenario considered.

Single-link propagation with electromagnetic waves (either wireless or wireline)

is below the millisecond, but when multi-hop connections are considered and

data are sent to remote servers, this can increase up to seconds, with atmospheric

conditions and/or retransmissions further affecting it [23]. Finally, extreme

scenarios like deep space or underwater acoustic communications can have even

slower propagation with delays of minutes or even hours [24].

Activation and propagation delays coexist, and in certain scenarios they can

be both significant. For example, satellite imaging clearly suffers from propaga-
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tion delay introduced by the physical distance but also activation delay depend-

ing on the computational weight of the task [15]. Remote sensing processed by

cloud servers may instead suffer from an activation delay caused by sensing ac-

quisition in the presence of congestion, whereas uploading data to the cloud may

imply a significant propagation delay as well [19]. Depending on the scenario,

either type of delay may be more relevant than the other. We also notice that

the aforementioned scenarios for extreme communications, where propagation

delays are extremely high, are also likely to have low data rates and significant

activation delays as well, as they are clearly not constrained by the stringent

requirements of ultra-low latency communications.

For the purpose of quantitatively evaluating the impact of both delays vari-

ability on AoI, we consider the problem of a finite-horizon offline scheduling of a

fixed number of transmissions [25], where the time of departure for a fresh sta-

tus update may be subject to non-negative activation and propagation delays,

denoted as D and T , respectively. We show how, due to AoI computations,

the relevant terms impacting the AoI evaluation are the first and second or-

der moment of these random quantities [3, 26]. Our study reveals that both

variable activation and variable propagation delays can influence the AoI per-

formance, with the latter being more critical. This variability is undesirable

and can be mitigated through techniques such as adaptive control or machine

learning [17, 27, 28], in the effort of achieving overall improved performance.

The rest of this paper is organized as follows. Section 2 discusses related

work. Section 3 presents the analysis and computes the expected AoI if the

two types of delay are present in the case of stateless optimization. Section 4

presents quantitative results and we conclude the paper in Section 5.

2. Related Work

When assessing the impact of delay, it is common to treat some terms as

constant for the sake of simplicity, especially if they relate to non controllable

aspects of the transmission pattern [2, 29]. Thus, it makes sense that delay

terms are neglected in AoI evaluations if they just correspond to a constant bias.
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Moreover, many studies related to the approach presented here exploit geometric

arguments on the saw-tooth pattern of the AoI increase over time [4, 25, 30],

where the introduction of a constant delay would just rescale the involved areas.

This is still the case even if more refined approaches are considered, such as

dynamic programming or constrained optimization [20, 31].

Yet, some existing papers explore the connection between non-trivial delay

scenarios and the resulting AoI. For example, [14] studies the connection between

delay, albeit meant as a performance indicator and not an input value, and

AoI. This reference is analogous to our approach as it considers a single agent

scheduling with an optimal schedule for transmission of updates, although the

main considerations are based on a general queueing model for AoI, which is a

classic parallel direction for research [4, 21]. On the same line, [31] focuses on

a similar problem, tracking multiple AoI related statistics (e.g., peak, outage)

and a joint optimization of AoI and delay.

Conversely, [12] explores the role of an external delay, i.e., elapsed between

sending the request and receiving the update, on peak AoI. This might be con-

sidered analogous to propagation delay in our study. Unlike our work however,

the main focus is on the role of preemption in the queueing policy.

Another related study was performed in [26], where transmission over mul-

tiple hops is considered, each adding independent and identically distributed

(i.i.d.) delays, and evaluating AoI. In that case, the analysis corresponds more

to that of a propagation delay, and the issue of scheduling the updates in ad-

vance is not considered; rather, dynamic forwarding of data with proper policies

is studied with the objective to keep the AoI contained.

In a similar spirit, [30] studies a non-negligible propagation delay in a queueing-

based analysis for AoI. In that analysis, a geometric approach akin to the one

considered in the following is employed, as originally proposed by [3] and ex-

ploited in other recent studies [25].

In [6], an aerial link with non negligible propagation delay is considered,

leading to discuss the impact of ARQ on AoI, showing a threshold criterion for

the delay term, beyond which retransmission is no longer convenient, similar
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to [32]. In [27], an optimal controller is derived for an online scheduler in the

presence of random two-way delay. This analysis can be related to [33], which

instead of AoI considers the minimization of the estimation error of a monitored

process. These studies can be regarded as similar, due to the fact that these two

quantities are both seen as increasing penalties as the scheduled updates become

sparser. Differently from our paper, they consider an infinite time horizon,

whereas we work with a finite set of updates over a limited observation window.

Reference [34] considers the impact on AoI of a variable propagation delay,

but does not include the activation delay as we do. Another difference with

respect to our work is that they consider an online sampling policy, as opposed

to our offline scheduling. In other words, they plan, based on the currently

experienced delay, when to perform the next update. Instead, we assign multiple

transmission instants at once, exploiting a prior statistics of the delays.

Finally, [1] considers AoI under a variable activation delay, but the analysis

is only limited to that. This paper can be considered as an extension of the

investigation to both types of delay, also including propagation, which requires

a re-design of the entire analysis and prompts novel results and comparisons

between the respective impacts of the delay terms.

3. Theoretical Framework

We consider the scheduling over time of M status updates supplied by a

sensor across a finite horizon of length L, with the instants of transmission

denoted as t1, t2, . . . , tM . The instantaneous AoI δ(t) at time t is defined, in

this scenario, as the difference between t and the moment of receiving the most

recent update u(t), i.e.,

δ(t) = t− u(t) . (1)

The ith update can be subject to two random delays: an activation delay

Di and a propagation delay Ti. The former represents the time between data

acquisition and transmission from the sensor, i.e., if the sensor acquires the data

at time ti, it will be ready to transmit at time ti +Di. Instead, Ti is the term

6



considered most often [34] and represents the time elapsed since the release of

the data packet from the sensor, before it eventually reaches the destination.

Due to this further delay, the update originally scheduled at time ti + Di is

eventually received at ti + Di + Ti, and the information carried represents the

system state Ti seconds ago. As a consequence, the update resets the AoI value

to Ti, instead of 0 as commonly assumed in all the papers where the propagation

delay is neglected [35]. The trend of AoI can be observed in Fig. 1.

We assume that all Di terms are i.i.d. and therefore characterized by the

same probability density function (pdf) denoted as fD(x). The same consider-

ation is valid for the Ti terms, with pdf denoted as fT (x).

The average AoI ∆ is computed as

∆ = E

[
1

L

∫ L

0

δ(t)dt

]
(2)

with the expectation taken over the random variables Di, Ti with i ∈ 1, 2, . . .M .

Note that ∆ is a function of the chosen transmission instants t1, . . . , tM .

We consider an offline transmission schedule of a constrained number of

updates within a finite time span, with continuous granularity [25]. The decision

of a finite time horizon is well suited to describe a wide variety of real-world

scenarios since most sensing applications present this constraint due to a variety

of reasons. The transmission time could be limited by hardware capabilities,

e.g. battery lifespan, or by decision policy, e.g. other device need the channel

for transmission, or even normative reasons [36].

Accordingly, we study a stateless optimization of the transmission pattern,

i.e., the schedule is computed in advance, prior to beginning the monitoring

task, and cannot be modified at run-time, e.g., accounting for the experienced

delays. While this choice may seem restrictive at first glance, it can actually

be practical in many settings, where handling an online schedule adaptation

is not feasible for low-complexity and battery-powered IoT nodes. Moreover,

our intent is to give a quantification of the impact of variable delays, which

would apply in both stateful and stateless optimization. Thus, our findings can

be translated to the aforementioned related approaches considering an online
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Figure 1: Example of grow pattern of AoI with M = 4 transmission and a finite horizon of
duration L.

scheduler [35].

Without loss of generality, and for a better representation of our results, we

chose L = 1. This implies that the delays terms and the AoI will be expressed

as values in [0, 1], since they are fractions of L.

3.1. Periodic updates

If neither activation nor propagation delays are present, i.e., for the case of

D = 0 and T = 0, it is immediate to see how the updates ought to follow a

regular pattern, where each of them is performed at an integer multiple of a

quantity Q defined as

Q =
1

M + 1
(3)

If such a periodic pattern is used even in the presence of additional variable

delays, we can obtain the resulting AoI through geometric considerations over

the saw-tooth diagram shown in Fig. 1. The expected AoI can be computed

as the normalized sum of the areas of the M + 1 isosceles triangles and the M

rectangles in the AoI pattern. If ∆Dj = Dj −Dj−1 and ∆Tj = Tj − Tj+1, then
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the side of the j-th triangle is
Q+D1 + T1, for j = 0

Q+ ∆Dj + ∆Tj , for 1 < j ≤M − 1

Q−DM − TM , for j = M.

(4)

For the side of each rectangle we haveQ+ ∆Dj + ∆Tj , for 1 ≤ j ≤M

Q−DM − TM , for j = M

(5)

and the height of each triangle is Tj−1, for j ≥ 2.

Eventually, the average AoI can be written as

∆ = E[∆A + ∆B + ∆C ] (6)

with ∆A the area of the first triangle, ∆C the area of the last trapezoid and ∆B

the area of all the other trapezoids. The three terms can be written as

∆A =
(Q+D1 + T1)2

2
(7)

∆B =

M−1∑
j=2

(
(Q+ ∆Dj + ∆Tj)

2

2

)

+

M−1∑
j=2

(Tj−1(Q+ ∆Dj + ∆Tj))

(8)

∆C =
(Q−DM − TM )2

2
+ TM−1(Q−DM − TM ) , (9)

respectively. Note that due to linearity the expected value can be bring inside

the summation. Also, since all Di and all Ti terms have the same respective

distribution, E[Di] = E[D] and E[Ti] = E[T ], ∀i. These considerations allow us

to simplify (6) and rewrite it as

∆ =
Q

2
+M E[D2] + (M − 1)(E[D])2

+ E[D]E[T ] +MQE[T ]

(10)
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3.2. Optimized update schedule

A better allocation over time of the M updates follows from solving a pre-

liminary constrained optimization, which, according to the discussion above, is

then implemented within an offline scheduling. This optimal stateless scheduling

can be obtained through analogous geometric considerations over the saw-tooth

pattern increase of AoI.

In the general case, the problem can be stated by first computing the ex-

pected AoI, and minimizing it. If we define zj = min(tj + Tj , L), i.e., the

transmission instants that minimize the AoI, then it is possible to write the AoI

as the sum of two terms, i.e.:

∆ = ∆1 + ∆2 (11)

with

∆1 =

(
1

2
E
[ M∑

j=0

zj+1 − zj
])

s.t. zj = min(tj +Dj + Tj , L)

(12)

being the area of the j-th triangle and

∆2 =

(
E
[ M∑

j=0

Tj · zj
])

s.t. zj = min(tj +Dj + Tj , L)

(13)

being the area of the corresponding rectangle.

An exact analytical computation is made difficult by the presence of the

minimum that results in a non-linear term. However, if the probability ofDj+Tj

being larger than Q is negligible the analysis becomes tractable, as min(tj+Dj+

Tj , L) = tj +Dj +Tj . Note that the assumption P (Dj +Tj > Q) ' 0 is sensible

since having a delay larger than the regular gap between planned updates would

make the system highly unreliable. A practical transmission schedule could not

be implemented for such a system.

Focusing on this case, it is convenient to quantify, instead of the instants

t1, t2, . . . tM , the M + 1 inter-transmission intervals y1, y2, . . . yM , with yj =
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tj+1 − tj , with t0 = 0 and tM+1 = 1. The two notations can be promptly

translated into one another, accounting for the following constraints.

yj > 0 ∀j;
M∑
j=0

yj = 1 (14)

Thus, since the time instants t1, . . . , tM of the updates are delayed by M

i.i.d. terms D1, . . . , DM and M i.i.d. terms T1, . . . , TM (also mutually indepen-

dent with one another) it is possible to rewrite (12) and (13). To simplify the

notation, we also consider ∆Dj = Dj+1 −Dj and ∆Tj = Tj+1 − Tj , where for

notational consistencies we set the auxiliary terms D0, DM+1,T0, and TM+1 to

0.

Equation (12) becomes

∆1 =
1

2
E

 M∑
j=0

(yj + ∆Dj + ∆Tj)
2

 (15)

while (13) becomes

∆2 = E

 M∑
j=0

(yj + ∆Dj + ∆Tj)Tj

 . (16)

Note that linearity allows us to carry the expectation term inside the sum-

mation. Following the previous considerations that E[Dj ] = E[D] ∀j and

E[Tj ] = E[T ] ∀j, and after some algebraic steps, it is possible to rewrite (11) as

∆ =
1

2

M∑
j=0

y2j + (y0 − yM )E[D] + E[T ]

M−1∑
j=1

yj + C (17)

with C being a constant term that does not depend on the yj equal to

C = M E[D2]− (M − 1)(E[D])2 + E[D]E[T ] . (18)

Considering the condition given by (14) we can take the gradient of (17)

with respect to the yj and set it to 0. After some algebra, we arrive at the
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following system of M + 1 equations:
y0 +

∑M−1
j=0 yj = 1− 2E[D]− E[T ], j = 0

yj +
∑M−1

j=0 yj = 1− E[D]− E[T ], j = 1 . . .M − 1

yM = 1−
∑M−1

j=0 yj , j = M

(19)

whose solutions are

y0 = Q− E[D]− E[T ] for j = 0 (20)

yj = Q(1− E[T ]) for j = 1, . . . ,M−1 (21)

yM = Q+ E[D] +MQE[T ] for j = M (22)

As a result, (11) can be rewritten as

∆ =
Q+ 2Mσ2

D −MQ(E[T ])2 + 2QM E[T ]

2
. (23)

where σ2
D is, by definition, the variance of D.

To check the correctness of the formula, we calculated the expected AoI

through both the formula in (23) and the summation in (17). The calculation

was carried out for 100 values of D and 100 values of T , between 0.001 and 1, for

a total of 10000 combinations of the two possible delays. The average difference

between the two results was ' 2.12 · 10−18.

3.3. Probability of Overflow

Equation (23) is valid only if the condition on the minimum holds, i.e.,

min(tj +Dj + Tj , L) = tj +Dj + Tj . This implies P (Dj + Tj > Q) < ε, with ε

small. A possible method to check this condition is to evaluate the probability

of overflow, i.e., that not all scheduled updates are carried out by the system.

Due to the random nature of the delays, it always exists the possibility that

an update arrives after the finite transmission horizon, especially the last one.

This can be written as inequality in the following form tM + DM + TM > L

and can be further rewritten using inter-arrival times and obtain the following

condition: SM = TM + DM > yM . It is possible to rewrite the probability of

overflow as:

P (SM > yM ) = 1− FSM
(yM ), (24)
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Figure 2: Average AoI in the optimal scheduling. Comparison between simulation and (23)
for uniformly distributed delays and M = 4.

where FSM
(x) is the cumulative distribution (cdf) of SM .

Note that SM is the sum of two independent random variables, and con-

sequently, its pdf is the convolution of those of DM and TM . For example, if

both TM and DM are uniformly distributed, then SM follows a triangular dis-

tribution. If they both follow an exponential distribution, then SM is a hypo-

exponential (generalized Erlang) random variable. In general, an exact solution

depends on how the delays are distributed. For this reason, we will perform this

evaluation by means of simulation in the following section. It is worth noting

that the main point of our analysis is that the probability of overflow must be

small, not only for the analysis to hold but also as a practical criterion to obtain

a meaningful usage of all the opportunities.

4. Results

We now present some numerical results obtained from the previous equa-

tions. All evaluations consider an offline scheduling ofM transmission opportu-
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nities over the interval [0, L] with L=1. To validate the theoretical analysis, we

consider the following 3 scenarios: (i) Only activation delay; (ii) Only propaga-

tion delay; (iii) Both delay terms. Unless otherwise specified, the comparison

is made with the same total expected delay, i.e., scenario 3 considers half the

expected activation delay of scenario 1 and half the expected propagation delay

of scenario 2.

In Fig. 2, we compared (23) with the results of a simulator written in

Python.1 The results obtained through simulation are showed as a shaded

area that highlights the average AoI plus/minus the standard deviation. As

can be seen from the plot, simulation results match those obtained from (23),

with just some numerical noise. The reliability of the analysis decreases as the

average delay increases, which emphasizes the role of the overflow probability

as discussed later.

Furthermore, the lowest expected AoI is obtained for the delay being only due

to activation, whereas propagation delay is shown to have a more detrimental

effect. This is also consistent with the theoretical analysis, where D is shown

to introduce one fewer additional term in the AoI formulas than T . From

an intuitive standpoint, it is also clear how, for the same expected value, the

propagation delay impacts more than the activation delay as it causes delay in

the reception but also AoI to reset at a higher value.

In Fig. 3, we show how the delay distribution influences the average AoI.

We consider the case of M = 4 transmission opportunities with uniform and

exponential distributions. It is evident that the case with only propagation de-

lay is not impacted by the specific statistics of T , but only its average value,

consistently with (23) not containing any higher order moment, but just the

term (E[T ])2. For the case with only activation delay, the results are consis-

tent with [1]. For low delay values, which can be quantified as x < 0.005,

the difference between the uniform and exponential distribution are negligible.

1The code is available at: https://github.com/jesus-333/AoI-Simulation/blob/main/
AoI_Delay_BOTH.py
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Figure 3: Average AoI under optimal scheduling for different distributions of the delays,
M = 4. When both delay terms are present, they follow the same distribution.

However, as the average delay increases, the average AoI soars much faster for

the exponential distribution.

In Fig. 4, we observe how the average AoI varies with the average delay

for two different values of M . As expected, a larger number of transmissions

decreases the expected AoI. Yet, for example, the curve for only propagation

delay but more transmissions (M=5) overtakes that with only activation delay

yet fewer transmissions (M=4) when the expected delay value is higher than

0.04, thereby confirming the stronger impact of the propagation delay.

In Fig. 5, the average delay of one kind is kept constant to 0.04, whereas the

other follows a uniform distribution whose average value changes as reported

on the x-axis. It is again shown that the propagation delay dominates the AoI

behavior. Not only does the propagation delay leads to an overall higher AoI,

but it also gives a more rapid increase, whereas the AoI for a constant E[T ] and

a variable activation delay is approximately constant if E[D] < 0.04.

To further investigate the case with both delays, we consider an average total
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to 0.04 and the other to a variable x. Both delays follow uniform distribution.
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Figure 6: AoI for the linear combination αD + (1 − α)T . Both delays follow a uniform
distribution.

delay obtained by a linear combination as αD + (1 − α)T with α ∈ [0, 1]. In

particular, this would allow to discern cases with the same overall total latency,

highlighting how the AoI performance can be different depending on the specific

weight that one kind of delay has with respect to the other (see Fig. 6).

The decreasing trend of the curves is consistent with the previous findings,

and confirms that the higher the contribution of T to the total delay, the higher

the expected AoI.

Fig. 7 shows instead the influence ofM on the average AoI for several combi-

nation of D and T values. As expected, asM increases the average AoI becomes

smaller. Also, the worst performance and the most rapid decrease are always

obtained for the scenario where the delay is entirely due to propagation.

Finally, we investigate the probability of overflow discussed in Section 3.3.

The results are shown in Figs. 8, 9, and 10 for M = 4, 5, 6, respectively, for

different types of delay distribution. The results are obtained through numerical

simulations in Python. For each point of the plot, we run 4000 simulations
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Figure 7: AoI with fixed delay and variable number of transmission M . Both delays follow a
uniform distribution.
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Figure 8: Overflow probability for M = 4, computed through simulation. We considered
E[D] = E[T ] = x.
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Figure 9: Overflow probability for M = 5, computed through simulation. We considered
E[D] = E[T ] = x.
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Figure 10: Overflow probability for M = 6, computed through simulation. We considered
E[D] = E[T ] = x.
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and compute the fraction of simulation runs where not all transmissions are

eventually carried out within the end of the horizon. Overall, these results

confirm that the suggested range of operation, i.e., where the increase in AoI is

minimal, also has very low overflow probability, and mostly for the cases where at

least one delay component is highly variable (exponentially-distributed), thereby

confirming the validity of our analysis. As M increases, for the same average

delay, the probability of overflow become larger, since it decreases the slack

between updates, i.e., the value Q in (3).

This highlight the trade-off between a low AoI, obtained for high values of

M , and the system’s tolerance to delay, which is stronger when fewer updates

are performed. From the figures, we see that, for the specific cases considered,

the the worst results are obtained if both delays are exponentially distributed.

This clearly depends on the unbounded character of the exponential distribu-

tion. It is also worth remarking that the considered numerical values, especially

in the right-most side of the figures, should be put in relationship with the

practical implementation, as it may be unrealistic to have delay values that are

comparable with Q [1].

5. Conclusions

We studied the offline scheduling of status updates coming from a remote

sensor over a finite time horizon, evaluating the impact of variable delays in the

update request, its actuation, and its eventual reception at the receiver’s side.

In more detail, we considered the introduction of activation and propagation

delays, both taken as random variables with known statistics. We showed how

these delays may lead to an increase in the resulting expected average AoI, which

is in line with similar results, where erasures and retransmissions are considered

[25, 35]. We further validated our analysis through numerical simulation and

showed how the distribution of the delays influences the performance of the

system and its probability of failures.

For what concerns both the determination of an optimal scheduling and its

implementation within a finite horizon exploiting all the transmission opportu-
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nities, the actual AoI performance accurately mirrors most of the studies found

in the literature, where a constant delay is assumed, as long as the delays are

within certain reasonable values, but significantly deviate for large delays. This

suggests that further studies can be devoted to address AoI evaluations, and

specific strategies to minimize it, for long delay channels [7, 34]
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