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Abstract—Within a recent line of research, age of information is supported as an alternate network performance metric with respect to
throughput or delay, to evaluate the performance of medium access techniques, especially for remote sensing applications. Analytical
investigations based on game theory have shown how selfish players can behave efficiently in random access systems if they are
driven by AoI-based objectives. We extend this kind of reasoning to the case of a slotted ALOHA system with capture. We present a
fully analytical derivation of the general framework and its main results. We provide a quantitative characterization for the strength of
capture in relation to the efficiency of the resulting Nash equilibrium, which provides extremely useful insights for a distributed system
management. We apply our analysis to some scenarios of interest, in particular the case of exponentially distributed powers, for which
we obtain a closed-form relationship. We highlight the impact of the system parameters, specifically the cost coefficient and the capture
threshold, towards achieving an efficient allocation that represents an equilibrium for the network management. It is ultimately shown
that, when capture is strong, as quantified through precise conditions (the system is driven towards a Nash equilibrium achieving
near-optimal performance).
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1 INTRODUCTION

IN MANY sensing and monitoring applications for remote
process control, freshness of the data exchanged may

be more important than their sheer amount [1], [2]. For
this reason, the concept of age of information (AoI) [3] is
gaining momentum in analytical investigations of medium
access. The idea is to offer a quantitative performance metric
beyond standard indicators such as throughput or delay.

AoI evaluations can be framed in closed form, along
the lines of throughput investigations, but often with un-
expected conclusions. This is especially true for ALOHA-
like protocols [4], [5], which are typical whenever the nodes
are dense in number, heterogeneous in nature, and limited
in computation and energy resources. A prime example
is machine-to-machine communication in the Internet of
Things (IoT), where centralized access control is impractical.
Scenarios of distributed random access can also benefit
from investigations based on game theory [6], [7]. Such a
mathematical tool can model the intelligence of the nodes as
guided by an individual utility, which is realistic in massive
access scenarios and can capture the system performance to
identify practical solutions for efficient distributed control.

Some investigations of random access protocols have
been performed under the lens of game theory, but mostly
focusing on throughput as the main performance metric [8],
[9]. Characterizations of the opportunistic behavior of selfish
nodes acting under the objective of minimizing the AoI are
seldom found in the literature, with few notable exceptions
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[10], [11], [12], [13]. Since game theoretic investigations have
shown that even uncoordinated contention-based access
protocols may perform well to some extent, an efficient
Nash equilibrium (NE) is possible, when the individual
objectives of the players include their local AoI.

Most such investigations, including our own previous
work [11], only focus on simple protocols such as slotted
ALOHA, which is well known to achieve low access effi-
ciency due to collisions. However, in [14] we made a fully
analytical investigation of the impact of the so-called capture
effect on a slotted ALOHA system. This corresponds to the
ability of the receiver to detect the strongest signals even in
the presence of collisions, i.e., interference by other signals.
Standard slotted ALOHA assumes that two or more packets
transmitted in the same time slot collide and are considered
lost. The only successful transmissions are those of packets
transmitted alone in a given time slot. The capture effect
is the ability of the receiver to successfully decode a signal
even if it is overlapping with other ones, e.g., by exploiting
differences in the received signal power, or coding, or other
techniques [15]. In particular, we will assume that a signal is
captured if its received power is higher than the product
of a constant (called capture threshold) and the sum of
the received powers of all the colliding transmissions. This
results in a higher transmission success rate compared to
traditional slotted ALOHA. A graphical representation of
this scenario is shown in Fig. 1.

As a result, the probability of successful transmission
is improved thanks to the strongest signals surviving colli-
sions and being correctly decoded in spite of the interference
of other signals. Notably, the analysis in [14] did not involve
game theory. In addition, it only considered throughput.

The contribution of the present paper is to combine these
three elements of (i) slotted ALOHA with capture, (ii) AoI,
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Fig. 1. Graphical display of a slotted ALOHA network with capture.

and (iii) game theory in an original way. We obtain a game
theoretic investigation of a network where access is based
on slotted ALOHA with capture and where nodes have
the objective of obtaining a low AoI of their data, taking
into account a transmission cost to dampen the aggressive
behavior of the nodes driven by selfish objectives.

While our investigation is analytical and with exact
derivations, and thus entirely general, we will instantiate it
in some specific cases, with the purpose of drawing design
guidelines for practical systems. We will show the role of
the capture probability of one specific terminal in the case
of simultaneous transmissions by N concurrent nodes, and
we apply it to sample cases of common statistical models
for the received powers (e.g., path loss or shadowing). In
particular, we will consider the case of exponential received
power values, which corresponds to a Rayleigh fast fading
model and allows for a simple yet substantial derivation in
closed form, where all the relevant parameters are included.

For this case, we will also show how the capture thresh-
old b affects the relationship between the transmission cost
c and the system equilibrium, so that the impact of the
values of b, c, and the number of terminals N can be better
understood. We can also gain useful insights on network
control by means of a distributed management, where nodes
are just incentivized to follow individual objectives. In this
case, the system may be assumed to work at a NE, and
our numerical results show that, when capture is strong
enough, the equilibrium performance is very close to that of
an optimal allocation from a global standpoint; as a result,
network management can be greatly simplified, while still
achieving near-optimal performance [16].

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the previous contributions on the subjects
of game theory and random access with multi-packet recep-
tion, and explain how the contribution of the present paper
fills a gap in the related literature. Also, we summarize the
key ingredients, based on existing results, of our analysis.
These elements are developed for our analysis, where we
first discuss in Section 3 the AoI evaluation with capture,
also discussing possible examples of practical scenarios, and
then in Section 4 apply game theory to derive the possible
NEs of the resulting systems and their connection to the
technical parameters. We will combine these together in

practical contexts and show numerical results in Section 5.
Finally, we will conclude the paper in Section 6.

2 BACKGROUND

2.1 Related work

Several papers in the literature apply game theory to
network systems. The most common reference scenario is
for security issues in adversarial contexts at the different
layers of the protocol stack, such as denial-of-service or
jamming [17], [18]. In [19], game theory is applied to inves-
tigate security issues in an AoI-based scenario. The authors
of [20] apply instead game theory to discuss the tradeoff
between the objectives of minimizing AoI and maximizing
throughput.

There is also a line of research for medium access seen
as a game played by selfish agents, where ALOHA-like
techniques are a reference case investigated by many classic
contributions [6], [8], [9], [21]; however, these papers mostly
consider throughput-based objectives for the players, since
the popularity of AoI as a performance metric is relatively
recent. From a game theoretic standpoint, one can generally
conclude that the NE of such systems is less efficient than a
globally optimum operating point [22]. However, in a recent
contribution [11], we prove that this conclusion is mitigated
for systems where the players aim at minimizing their AoI,
since when the cost parameter is above a given threshold, a
better NE arises. Moreover, a main criterion often adopted
in the literature to represent the medium access is that
collisions result in lost packets, and the so-called capture
effect is rarely considered. Our contribution in the present
paper is to extend the investigation to this case, leveraging
the analysis of [14].

We note that there has been a recent flourishing of papers
focusing on AoI evaluations, especially for remote sensing
in IoT. While slotted ALOHA is already considered in [3]
as a reference scenario, and there have been some recent
investigations along this line [23], [24], [25], [26], the field
is relatively unexplored for what concerns datalink layer
aspects such as modeling the medium access and/or the
capture effect. At the same time, it is also still uncommon
to find AoI employed within the utility functions of game
theoretic approaches. A notable reference is [27], where the
authors consider a game based on AoI, but the access model
is just based on an abstract assumption that collisions lead to
losing the packets. Another relevant paper is [28], where two
transmitter/receiver pairs share access over an interference
channel, but the end goal is related to the achievable capac-
ity at the physical layer, without specific considerations on
medium access control.

2.2 Summary of Preliminary Results

We now highlight the starting point of our analysis,
to better frame the contribution of the present paper. In
[11], we applied game theory to AoI in slotted ALOHA.
For random-based medium access, the AoI follows from all
nodes’ transmission probabilities t = (t1, t2, . . . , tN ), cho-
sen independently by the nodes seen as distributed agents.
Thus, a standard minimization of the AoI can be derived.
It can be proven, following [8], [29], that the minimization
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is achieved in a symmetric point where all transmission
probabilities are equal to an optimal value t∗, which is the
same for all the nodes, i.e., tj = t∗ for all j ∈ {1, . . . , N}.

The reason for this symmetry lies in the common ap-
proach for medium access investigations to consider nodes
having an identical prior to the characteristics of the other
terminals compared to their own. For example, if power
control is applied, transmission powers will compensate for
the path loss, but the received signal powers will still be
affected by independent and identically distributed random
variations due to, e.g., Rayleigh fading, whose per-user
distribution (not the instantaneous values) are characteristic
of the scenario and therefore identical for all nodes [14].
If there is no power control, the received signal power
will still be randomly distributed according to the positions
of the nodes around the receiver, which are different but
statistically equivalent.

There may be scenarios where the received signal power
distribution is not the same for all nodes, which may be
the case of uneven positioning. Still, for this to translate into
actual different choices of the transmission probabilities, one
must also make the additional assumption that the nodes
are aware of such differences, which is far from trivial
[18]. Gaining such information is likely possible only in
very simple cases, such as a partition in two regions, with
the nodes belonging to each region being aware not just
of their position but also of the region of everyone else.
Nevertheless, such an asymmetric case can be developed
along the same lines of what follows (in particular, the opti-
mal transmission probabilities will still be identical region-
wise), but with higher complexity and more cumbersome
notation [30]. We will later address this point by considering
numerical evaluations for the case where the nodes adopt
different transmission probabilities, showing that they are
considerably suboptimal.

The essence of a game theoretic perspective is that,
instead of imposing the optimal value t∗ to all nodes, an
individual player, say terminal 1, is put under the spotlight,
and the minimization of its AoI is done over t1 only, leaving
the other values t2, . . . tN unchanged. Because of symmetry,
this once again results in an equilibrium where all tj ’s are
equal, but usually to a different value than before. As a
result, we are led to another operating point, in general
more aggressive than the optimal one since nodes are driven
by their selfish objective - a very well established game
theoretic principle known as the tragedy of the commons [31].

In a game theoretic analysis, it is common to introduce
a cost term that the nodes pay to access the channel [8], [9],
[29]. This can be connected with some practical motivation,
such as energy expenditure within the terminals, or simply
to control their access. As a result, the transmission prob-
abilities of the individual nodes can be controlled, to the
point that a better NE arises when the cost is above a given
threshold, which can be computed analytically [11].

Due to the inefficiency of slotted ALOHA, it is generally
required to introduce a high cost to control the NE when the
number of terminals is large. A more realistic characteriza-
tion of the medium access will possibly lead to a better equi-
librium without introducing too high transmission costs. For
this reason, in the present analysis we resort to our previous
characterization of the capture effect in random medium

access presented in [14]. That paper proposes several closed-
form derivations of how to represent multi-packet reception
capabilities of the terminals. We just take some sample
approaches to address this point, but the analysis is general
and can be extended to any scenario presented in the paper.

Starting from such existing work by the authors, the
present paper evolves the analysis in a novel manner achiev-
ing new, original results. Our contribution can be sum-
marized as follows. First, we give an analytical derivation
of the AoI when the capture effect is present, which, to
the best of our knowledge, is not available in the present
literature. Moreover, we apply game theory as detailed
above, focusing on the transmission probability of a specific
terminal, chosen so as to optimize its individual objective (a
linear combination of its AoI and paid cost). The resulting
NE is then discussed and quantified, highlighting the role
played by key parameters.

3 ANALYSIS OF AOI AND CAPTURE EFFECT

We consider a network of N terminals that are synchro-
nized on a discrete (slotted) time reference. The terminals
share a common transmission channel which is used to send
packets of identical size towards a single receiver (sink). The
time slot is hence assumed to be equal to the packet trans-
mission time, and transmissions can only occur according
to the slot pattern [4]. We further assume that, during each
time slot, terminal i is actively transmitting with probability
ti, independently of all the other nodes, and the packet
transmitted always contains up-to-date information. Thus,
the AoI of the data sent by a specific terminal is separately
counted at the sink, and whenever a packet transmission is
successful, that AoI value is set to 0, otherwise it is increased
by 1 in each time slot [32].

We denote the average AoI and the probability of suc-
cessful transmission of the ith terminal as ∆i and ρi, re-
spectively. These quantities can be put in relation with one
another. For a discrete time, we can write [11, Eq. (1)]

∆i = ρ−1i − 1 . (1)

In turn, a successful transmission for i, which serves
to compute the value of ρi, depends on the simultaneous
occurrence of two events: (i) node i is transmitting, and
(ii) its transmission is successful. In classic slotted ALOHA
analysis, condition (ii) would require that all other nodes
are not engaging in simultaneous transmissions, hence
ρi = ti

∏
k 6=i(1− tk). If capture effect is considered, then i’s

transmission can be successful even in the presence of other
nodes transmitting at the same time. Now, denote with qi(j)
the probability that a packet sent by a transmitting node
i is captured in the presence of j competing transmitters,
including node i itself. Notably, qi(1) = 1, when i is the
only transmitter, while, for a regular slotted ALOHA system
without capture, qi(j) = 0 if j > 1. This allows us to
compute ρi by considering the probability that j nodes
out of N are active, and i’s transmission is captured, and
averaging over j.

Without loss of generality, we focus on terminal 1, whose
transmission probability is t1. This node must create a belief
about the strategic choices of the other nodes, i.e., their
selected transmission probabilities t2, t3, . . . , tN , where only
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t1 is decided upon by terminal 1. The probability ρ1 of
successful transmission of terminal 1 can be written in
general terms as

ρ1 = t1
∑

x∈ZN−1
2

N∏
h=2

t
xh−1

h (1−th)1−xh−1 q1(wx + 1) , (2)

where Z2 = {0, 1} is the binary set and wx =
∑N−1
h=1 xh is

the Hamming weight of binary vector x = (x1, . . . xN−1).
The aforementioned discussion about the symmetric

choice of the terminals turns out to be also true in a game
theoretic setup, where the nodes seek for an individually
selfish best choice of t, rather than a global optimum;
still, they will transmit with the same probability, i.e.,
t1=t2= . . .=tN . In fact, at the NE, each terminal must
believe that all other nodes play a best response as their tj ,
which gives to each of them the highest possible utility. If
the utility is AoI-based, according to (2), the value of the
best response will be unique. This implies that if some node
chooses a different tj than the others, it is not playing a best
response.

According to the reasoning above, when looking for
the optimal choices of the transmission probabilities (from
either a global perspective or the individual choices of the
nodes), we drop the subscripts. In particular, when consid-
ering node 1, we denote all the transmission probabilities
of other nodes as t, i.e., t2 = t3 = . . . = tN = t. One can
remark that, further pushing this reasoning, t1 must also be
equal to t. Yet, we keep the notations separate in order to
distinguish between terminal 1, on which we focus, and all
other terminals. This distinction will become useful when
dealing with the computation of the NE.

The probability of successful transmission of terminal 1
can be written as

ρ1 = t1

N∑
j=1

(
N−1

j−1

)
tj−1(1− t)N−j q1(j) . (3)

To compute q1(j), we can follow existing analytical
frameworks available in the literature, e.g., [14], where we
analyzed the capture effect under the assumption that re-
ceived powers by different nodes are independent and iden-
tically distributed (i.i.d.). The other underlying hypothesis is
that a transmission from node 1 is captured if j nodes are
in set Tj of active transmitters (with j≥1, and Tj containing
node 1) as long as node 1’s received power is greater than b
times the sum of all other received powers, i.e.,

q1(j) = Pr
[
P1 > b

∑
k∈Tj\{1}

Pk

]
. (4)

The key parameter b is the capture threshold. The reader can
refer to [14] for a more in-depth discussion on the model and
the value of b. Here, we treat it like an adjustable parameter
whose role in determining the AoI will be explored next.

If the received powers of active terminals (which are
i.i.d.) have pdf fP (x) with x being within [Pmin, Pmax], we
write the probability of capturing node 1 as

q1(j) =

∫ Pmax

Pmin

∫ x/b

Pmin

fP (x)f
(j−1)
P (y) dy dx (5)
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Fig. 2. Capture probability of a transmitter in the presence of j competing
transmitters for shadowing and path loss models.

where f (j−1)P (x) = fP (x)⊗fP (x)⊗· · ·⊗fP (x) is the (j−1)-
fold convolution of fP (x). Note that this expression does not
depend on t, which will be useful later.

Several meaningful choices are possible for fP (x). For
example, in [15] a path loss model was considered, i.e.,
a scenario where transmitters are uniformly distributed
within a circle of radius D whose center is occupied by the
common receiver, i.e., an access point or base station. The
distances of all users from the center are i.i.d. and their pdf
is fd(a) = 2a/D2 for 0 ≤ a ≤ D and 0 otherwise. It is
assumed that radio propagation just obeys a deterministic
path loss, without any fading, so that the received power at
distance d is P (d) = (1+d)−η and in particular we consider
η = 2 (i.e., free space conditions) even though the result can
be extended to other values. The standard power law of the
path loss is slightly modified to avoid infinitely large powers
when d goes to 0, but in the end this change is negligible for
large distances. In the specific case of η = 2, the received
power P (written without subscripts as the same statistical
characterization holds for all terminals) is a random variable
between Pmin = (D + 1)−2 and Pmax = 1, whose pdf is

fP (x) =
(
x−2 − x−1.5

)
/D2 . (6)

Another possible choice is a lognormal model, which
describes a scenario where nodes have identical path loss as
when being all placed at the same distance from the receiver,
but each also has an independent shadowing term, in which
case it is common to assume that received power P has a
normal distribution if written in dB, that is,

fP (x) =
exp(−(log x− µ)2/(2σ2))√

2πσx
, (7)

where µ and σ are parameters related to the mean and
standard deviation of the associated normal distribution.

The resulting values of the capture probability from the
perspective of player 1 for these two models are reported in
Fig. 2. Here, we considered a path loss model of terminals
distributed over a circular area with radius D = 100 and
path loss exponent η = 2, and a shadowing model with µ =
0 and σ = 3/A10, whereA10 = 10/ log(10). Also, we remark
that the capture threshold b is chosen as equal to either 0.1
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or 0.25. Since these values are below 1, multiple packets can
be captured in the same slot, but this is consistent with the
model of [14] as well as practical systems such as [33].

The plots highlight that the capture effect in the path loss
scenario is relatively strong, in that it persists even when the
number of contending transmitters increases considerably.
Conversely, the shadowing model allows for a very high
capture probability q1(j) in the presence of few overlapping
transmitters, which rapidly decreases with increasing j,
especially if the capture threshold is high. These points,
combined with the theoretical results about the AoI derived
in the next section, will help understand the performance of
these systems from a game theoretic perspective.

Finally, we can consider a case where the received
powers are i.i.d. and follow an exponential distribution
with parameter λ, i.e., the probability density function
(pdf) of all received powers is fP (x) = λe−λx 1(x), with
1(x) is the unit step function. This case corresponds to all
transmitters being placed at the same distance and having
identical shadowing, or alternatively using a power control
mechanism compensating the attenuation over a medium-
term timescale. However, signals are affected by multi-
path fading, which results in their received powers being
exponentially distributed.

In this specific scenario, (5) admits a neat derivation,
since it follows that, for j>1, q1(j) = Pr[P1 > b Qj−1],
where Qk ∼ Erlang(k, λ) is a random variable with Erlang
distribution of index k and parameter λ. Without loss of
generality, we will put λ = 1 in the following. From known
properties of the Erlang distribution, we get

Pr[P1 > b Qj−1] = EQj−1

[
e−bQj−1

]
=

1

(1 + b)j−1
, (8)

where we used the well-known moment generating function
of the Erlang distribution, i.e., EQk

[eaQk ] = (1− a)−k.
Hence, putting k = j−1 in (3), we can write ρ1 as

ρ1 = t1

N−1∑
k=0

(
N − 1

k

)(
t

1 + b

)k
(1− t)N−1−k (9)

which reduces to

ρ1 = t1

(
1 + b(1− t)

1 + b

)N−1
. (10)

4 GAME THEORETIC FORMULATION

A standard application of any derivation of the perfor-
mance of a random access scheme is the evaluation of the
best operating condition from a centralized point of view,
which would quantify the throughput-optimal transmission
probability of slotted ALOHA among N nodes as 1/N . In
other words, if we are interested in a symmetric central-
ized optimal solution for a given performance indicator,
we derive it as a function of t, where we assume that
all nodes, including node 1, follow the same transmission
pattern due to symmetry, hence we also set t1 = t. Then,
we find the specific value of t maximizing the performance
indicator, for example setting the first-order derivative in t
of the performance indicator to 0 while also checking the
boundary value at t = 1 (value t = 0 is always inefficient).

We can also think of broadening existing game theoretic
frameworks discussing slotted ALOHA for a throughput

objective so as to include an analysis of AoI as well. Unfortu-
nately, for a distributed scenario where nodes transmit inde-
pendently of one another, investigating the global optimal-
AoI transmission probability turns out to be relatively un-
interesting since, according to (1), it would just correspond
to maximizing the success probability ρ1, and the analysis
follows the same steps as a throughput maximization.

However, it is interesting to take a game theoretic stance,
where each node chooses its own transmission probability
without following the others, driven by a selfish goal of
minimizing its own AoI. Symmetry considerations will lead
the terminals to converge to the same value of t for every-
one, yet, the perspective is different since it implies that
they follow different objectives. Such an analysis is made
relatively simple by the separation found in (10) between
t1 (the value of choice for the terminal of interest) and t,
i.e., the transmission probability of every other terminal. In
a game theoretic analysis, we can consider the N terminals
as the players of a static game of complete information [8],
where they set their action as their transmission probability,
chosen independently and unbeknownst to each other.

If we set the objective of the players as minimizing
their AoI values, the minimization of the AoI from a selfish
perspective will lead to a trivial NE where t = 1 for all
the terminals. In fact, whatever the choice of the other
terminals, it is always convenient for the terminal of interest
to aggressively transmit with probability 1, which is a dom-
inant strategy [6]. Indeed, choosing to always transmit is
strictly better than never transmitting, and any intermediate
strategy with transmission probability strictly between 0
and 1 obtains an outcome in between these two. Symmetry
considerations imply that all terminals do the same and we
get an NE where everyone transmits in every slot, with
resulting AoI ∆i = [q1(N)]−1 for all terminals.

We remark that this can be considered as a catastrophic
NE, a term that is inherited from standard slotted ALOHA
networks. However, such an NE is in reality not that inef-
ficient if the capture effect is in place. For a pure slotted
ALOHA network, the catastrophic NE obtains perennial
collisions and thus zero throughput, which is a particularly
bad instance of the tragedy of the commons. If colliding
transmissions can be captured, however, the situation can
be slightly better. Nevertheless, if q1(j) tends to 0 for suffi-
ciently high j, as is meaningful to assume, throughput is sig-
nificantly lower than what an efficient management could
achieve. Moreover, when nodes transmit so aggressively,
the capture effect is not properly exploited, as it would be
more effective if the set of concurrent transmitter Tj were
relatively small.

The common solution to this catastrophic behavior in
game theoretic approaches is the introduction of a cost
incurred by each individual node i, proportional to its
transmission probability ti through a constant c [8], [22].
Such a cost term can be either related to actual physical
phenomena, such as the energy consumption of the terminal
when transmitting, or just introduced for the sake of limiting
persistent access by the terminals. This will actually prompt
a further discussion in the following.

For the purpose of a game theoretic analysis, we define
the utility of the ith player as the value that terminal i seeks
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to maximize, defined as

ui(t) = −∆i − c ti = − 1

ρi
+ 1− c ti (11)

where the negative sign indicates that all terminals actually
seek to minimize AoI and/or transmission cost, and the
individual utilities are defined to be functions of the entire
array of transmission probabilities, t = (t1, . . . , tN ), which
happens through ∆i and thus through ρi.

The utilities defined in (11) can be employed in two
ways. On the one hand, symmetry reasons lead to assuming
that all ti’s are equal, i.e., t = (t, t, . . . , t) and under this
condition an optimal t can be found, such that the utilities
are maximized. Note that, because of the introduction of
the cost term, this optimization is no longer the same as
maximizing the success probability alone, and therefore the
throughput. At any rate, the numerical derivation of such a
maximum is immediate by setting the first-order derivative
dui/dt = 0. This corresponds to a fully coordinated working
point, which is often deemed to be impractical in a game
theoretic spirit, as individual selfish players may have an
incentive to deviate.

On the other hand, we can also explore a unilateral
maximization of the utility of a player of interest, say, ter-
minal 1, while the moves of the others are kept unchanged.
This requires to separate the transmission probability t1 of
such a terminal, while all the others can be assumed to use
transmission probability t. Note that in the end, also t1 will
be set equal to this very value, but only after taking the first
order derivative, which is now du1/dt1, and setting it equal
to 0. In game theoretic terms, this is a NE, since each player
chooses a best response to the moves of the others.

To this end, we observe that, using (3), the utility func-
tion u1 in (11) can be written as

u1(t1, t) = − 1

t1K1(t)
+ 1− ct1 (12)

where we set

K1(t) =
N−1∑
j=0

(
N − 1

j

)
tj(1− t)N−1−jq1(j + 1) . (13)

We can express (13) as K1(t) = E[q1(ν + 1)], where the
expectation is taken with respect to the distribution of ν,
which is a binomial random variable with index N − 1 and
parameter t modeling the number of signals that overlap
with node 1’s transmission. Since q1(j) ∈ [0, 1] is monoton-
ically non-increasing in j, it is easy to realize that K1(t)
takes values in the interval [0, 1], with K1(0) = 1 and
K1(1) = q1(N) ≤ 1, and is monotonically non-increasing
in t ∈ [0, 1].

Note that K1(t) can be seen as a measure of the strength
of the capture effect: the higher the capture probability, the
higher the value of K1(t) and the slower its decrease with
t (i.e., the higher the derivative of K1(t) in t). Also, K1(t)
does not depend on t1, which is extremely convenient when
taking derivatives as we will do in the following.

To determine the NE, we need to find the value of t1
that maximizes u1, for a given t, which we can denote by
t1∗(t). This is equivalent to assuming that the other nodes
do not change their strategy while node 1 optimizes its
own. However, for symmetry reasons, we know that the

equilibrium is actually reached when all nodes adopt the
same strategy, i.e., for t1 = t. Hence, we need to find the
fixed point t1∗(t∗) = t∗.

In turn, this requires to solve du1/dt1 = 0, which gives

t1∗(t) = min

{
1√

K1(t)c
, 1

}
. (14)

The NE are then found by solving

t1∗(t∗) = t∗ , (15)

which, for t∗ < 1, (15) yields

A(t∗) = t∗2K1(t∗) =
1

c
. (16)

where, for ease of notation, we introduced the function
A(t) = t2K1(t). We observe that A(t) is a continuous
function of t, and A(t) ∈ [0, 1] for t ∈ [0, 1]. Let τ be the
point where A(t) takes its maximum in the interval [0, 1].
Consider that t2 is monotonically increasing for positive t,
whereasK1(t) is monotonically non-increasing for t ∈ [0, 1],
and A(0) = 0 and A(1) = q1(N). Thus, A(t) can either be
monotonically increasing in [0, 1], thus reaching its maxi-
mum in the interval for τ = 1, or have a maximum in
an intermediate point τ < 1, with A(τ) > q1(N). The
distinction between these two cases depends on the shape
of K1(·), i.e., on the strength of the capture effect: if K1(t)
decreases less than quadratically with t (i.e., the capture
effect is strong), thenA(t) reaches its maximum value q1(N)
for τ = 1, otherwise it will reach a maximum value higher
than q1(N) in a point τ < 1.

We can now analyze (15) under these observations. If
c < 1/A(τ), (16) does not admit any solution, so there is a
single fixed point in t∗ = 1. Otherwise, other NEs exist. We
discuss these results in the following theorems.
Theorem 1. For a cost parameter c lower than [q1(N)]−1,

the system admits a catastrophic NE, consisting of all
transmitters choosing t = 1.

Proof: This theorem follows from the very definition
of NE as a working point where the joint decision by all the
agents does not leave any incentive for unilateral deviation
of any of them. In the specific case, we can check what
happens if node 1 must make a decision on t1 under the
belief that all other nodes are choosing t = 1. The best
response is to choose t1 = 1 as well if u1 is maximized.
Since u1 = ρ−11 − 1 + ct1 and this is a continuous function
of t1, where in particular the term ρ1 goes to t1q1(N) for
t1 = 1 since all nodes transmit, we just check whether
du1/dt1 = 0, which implies cq1(N) = 1. This means that
if c ≤ [q1(N)]−1 either this condition is achieved precisely
at t1 = 1 or the maximizing value is achieved for t1 > 1,
which is not feasible, in which case node 1 should transmit
with the highest probability possible (i.e., t1 = 1) as the best
response.

The theorem implies that the catastrophic NE can be
avoided only if the cost is high enough (notably, it must
be c > 1 for sure). Also, it is evident that the condition is
never verified for a standard slotted ALOHA scheme, for
which the catastrophic NE is always in place [11].

It is convenient to seek for other better NEs, to which
the network can be driven through a free evolution of
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the system just by selfish choices of the terminals. This is
guaranteed if the cost is higher than [q1(N)]−1, because
whenever the catastrophic NE disappears, another one must
exist. But it can also happen that multiple NEs coexist. The
condition for a further non-catastrophic NE to exist is given
by the following theorem.

Theorem 2. A threshold γ exists, with 1 ≤ γ ≤ [q1(N)]−1,
such that when c>γ there is a non-catastrophic NE with
values of t strictly between 0 and 1.

Proof: This is a direct consequence of solving condi-
tion A(t) = 1/c. Since ρ1 is a continuous function of t (as it
consists of polynomial terms multiplying q1(j) that in turn
does not depend on t), the function A(t) admits a maximum
M for t = τ ∈ [0, 1]. This maximum M must be less than
or equal to 1 and is also equal to q1(N) if τ = 1, whereas it
is greater than that if τ < 1. The proof follows from setting
γ = 1/M and remarking that if c = γ then the NE is for
t = τ , otherwise condition A(t) = 1/c admits two solutions
in [0, 1] but only the leftmost one corresponds to an NE, the
other being a minimum of the utility and therefore not a
best response.

The two theorems combined state that the value of c
influences the resulting operating point of the system as the
NE, in a way that can be summarized as

catastrophic NE for c ≤ γ
two NEs for γ < c ≤ [q1(N)]−1

non-catastrophic NE for c > [q1(N)]−1
. (17)

This implies that the catastrophic NE exists for low val-
ues of the cost, while the non-catastrophic one exists for
sufficiently high cost. Note that there is always at least
one NE in the system, consistently with [34]. Also, if A(t)
is monotonically increasing and therefore its maximum in
[0, 1] is reached in τ = 1, then we obtain γ = [q1(N)]−1

and the inner interval with two NEs disappears. In this
case, the two NEs are alternative to each other, whereas if
γ < [q1(N)]−1 then the two equilibria coexist for a certain
range of cost values.

At any rate, an efficient distributed management can
be obtained by increasing the cost beyond [q1(N)]−1, so
that there is only one non-catastrophic NE. However, for
scenarios where q1(N) = 0, as happens for the regular
slotted ALOHA without capture, the third interval in (17) is
instead empty, which means that the catastrophic NE never
disappears and the only effect achieved by increasing c is
the coexistence of both NEs, a result that is coherent with
the findings of [11].

This leads to an interesting classification of the capture
effect from the perspective of distributed system manage-
ment. We can denote the systems where τ = 1 as possessing
a strong capture effect. In this case, the two NEs never coexist.
Remember that the nodes are strategic, i.e., selfish, players.
Thus, when the capture probability q1(t) is high, increas-
ing the cost above the threshold not only creates a non-
catastrophic NE, but also eliminates the catastrophic one, as
the nodes do not need to behave aggressively. Conversely,
if q1(t) is low, the catastrophic NE still persists because
the nodes may still find it convenient to transmit more
aggressively, in the hope of trumping over one another.

The condition of strong capture effect requires the values
of either b or N , or both, to be low enough. More precisely,
since A(t) contains a quadratic term, it corresponds to
requiring that ρ1/t1 decreases at least quadratically in t, so
that A′(1−) > 0 and the maximum of A(t) is obtained at
τ = 1. Conversely, if ρ1/t1 decreases quadratically or more
in t, the value of q1(N) is lower than M (which justifies
calling the capture effect as weak) and therefore the two
equilibria coexist for c ∈

[
γ, [q1(N)]−1

]
.

The existence of a non-catastrophic NE would in prin-
ciple allow for a network management without aggressive
terminals. However, if the two NEs coexist, the system is
ambiguously characterized, and the behavior of the nodes
is difficult to characterize. If we allow for a practical inter-
pretation of the results of this static game, we can apply
a reasoning akin to the standard considerations for the
instability of ALOHA-like systems: if one terminal chooses
a value of t higher than the one of the non-catastrophic
NE, a dynamic evolution of the system might lead to the
instability of the catastrophic NE [22].

These results also trigger a discussion on the impact of
cost. Indeed, a simple modification in the utilities related
to a transmission cost may allow for an efficient NE. In
particular, a sufficiently high cost is required for this NE but
it is to be remarked that too high a cost would simply make
the NE efficient by having no transmission whatsoever, due
to the very high costs of transmitting, so this is not an
ideal situation from a practical point of view, as the AoI
values would be extremely high. However, if the cost is
increased beyond the threshold γ, not only does the efficient
equilibrium appear, but also the catastrophic NE disappears,
if the capture effect is strong.

This also highlights the two-fold role of parameter c. On
the one hand, it can be simply treated as a consequence
of some inherent tolls paid by the transmitters, such as
power consumption, monetary price, or energy harvesting
cost [32]. On the other hand, the term c can reflect some sort
of virtual cost, artificially introduced to make the manage-
ment more efficient [9]. While our analysis is transparent
to the nature of this parameter, the aforementioned criteria
requiring c to be above a certain threshold can be considered
in the spirit of finetuning some system parameters to allow
for an efficient distributed management.

Finally, it is also reasonable to expect that the distributed
management obtained by the non-catastrophic NE is close
to the optimal performance. While this is not guaranteed
to happen at low costs (in particular, if the capture effect
is strong, the solution for c = γ is still t = 1, which is
not very near-optimal), the global optimum and the NE
must asymptotically converge for very high values of c,
even though this also represents an impractical manage-
ment where transmissions are very rare. However, from an
engineering standpoint, there is a tradeoff between these
two conditions where an NE corresponds to a near-optimal
working point without t being extremely low. This is easier
to achieve for a strong capture effect because the NE asymp-
totically converges to the network optimum for high costs,
but this happens early if the threshold [q1(N)]−1 is lower.

To give a quantitative understanding of a comparison
between strong and weak capture effect, we can consider the
case of exponentially distributed received powers, where
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the requirement A(t) = 1/c combined with (10) leads to
an (N+1)th degree equation

t2
(

1 + b(1− t)
1 + b

)N−1
=

1

c
. (18)

It easy to see that the equation admits at most two solutions
in t that fall within [0, 1] and are therefore valid as prob-
ability values. These solutions only exist if c is sufficiently
high, in which case the non-catastrophic NE is found as t
being equal to the leftmost solution for all the nodes. More
precisely, the number of solutions in [0, 1], whenever they
exist, depends on the maximizing point τ of A(t); if τ = 1
there is only one solution, which leads to the NE. Otherwise,
there are two solutions and only the lower one gives the NE.

We can observe that if

dA(t)

dt
(1−) > 0 i.e., b(N − 1) < 2 , (19)

then A(t) is always increasing in [0, 1] and its maximum
is [q1(N)]t=1 = (1 + b)1−N . Hence, the capture effect is
strong, and γ coincides with [q1(N)]−1 = (1 + b)N−1. In
other words, if b(N − 1) < 2, i.e., b and/or N are low,
we get rid of the catastrophic NE and obtain another better
equilibrium by simply increasing c beyond γ, without the
two equilibria even coexisting. Conversely, if (19) is not
verified, the capture effect is weak, and the more efficient
NE appears when c > γ but without the catastrophic NE
disappearing; this is not even guaranteed to happen as
it requires c > [q1(N)]−1, which may be impossible in
cases where no capture happens for high N (or, the capture
threshold may be too big).

5 NUMERICAL RESULTS

We show some practical evaluations of the equations
derived in the previous analysis to draw some quantita-
tive conclusions. We consider N terminals as players in a
simultaneous-move game following individual utilities that
are a linear combination of their negative AoI and their
negative transmission cost, with coefficient c = c̃ N , and
whose strategic choices are their individual transmission
probability values. Their received power values are i.i.d.,
and medium access is slotted ALOHA with capture thresh-
old b. A successfully captured transmission sends the AoI of
a terminal back to 0.

To allow a comparison among different values of N on
the same plot, results are always shown as a function of
the normalized transmission cost c̃. We vary the number of
users N and the capture threshold b, and consider different
pdfs of the received powers. All numerical settings are
consistent with the choices usually made in the literature
[8], [14], [15], [29].

We consider symmetric solutions where the transmission
probability is the same for all terminals, but under two
different approaches: global maximization of the utilities
after choosing the same t for all nodes, or NE where one
terminal sets the individual value of t as the best response to
the others, and this is ultimately set equal for everyone due
to symmetry. In this case, the term “NE” in the plots always
refer to the non-catastrophic one, if present, as the catas-
trophic NE where t = 1 is just pointless to plot. The value of
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Fig. 3. Exponential powers: AoI-based utility as a function of the nor-
malized transmission cost c̃, for N=10 terminals and capture threshold
b = 0.02. Transmission probabilities chosen as: NE; optimal; random
(uniform distribution in [0.15, 0.25]); optimal t1 with random tj , j 6=1.

the transmission probability is the main one derived from
the analysis, but actually other metrics of interest can be
derived from it, such as the AoI and the utility function;
in the following, we will show some samples. Even for the
scenarios where they are not shown, these computations are
possible, they just would be redundant, so we focus on the
most interesting cases.

We apply the results to different expressions of the pdf
of the received powers, by considering a path loss scenario
as per (6), a lognormal received power as per (7), and finally
the case of exponentially received powers with fP (x) = e−x

that admits a closed-form mathematical expression for the
AoI. Only because of this reason, the latter is evaluated in
more detail, to avoid redundant plots since all the derived
metrics are based on the transmission probability t and
therefore can be obtained for any choice of fP (x). However,
the case of exponentially received power is more immediate
to evaluate in terms of its structure of the NEs and the
strength of the capture effect.

We start with Fig. 3 that shows the individual utility
of the players, taken as the opposite of the sum of the
average AoI and the transmission cost paid, in a scenario
with exponentially distributed powers, for N=10 users and
capture threshold b=0.02. The figure compares four possible
cases: (i) the non-catastrophic NE; (ii) the globally optimal
choice of the transmission probabilities; (iii) a case where
each node chooses its transmission probability uniformly in
[0.15, 0.25]; and (iv) a case where nodes 2 to 10 still select
the transmission probability as in (iii) but player 1 chooses
it so as to maximize its own utility. In this last case (iv), the
expected utility plotted is that of player 1. Note that for cases
(iii) and (iv), we used (2) since the transmission probabilities
of the nodes are different, whereas (i) and (ii) are symmetric
solutions where every node has the same t and therefore we
can compute the results through (10).

The figure serves first of all to highlight that a choice
like (iii) of non-optimized (and even possibly different)
transmission probabilities is clearly suboptimal. A one-
sided optimization of only one node, as in (iv), slightly
improves its utility but still leaves a significant gap with
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Fig. 4. Path loss model, D = 100, η = 2: transmission probability t
as a function of the normalized transmission cost c̃, at the NE or with an
optimal setup, forN ∈ {10, 50} terminals and capture threshold b = 0.5.

the optimum. Conversely, the NE and the global optimal
choice of transmission probabilities are close. The inherent
efficiency of the NE changes according to the statistics of
the propagation scenario, the number of terminals, and the
strength of the capture effect, as will be explored next. Still,
a distributed choice of the transmission probability, without
any preliminary signaling, is shown to be effective as long
as it can leverage the common knowledge of the other users
being strategic.

Now, we explore the point above for a detailed array of
scenarios, starting from the one where the received powers
are only determined by free space path loss. In Fig. 4 we
report the values of the transmission probability at the NE
or with an optimal setup, for a path loss based model with
D = 100, η = 2, and a number of users that can be either
N = 10 or N = 50. In accordance with the results of
[14], and also as previously shown in Fig. 2, the capture
effect is expected to be very strong in this case and the
probability of successful transmission even in the presence
of multiple contenders is indeed high. For a capture thresh-
old of b = 0.5, we observe that the value of transmission
probability t at the NE basically coincides with the optimal
choice. This happens because, as per the previously found
theoretical results, the catastrophic NE disappears for low
values of c and is replaced by a more efficient one. It is evi-
dent that in this scenario the capture probability q1(j) does
not decrease very rapidly with increasing j and therefore
K1(t) has a sublinear decrease that causes the maximum for
A(t) to be in t = 1 and the actual value of t is selected by the
cost parameter, resulting in a very efficient allocation even
through distributed selfish choices.

In Fig. 5 we consider instead a case of received powers
following a lognormal statistical model, i.e., a shadowing
scenario. For low values of the number of terminals N , we
would essentially face the same situation as in the previous
result, since the capture effect is also extremely strong. For
this reason, we explore a relatively high value of N where
capture is more difficult, according to what shown in Fig. 2.
In particular, we consider, analogous to the previous setup,
a lognormal distribution with µ = 0, σ = 0.3 log(10), and
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Fig. 5. Shadowing model with µ = 0, σ = 3/A10, A10 = 10/ log(10):
transmission probability t as a function of the normalized transmission
cost c̃, at the NE or with an optimal setup, for N = 40 terminals and
capture threshold b ∈ {0.05, 0.2}.
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Fig. 6. Exponential powers: Transmission probability t as a function of
the normalized transmission cost c̃, at the NE or with an optimal setup,
for capture threshold b = 0.02.

N = 40 users. We also consider two values of the capture
threshold, b = 0.05 and b = 0.2. The result is that, for the
lower value of b, the capture effect is still strong enough
for the NE equilibrium to be close to optimal. Conversely,
if b increases and capture becomes less likely, we now see
a separation and the NE does not coincide with an optimal
allocation, even though they tend to overlap for high cost
values. Also, the non-catastrophic NE appears only for
relatively high values of c̃, which is consistent with a weak
capture effect as per the previous theoretical results.

To explore these findings in more depth, also considering
other metrics, we focus on the case of exponentially received
powers, since the closed form (10) allows for more efficient
computations in a wider range of parameters, and (19)
gives a precise condition on the required values of the
parameters for the capture effect to be strong. Thus, we
evaluate a scenario with exponential powers, for the number
of usersN∈{10, 100}, and considering two different capture
thresholds, i.e., b = 0.02 and b = 0.2. With this choice of
parameters, the capture effect is always strong if b = 0.02
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Fig. 7. Exponential powers: Transmission probability t as a function of
the normalized transmission cost c̃, at the NE or with an optimal setup,
for capture threshold b = 0.2.
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Fig. 8. Exponential powers: System throughput, as a function of the
normalized transmission cost c̃, at the NE or with an optimal setup, for
N = 10 terminals.

as condition (19) is always met even for N = 100, while
when b = 0.2, the case N = 10 still corresponds to a strong
capture effect, whereas N = 100 does not.

In Figs. 6–7, we report the resulting transmission prob-
abilities of the terminals computed either at the NE (when
available) or for the optimal centralized case. We remark
that t at the NE is meaningful only if c > γ and overall an
increasing cost significantly lowers the transmission proba-
bility of both cases. For b = 0.02 the NE and optimal curves
are very close (Fig. 6), while for b = 0.2 there is still some
gap (Fig. 7). This implies that a strong capture effect allows
even a decentralized system to work at near-optimal NEs.

However, this also suggests that the value of c deserves
a technical discussion on its physical nature. Due to the
need for a sufficiently high c, the near-optimality of the
NE is achieved only if the persistence of selfish terminals
is somehow limited. At the same time, it is convenient
that c is not too high, since this would result in a very
low transmission probability (and, as will be shown next,
high AoI). This suggests that if c goes beyond being just a
technical parameter, like the energy expenditure, and can be
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Fig. 9. Exponential powers: System throughput, as a function of the
normalized transmission cost c̃, at the NE or with an optimal setup, for
N = 100 terminals.

0 5 10 15 20
0

20

40

60

80

100

e
x
p

e
c
te

d
 A

o
I

Fig. 10. Exponential powers: Expected AoI, as a function of the normal-
ized transmission cost c̃, at the NE or with an optimal setup.

set with some slack, a proper regulation is key to obtain an
efficient management.

In Figs. 8–9, we report the resulting values of the sys-
tem throughput, for N = 10 and N = 100 terminals,
respectively. These plots are straightforward extensions of
the previous results on the transmission probabilities, yet
they show that the system throughput at NE is even closer to
the optimal case, given that we have a sort of compensation
between a slightly higher t, resulting in more collisions but
also a better chance of being captured. Also, the throughput
rapidly decreases in c̃, except when b = 0.2, N = 100,
for which it is already low anyway, as these parameters
correspond to a situation where capture is difficult (many
users and high capture threshold).

Fig. 10 shows the resulting expected AoI. Notably, this
is not the objective of the players, since they actually try
to minimize a utility combining AoI and transmission cost,
which is instead shown in Fig. 11. At any rate, we notice
that in all the resulting plots the optimal management and
the NE are almost indistinguishable, with the only exception
of the case b = 0.2 and N = 100, which is when (19) is
violated. Overall, we conjecture that the efficiency of the NE
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Fig. 11. Exponential powers: AoI-based utility of each terminal, as a
function of the normalized transmission cost c̃, at the NE or with an
optimal setup.

is related to its threshold structure and the actual value of
the threshold, which is an issue that certainly deserves to be
explored in future work. From a quantitative standpoint, we
can say that the system-wide optimization can be replaced
by a distributed setup through an NE, which is especially
true whenN and/or b are low enough, i.e., the capture effect
is stronger.

6 CONCLUSIONS

We presented a game theoretic analysis of a large num-
ber of nodes sharing access following a slotted ALOHA
protocol with capture effect, with their individual objectives
being related to minimizing their AoI and also comprising
a transmission cost. Based on previous analytical formula-
tions of the AoI for a random access system, we showed that
our framework is able to set an AoI-efficient working point,
doing so in a distributed fashion where nodes act without
coordination and driven by selfish objectives. This translates
the system-wide optimization to a more practical approach
based on individual actions of each nodes [7].

Future work may consider an expanded game theoretic
formulation where the strategic choices of the nodes are
more complex than just setting their transmission proba-
bility, possibly considering some sort of feedback from the
receiver and an overall planning ahead over multiple up-
date epochs [16], [35]. Even for these scenarios, game theory
can be the proper tool to set a self-enforcing distributed
management of nodes with minimal supervision from the
network manager, which appears to be a desirable choice
for future IoT implementations.
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