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Abstract

We analyze a remote sensing system in the Internet of things, where uncoordinated nodes send status updates to a
common receiver to achieve information freshness, quantified through age of information. We consider a finite horizon
scheduling over a random multiple access channel, where colliding messages are lost. We show that nodes must adopt
a further randomization to deviate from identical schedules and escape collision deadlocks. Moreover, we discuss the
impact of feedback availability if, due to, e.g., energy expenditure, it decreases the number of transmission opportunities.
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1. Introduction

Age of information (AoI) [1, 2] is a performance metric
describing the freshness of data received from a remote
source, often applied in the Internet of things (IoT) when
real-time data enable remote control for transportation,
industrial applications, eHealth, and more [3, 4].

Most AoI studies take an oversimplified view, charac-
terizing the metric over an infinite time horizon [5, 6, 7].
We argue that real-time system control is more likely to
take place over intervals of finite duration. For example,
production tasks are usually limited in time [8], and track-
ing a moving node is confined to the transit inside the re-
gion of interest [9]. Also, the dynamic nature of links jus-
tifies AoI-oriented control over a finite horizon [10], which
can have better performance in terms of AoI stability [11].

A finite horizon allows for a more expressive represen-
tation of the limitations in the frequency of updates. In
practical settings, constraints relate to energy expenditure
and overhead [12]. IoT systems typically leverage LoRa or
semi-persistent scheduling [13, 14]. These impose restric-
tions to the activity of the individual nodes [15], while
at the same time implying an uncoordinated random ac-
cess that makes information exchanges prone to collisions
[16, 17], which severely impacts information freshness.

Finally, many works evaluating AoI assume that a given
transmission pattern can be adapted based on a feedback
provided by the sink [5, 18]. Feedback acquisition entails
the consumption of additional time, processing, and en-
ergy, which is inconvenient for the node’s budget [19], and
can lead to additional collisions if performed in-band.
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Taking the lead from these remarks, we study how to
schedule a limited number of status updates over a given
time span so as to minimize the average AoI, within a
scenario where nodes share a common channel relying on
uncoordinated access akin to slotted ALOHA [17, 20].

Although AoI-efficient scheduling received a lot of at-
tention in recent years, our work is the first to study both
a finite horizon and a collision-prone channel. In [5] (and
many of the references therein), the scheduling is central-
ized, i.e., at most one node is allowed to transmit at every
epoch, and all data is available from the start. In turn,
[15] proposes age-based policies for ALOHA, for an in-
finite horizon and leaning on feedback about the current
AoI, whereas [6] gives a game-theoretic analysis for slotted
ALOHA without scheduling over an infinite horizon.

Stability of multi-source AoI-driven systems is studied
in [21, 22], for an infinite horizon over an erasure channel
without collisions from medium access. A finite horizon
is considered in [11] for a single node transmission with
stateful scheduling. A single link with erasures is also con-
sidered in [10], whereas [23] focuses on multiple nodes but
again with a stateful procedure, and the scheduling is cen-
tralized over a given collision domain. The proposal of [24]
focuses on collision resolution, assuming nodes have infor-
mation not only on the outcome of their specific pack-
ets, but also on the collision domain. Such a feedback
would have a prohibitive cost for a simple medium access
with strong real-time requirements, and nevertheless we
will show how we obtain better results with our approach.
In [18], the AoI objective is translated into staying below
some node-specific thresholds, still with a centralized ap-
proach. Finally, [19] focuses on a finite horizon for point-
to-point links but disregards channel contention.

Thus, our contribution stands out from the existing
literature, as in a finite horizon scenario with collisions
one ought to successfully exploit every transmission op-
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Figure 1: Sample AoI evolution over an epoch for a node performing
M = 4 transmissions, of which the third one fails due to a collision.

portunity (not just compensating for losses in the long-
run). This leads to the following contributions. First, we
show how an uncoordinated medium sharing policy calls
for a randomization of the transmission pattern, which
may trump over precisely allocating the best scheduling
instant. In addition, we argue about the usefulness of a
resource-consuming feedback, reducing the number of up-
dates that can be sent, and characterize the number of
nodes and achievable AoI, providing insights for system
design, especially in settings where devices have limited
capabilities in terms of energy or complexity.

2. System Model

Consider a remote sensing system, where U nodes share
a common channel towards the data sink. Time is divided
in slots of equal duration. Nodes are slot synchronized,
each monitoring a process of interest, and, when accessing
the medium, generating a fresh reading, sent as a time
stamped status update to the sink. The reporting task
spans a finite horizon (or epoch), of duration L slots, over
which a node can perform at most M transmissions.

In practical IoT networks, the number of updates is
restricted by battery or data traffic limitations [12], thus
M/L� 1. The reporting intervals of distinct nodes, which
may perform uncorrelated and non-synchronized monitor-
ing, are in general not aligned. The channel is shared
with slotted ALOHA uncoordinated access [6, 24]. Each
node independently decides whether to access the channel
to send an update. Following the collision channel model
[17], a packet being the only one received in a slot is cor-
rectly received, but the presence of multiple transmissions
in the same slot prevents all of them from being decoded.

Under this setting, we seek the instants τ1, . . . , τM in
which a node shall perform its M transmissions, to ob-
tain up-to-date monitoring. To capture this, we track
the instantaneous AoI for a reference terminal, defined as
δ(t) := t − σ(t), where σ(t) is the time of the last update
received as of time t. An example is shown in Figure 1,
epitomizing a saw-tooth profile that grows linearly over
time, until being reset upon successful updates. We gauge
the average AoI at the sink over the time span L as

∆ :=
1

L

∫ L

0

δ(t) dt. (1)

The definition highlights the role of the finite horizon.
The transmission constraints set a precise limit on the
number of transmissions M within an epoch, as commonly
encountered in practical systems due to normative regula-
tions. If L goes to infinity, and similarly M is scaled up,
such a precise limit no longer holds, and the constraint is
relaxed to a long-term average transmission activity, ren-
dering the problem less realistic [12, 19].

In this setting, we study three distinct access strategies:
1) Random transmission policy: in the simplest ap-

proach, nodes select M transmission slots uniformly at ran-
dom in {1, . . . , L}. This policy is relevant as an archetype
of slotted ALOHA not coping specifically with AoI.

2) Fixed-allocation (no-feedback) policy: each termi-
nal determines in advance the M slot indexes at which to
perform transmissions [25]. This algorithm, described in
Sec. 3, only requires knowledge of L, M, and an estimate
of the collision probability pc. The strategy is appealing
for practical systems in view of its simplicity, allowing to
pre-load a schedule without feedback from the sink.

3) Dynamic-allocation policy: this requires the sink
to provide feedback at the end of each transmission, on
whether the update was received or not (collision) [15].
As per [26], it is not restrictive to assume this feedback to
be error-free. Thus, each node is aware of the current AoI
δ(t), and can dynamically adapt its schedule, e.g., post-
poning the next update in case of success, or preempting
it in case of failure. This potential advantage is counterbal-
anced by a cost to implement the feedback. The reception
of acknowledgements requires indeed a node to remain ac-
tive (e.g., postponing sleep mode) and attempt decoding
of the packet. To account for this, we introduce a cost
coefficient γ ≥ 0, so that implementing feedback reduces
the number of available transmissions to Mf = M/(1 + γ).

3. Fixed and Dynamic Transmission Policies

The problem at hand resembles the scheduling of status
updates over an erasure channel [21], where the medium
suffers from packet losses with probability pc. However,
losses are due to collisions, hence pc = P{# transmitting
nodes ≥ 2), with non-trivial interdependency across nodes.

Each individual node faces the problem of how to sched-
ule its updates, which are finite in number and may be lost
due to collisions, so as to minimize AoI [10, 18]. Under this
lens, it is immediate to represent the problem as a stateless
optimization, i.e., an offline choice of the best transmission
instants, taking expectations on the channel performance,
thus resulting in the following problem:

min
y

∆(y)

subject to yi ≥ 0, i = 0, . . . ,M, (2)
M∑
i=0

yi ≤ L.

where we set M + 1 integer variables y0, y1, . . . , yM. Each
yi = τi+1 − τi is the duration of the i-th inter-update
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interval, with τ0 = 0 and τM+1 = L. The expression of the
average AoI ∆(y) as a function of the yis can be derived
from the following result.

Theorem 1. The average AoI over a finite horizon L for
an update pattern at instants τi, i = 1, . . . ,M, resulting in
M+1 inter-update intervals yi is computed as

∆(y) =
1

L

M∑
i=0

[
yi

2 − yi
2

+

M∑
j=i+1

yiyj(pc)
j−i

]
. (3)

This follows from geometric arguments (see Figure 1), along
the lines of [2, 25]. However, important modifications are
required, i.e., adjusting for a finite horizon and a discrete
time. Moreover, the loss probability has a different mean-
ing, which requires some adjustments discussed further.
Specifically, the first term inside the summation is the sum
of integers from 0 to yi−1, corresponding to the area of the
right triangles and always present even in the absence of
losses, whereas the second term describes the increase in
AoI due to losses.

The fixed allocation strategy is found as the solution to
(2) and computes an AoI-driven schedule a priori.

Remark 1. In the absence of losses, the fixed allocation
policy obtained from (2) implies to equally space transmis-
sions over the epoch, whereas the updates get closer to one
another as the error probability increases [19].

Remark 2. The same approach can be used to derive a
random transmission policy, skipping the minimization of
the average AoI ∆(y) and setting any choice of the yis to
be valid as long as it meets the constraints in (2).

Alternative to setting the transmission instants in ad-
vance, we can consider a stateful optimization, obtained
by dynamic programming [22], tracking feedback obtained
through acknowledgments of transmitted packets [26], which
allows an individual node to know its current AoI value
δ(t). The transmission instants over discrete time slots
result from a dynamic program, as follows.

For the synchronized slotted ALOHA system under
study with U users over a finite horizon of size L, the ac-
tion space comprises L slots, where the ith of them is the
time interval [i−1, i], i = 1, . . . , L, and thus there are L+1
meaningful input values for the time (from 0 to L). Ac-
cordingly, we define the system state over integer values
as x[n] =

(
δ[n],m[n]

)
, where n ∈ Z, 0 ≤ n ≤ L is a dis-

crete time instant; δ[n] ∈ Z, δ[n] ≥ 0 is the current AoI;
m[n] ∈ Z, 0 ≤ m[n] ≤ M is the number of the remaining
transmissions. We also set a control action u(x[n]) ∈ {0, 1}
that corresponds to either transmit an update or not, as
u = 1 and u = 0, respectively. Finally, a noise process
describes lost updates. For the time being (this will be
relaxed later) assume that each update may be lost with
independent identically distributed (i.i.d) probability pc.

Theorem 2. Finite-horizon problem (x[n], u(x[n]), pc) ad-
mits optimal control.

The theorem follows from backward induction arguments
[18]. Control u(x[n]) is initialized as 0 for states where
m[n] = 0, and 1 when n = L and m[n] > 0, i.e., there are
transmission opportunities left. The system transitions to
state x[n+1] based on x[n], u(x[n]), and noise; m[n] either
decreases by 1 or stays the same, depending on the control
action, and noise determines whether, in the presence of
an update, δ[n] is reset to 0, or increases by 1 if the update
fails (as would happen if no update is scheduled).

Remark 3. The optimal control action derived from The-
orem 2 is non stationary, as it changes with n [7], yet the
solution method works because of the finite horizon [10].

This approach is not exact due to the nature of the multi-
ple access. AoI minimization ought to be cast as a multi-
agent problem because the collision probability pc is not
an external noise but rather depends on the actions of all
nodes. An exact globally optimal schedule is in principle
possible, albeit impractical to be computed locally due to
its formidable complexity, and it cannot be disseminated
throughout the network without a heavy centralization.

Thus, we estimate the collision probability pc based
on the average transmission rates. This allows to derive a
preliminary schedule, which, as argued in the next section,
can be refined by adding randomization, to improve colli-
sion avoidance. To estimate pc, note that, if each node al-
locates M transmissions over L slots, it will globally trans-
mit on average with probability M/L (this is still exact).
If all transmissions of different nodes are independent and
identically distributed (i.i.d.) over multiple slots, pc is the
probability of at least another terminal transmitting in the
same slot, thus

pc ' 1− (1−M/L)U−1 . (4)

For both static and dynamic policies, we encounter col-
lisions since nodes decide the transmission instants based
on a local (myopic) optimization.1 Hence, a deadlock may
arise, i.e., nodes that collided once will keep doing so as
they follow the same pattern in subsequent slots and one
ought to randomize the transmission pattern, as it is better
to have successful status updates than to schedule them
in the precise best moment [24]. In the next section, we
show the extent of this issue, and we argue for the benefit
of a randomization in the scheduling.

4. Results and Discussion

We investigate the performance of the introduced AoI-
driven policies. Unless otherwise specified, we consider
U = 50 nodes and epoch duration L = 500 slots. To
avoid border effects,a random offset uniformly distributed
in {0, . . . , L} slots is applied to the start of the epoch for
each node, so that different nodes are not aligned.

1For our model, retransmitting lost packet is of no use towards
AoI minimization [25]. Thus, it is prioritary to avoid collisions. As
a byproduct, the ALOHA system studied is inherently stable.
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Figure 2: Average AoI vs number of performed transmission per
node over a task duration. U = 50, L = 500 slots, γ = 0.

Figure 2 reports the average AoI vs. the number of
transmissions M. For the dynamic approach (solid line),
ideal cost-less feedback is assumed (γ = 0). For all poli-
cies, AoI is high for low values of M due to very sporadic
transmissions, as well as for too large ones, due to col-
lisions. When few transmissions are performed (leftmost
part of the plot), the feedback does not play a significant
role. Indeed, if the channel is lightly loaded, and collisions
are rare, the knowledge of transmission outcomes has little
use. Yet, a careful scheduling of the updates, even without
feedback, decreases AoI over the random policy.

As M increases, a sharp performance degradation is
undergone by the static approach, driven by the increased
collision rate experienced when all nodes employ the same
pre-computed schedule. We stress that neither approach
performs collision avoidance, yet the availability of feed-
back plays a key role, allowing nodes to dynamically react
to failed transmissions by rescheduling their updates.

All policies ultimately obtain an exploding ∆ when M
is high, as even the availability of feedback can do little
when the schedule is so clogged that collisions are unavoid-
able. This is certain to happen when MU/L ≥ 1, and is
highlighted in the plot by the gray-shaded on the right-
most part of the figure (M ≥ 10). For medium loads (i.e.,
M=5 instead of 10), the static solution performs closely
to the random one, whereas an AoI reduction of ∼20% is
achieved with the dynamic scheme.

These results highlight how the performance of the con-
sidered scheduling policies is severely beset by recurrent
collisions among nodes. This also impacts, although to a
lesser extent, the dynamic scheme. Terminals involved in
a collision will reschedule their next transmissions sooner,
aiming to avoid an excessive growth of their AoI.

This reactive behavior leads to harsher contention in
the upcoming slots, increasing the collision probability.
Thus, we propose a heuristic approach to mitigate the
issue, where nodes send their updates as randomly cho-
sen within an interval of k slots around the determinis-
tic value indicated by the scheduled instant. This means
that, whenever the static or dynamic policies dictate a
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Figure 3: Average AoI vs number of performed transmissions per
node over a task duration. A randomization of the transmission
instant is considered. U = 50, L = 500 slots, γ = 0.

transmission at time τ , a random number between 1 and
k is chosen with probability 1/k and the instant in {τ −
bk/2c, . . . , τ +dk/2e} in the corresponding position is cho-
sen for the transmission. This avoids that users colliding
once adopt the same deterministic scheduling in the fol-
lowing transmissions. Other proposals [24] adopt a simi-
lar mechanism as collision resolution assuming full infor-
mation about how many nodes underwent collision. Our
mechanism is instead preemptive and totally decentral-
ized, i.e., agnostic to the collision domain. Still, despite
having less information, we will show that it obtains better
performance, thanks to the optimization of the scheduling.

Such a strategy trades off the benefits of an AoI-driven
schedule for a higher success probability. From this stand-
point, the width of the randomization interval is paramount,
e.g., for large intervals the behavior converges to a fully
random transmission policy.

The performance attained with this modification, ap-
plied to both static and dynamic strategies, is reported
in Figure 3, where the parameter k has been optimized
by means of an exhaustive search for each value of M.
A significant reduction of the minimum achievable AoI is
obtained. Compared to the basic slotted ALOHA of a ran-
dom scheduling, our fixed and dynamic strategies improve
by about 25% and 33%, respectively, for the best case of
a transmission load of about 0.5 (i.e., M = 5). Even for
a fully loaded channel with M = 10, these improvements
still persist, being equal to 18% and 27%, respectively.

To provide further insights, Figure 3 also shows a fully
coordinated scheduling (black dash-dotted line). Specif-
ically, this benchmark policy fairly assigns transmission
slots to each node, avoiding collisions and minimizing the
target metric ∆.2 The gap between a centralized approach
and the fully uncoordinated dynamic solution is not large,
and can be possibly reduced with more complex policies.

2The best performance of the scheme is achieved for a fully uti-
lized channel, i.e. ML = 1. After this point, the policy does not
allocate more transmissions, as they would results in collisions.
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Figure 4: Average AoI vs. duty cycle (M+1)/L, considering L = 750
and L = 1000 slots. U = 50, γ = 0.

Our result can be compared (with proper adaptations)
with [24]. The latter cannot be directly juxtaposed, as it
considers infinite horizon scheduling, without constraints
in the number of transmissions, and optimizes only colli-
sion resolution, performed under the assumption of know-
ing the number of colliding nodes; yet, it claims an AoI
gain of 18% over random transmissions. We get a larger
improvement (up to 33%), in spite of more challenging
conditions, i.e., limited transmissions and no information
about the collision domain size.

Figure 4 explores the impact of the horizon length L.
For a homogeneous comparison of scheduling with differ-
ent horizons, but analogous frequency of transmission, we
define the duty cycle as (M+1)/L, i.e., the reciprocal of the
inter-transmission time. In all cases, the benefit of an on-
line approach is confirmed. Yet, operation over longer time
spans (larger L, dashed lines) incurs higher AoI. For low
duty-cycles (which is of practical interest), the discrepancy
is limited, and stems from the bias of an initial AoI equal
to 0 experienced for smaller L. When the transmission fre-
quency increases, the higher collision rate propagates over
a longer time horizon. Thus, the increase in average AoI
induced by packet losses is more acute for larger L.

All results reported so far were obtained assuming the
same number of updates per epoch available to both static
and dynamic approaches. We now consider the case in
which the implementation of feedback entails a reception
energy cost, as per the model of Sec. 2. Figure 5 plots
the maximum system size, i.e., the number of nodes that
can be admitted in the system without their average AoI
exceeding a target value (e.g., dictated by the applica-
tion of interest). The looser the AoI requirements, the
larger the device population that can be served. Solid
lines – denoting the schemes with M = 10 – confirm the
trends, pinpointing the improvements due to a cost-free
feedback. When fewer updates per epoch are available
(M = 7, dashed lines), transmissions become even more
valuable, and a target AoI can only be attained by limiting
the number of devices and thus the collision probability,
regardless of feedback.
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Figure 5: Number of nodes supported in the network without violat-
ing a target average AoI. A randomization of the transmission time
is considered. In all cases, L = 500.
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Figure 6: (γ,U) pairs for which the use of feedback provides lower
(white region) or higher (shaded regions) average AoI compared to
the static approach. In all cases, L = 500 slots.

Specific insights can be gained by comparing the solid,
square-marked (static, M = 10) and the dashed, circle-
marked curves (dynamic, Mf = 7). The latter corresponds
to feedback implying a cost factor γ = 0.4, which reduces
the number of allowed updates. For low target AoI val-
ues – and/or small numbers of devices – the static strat-
egy offers better performance. In such conditions, a low
channel load is experienced, and more transmissions lead
to more frequent status updates. When higher AoI can
be tolerated, the dynamic approach becomes convenient,
as larger populations can be supported. Notably, under
heavier channel contention, the option of a faster recover
from a collision avoiding long refresh droughts outweighs
the drawback of fewer transmissions being available.

Further light on the non-trivial role played by a costly
feedback is shed by Figure 6. The plot considers M=7 and
M=10, and reports for any pair (γ,U) whether a lower
value of average AoI is achieved with or without feedback.
White regions identify configurations of (γ,U) under which
the dynamic approach is beneficial for the AoI despite the
fewer available transmissions, whereas shaded regions de-
note the opposite. The step-wise behavior of the separa-
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tion between regions is due to the granularity in the num-
ber of transmissions implied by γ. As shown by the results,
the dynamic strategy offers better performance for low val-
ues of γ. The static approach is advantageous for pro-
gressively larger populations as the cost coefficient grows.
The trend is more pronounced when fewer transmission
opportunities, e.g., due to reduced battery capacity, are
available, as the lower level of channel contention shrinks
the region in which feedback shall be employed. Thus, the
diagram offers a tool for system design, pinpointing the
effect of a costly feedback on AoI.

5. Concluding Remarks

We studied the schedule of status updates in an IoT
sensing system over a finite time window and for collision-
based multiple access. We gave two take-away messages.
First, in contention-based multiple access, individually op-
timal policies for update scheduling can lead to collision
deadlock; the nodes ought to further randomize access, as
avoiding collision is more important than precisely choos-
ing the best scheduling instant. Exploiting feedback for a
dynamic schedule is not always beneficial if it consumes
additional resources. A static schedule with more trans-
missions is better for light loads; a dynamic approach with
fewer transmissions becomes useful if congestion arises.
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