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Abstract—The technical limitations of the intelligent reflecting surface
(IRS) (re)configurations in terms of both communication overhead and
energy efficiency must be considered when IRSs are used in cellular
networks. In this paper, we investigate the downlink time-frequency
scheduling of an IRS-assisted multi-user system in the orthogonal
frequency-division multiple access (OFDMA) framework wherein both
the set of possible IRS configurations and the number of IRS reconfig-
urations within a time frame are limited. We formulate the sum rate
maximization problem as a non-polynomial (NP)-complete generalized
multi-knapsack problem. A heuristic greedy algorithm for the joint IRS
configuration and time-frequency scheduling is also proposed. Numerical
simulations prove the effectiveness of our greedy solution.

Index Terms—Intelligent reflecting surfaces; millimeter wave commu-
nication; orthogonal frequency-division multiple access.

I. INTRODUCTION

Intelligent reflecting surfaces (IRSs) consist of meta-surfaces with
radiating elements that can passively tune the phase shift of incoming
signals to collectively reflect them in the desired propagation direction
without active amplification [1]. They are a promising solution to
enhance network coverage, especially in the context of millimeter
wave (mmWave) communications.

Downlink scheduling solutions for IRS-assisted communications
have been extensively studied for cellular networks under several
implementation constraints. Dynamic optimization schemes adjusting
IRS configurations over each time slot have been explored in [2], [3].
Instead, the authors of [4] consider a 2-user downlink transmission
in a IRS-aided scenario over fading channels, comparing results of
different basic orthogonal multiple access (OMA) and non-orthogonal
multiple access (NOMA) schemes. The study reveals that while
NOMA appears to be the best solution, time division multiple
access (TDMA) outperforms frequency division multiple access due
to the lack of frequency selective beamforming capabilities at the
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IRS. Additionally, the performance of NOMA scheduling solutions,
including rate-splitting multiple access, has been evaluated in [5], [6].

Nevertheless, the majority of the literature on IRSs relies on
problematic premises. Specifically, the assumption of an ideal control
channel with the base station is prevalent in the literature, while actual
deployments are expected to have wireless, error-prone IRS control
channels, possibly implemented with low-cost technologies [7]. This
introduces constraints on the IRS reconfiguration period, which
results in synchronization issues and increased power consump-
tion [8]. Indeed, early IRS prototypes display non-negligible phase-
shift reconfiguration times [9], [10]. Such overhead increases with
the size of the IRS, and it is expected to become a serious issue
with the extremely large IRSs needed to overcome channel losses
in harsh propagation environments [11], [12]. In this context, it is
crucial to design resource allocation algorithms that mitigate the
limitations imposed by the constrained IRS reconfigurations. This
kind of constraint has been studied in [13], with a characterization of
both OMA and NOMA schemes in a 2-user IRS-aided single input
single output system with Rayleigh fading channels.

However, the main issue of NOMA is complex signal processing
to perform interference cancellation at the receiver side. Therefore,
NOMA is considered more appealing in uplink than downlink.
Consequently, and in line with the current 3rd Generation Partnership
Project (3GPP) frame structure [14], a TDMA scheduler for multi-
user multiple input multiple output (MIMO) combined with user
aggregation (i.e., clustering) techniques can optimize the system sum
rate or the user scheduling fairness [15].

In this paper, we propose a novel OMA scheduling policy for an
IRS-aided downlink communication system. For downlink orthogonal
frequency-division multiple access (OFDMA) cellular transmissions,
we adopt a joint resource allocation and IRS configuration to maxi-
mize the system sum rate. The communication and energy overhead
of IRS reconfiguration is constrained by limiting the number of
reconfigurations within each scheduling period. This forces the reuse
of the same configurations for multiple users [16]. Moreover, we
consider the case where the IRS configuration can only be chosen
within a codebook of configurations to further reduce the control
overhead [17]. To the best of our knowledge, this is the first
study to address OFDMA scheduling with IRS while incorporating
such configuration constraints, thereby offering a comprehensive and
scalable solution to the challenges posed by multi-user environments
in IRS-assisted communication systems. We formulate the sum rate
maximization as a non-polynomial (NP) complete generalized multi-
knapsack problem and propose a greedy algorithm for the joint IRS
configuration and time-frequency scheduling. Numerical simulations
prove the effectiveness of our solution. 1

II. SYSTEM MODEL

We consider the downlink transmission of a cellular system shown
in Fig. 1, where the transmission from the next generation Node Base

1Notation. Scalars are denoted by italic letters; vectors and matrices by
boldface lowercase and uppercase letters, respectively; sets are denoted by
calligraphic uppercase letters. AT and A† denote the transpose and the
conjugate transpose of matrix A, respectively. diag(a) indicates a square
diagonal matrix with the elements of a on the principal diagonal. The
imaginary unit is j =

√
−1. Finally, E[·] denotes statistical expectation.
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Fig. 1. OFDMA scheduling for IRS-assisted multi-UE communication.

(gNB) to K UEs is assisted by an IRS. The gNB and each UEs are
equipped with Ng and NU antennas, respectively. We assume that
the direct links between the gNB and the UEs are unavailable due
to a deep blockage, therefore the gNB transmits signals to the UEs
by only exploiting the IRS cascade channels. The IRS configuration
is managed by the gNB though the IRS controller, by exploiting a
dedicated link between the gNB and the IRS.

The gNB schedules the UEs in the time-frequency domain by allo-
cating resource blocks (RBs) from a grid of K RBs. We consider K
as an integer multiple of F , with one UE scheduled per RB, as in our
scenario we expect that the gNB-IRS channel has rank one, i.e., it has
a single dominant path: this makes spatial multiplexing unfeasible.
However, when higher-rank channels are available between the IRS
and the gNB, spatial multiplexing can be used and our approach can
be suitably modified to accommodate this scenario. The investigation
of this point is left for future work.

Let fi be the carrier frequency of the RB identified by frequency
index i and an arbitrary time slot, and let F = {fi, i = 1, . . . , F}
be the set of all carrier frequencies. We assume that UEs are either
static or moving slowly, which is the most typical application scenario
for IRS-aided networks. Therefore, we assume that once the perfect
channel estimation of all UEs is acquired at the gNB at the beginning
of each frame, the channels remain constant for its duration. We
assume the gNB knows the cascade channel to the UEs for any IRS
configuration.

IRS Model & Beamforming Codebook. Each element of the IRS
acts as an omnidirectional antenna element that reflects the imping-
ing EM field, introducing a tunable phase shift on the baseband-
equivalent signal. We denote with ϕn = ejθn the reflection coefficient
of the n-th IRS element, where θn ∈

{
0, 2π

2bI
, . . . , 2π(2bI−1)

2bI

}
is the

induced phase shift, with bI-bits quantization. The IRS configuration
is then defined as Φ = diag(ϕ1, . . . , ϕNI).

To further reduce the overhead of the IRS configuration, we
consider a codebook CΦ from which matrix Φ is chosen. This discrete
design is compliant with the currently standardized initial access
framework [18]. A large variety of codebooks for both near-field
and far-field communication have been discussed in the literature,
and the evaluation of their impact on system performance is out of
the scope of this work. In this paper, we considered a simple design
of cell-specific codebook, derived from the channel measurements in
the cell (more details are given in Section III-C).

Transmission model. With reference to carrier i, we denote with
H(fi) ∈ CNI×Ng the gNB-IRS channel matrix and with Gk(fi) ∈
CNU×NI the channel matrix of the link between the IRS and UE
k. We consider single-stream transmissions, where the gNB uses the
beamforming vector wg ∈ CNg×1. Note that this assumption matches
the IRS-aided mmWave scenario, where the cascade channel rank is
insufficient to perform multi-stream transmissions [19], [20]. Let sk

be the signal transmitted by the gNB to UE k assigned to carrier i,
the received signal can be expressed as

zk = vT
k Gk(fi)ΦH(fi)wgsk + vT

k nk, (1)

where vk ∈ CNU×1 is the beamforming vector at UE k, Φ is the IRS
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Fig. 2. Example of resource grid with cluster configuration assignment.

configuration, and nk is the circularly symmetric complex Gaussian
noise vector with independent entries having zero-mean and variance
σ2
n. We assume that the gNB beamforms the signal toward the gNB-

IRS line-of-sight (LoS) angle and, once the IRS configuration is fixed.
Then, the beamformer at the UE matches its cascade channel, i.e.,
vk is the singular vector corresponding to the largest singular value
of [Gk(fi)ΦH(fi)]

†. UE k attains the achievable rate

Rk(Φ, fi) = log2

(
1 +

|vT
k Gk(fi)ΦH(fi)wg|2σ2

s

|vT
k |2σ2

n

)
, (2)

where σ2
s and σ2

n are the transmit and noise power, respectively. Note
that for the sake of a simpler explanation, we assume that the IRS
introduces the same phase shift at all frequencies, thus Φ does not
depend on fi. However, in the following, we will only use the value
of achievable rates Rk(Φ, fi) for different values of Φ, k, and i, and
a frequency-dependent behavior of the IRS can be accommodated in
our model by changing (2).

III. CONFIGURATION AND USER SCHEDULING

In general, different IRS configurations should be adopted for each
UE to maximize its achievable rate (2) based on its position in the
cell and on the channel conditions. However, Φ is not frequency-
selective, i.e., its configuration is the same at each RB in the same
time slot. Moreover, we here impose a constraint on the number
of IRS reconfigurations per time frame, to limit the number of
reconfigurations and reduce the communication overhead. This may
also account for practical limitations that might arise in realistic
deployments. However, such constraints usually lead to an achievable
rate degradation as sub-optimal IRS configurations could be adopted
to serve some UEs.

In detail, we formulate a constrained discrete optimization problem
limiting the re-configurations within a time frame to a maximum
number of Z ≤ K/F . Within this time frame the gNB serves
the K UEs by splitting them into Z disjoint subsets (or clus-
ters) U1, . . . ,UZ , each with cardinality αzF , with αz ∈ N, for
z = 1, . . . , Z. While serving all the UEs in subset Uz the IRS
configuration is kept fixed to Φz . Fig. 2 displays the considered
resource grid with an example of IRS configuration assignment for
for Z < K/F , |U1| = |U2| = F and |UZ | = 2F . Note that, if
the codebook is small, several sets of UEs could share the optimal
configuration; in such a case, the clusters are merged, and the number
of reconfigurations is further reduced.

Now, we must decide a) which IRS configuration is used for
each of the Z clusters (choice of Φz), b) for how many slots each
configuration is used (αz), and c) how UEs are assigned to RBs
(choice of xk,z,i). In formulas, let Si, i = 1, . . . , F , be the set of
UEs assigned to carrier i. Also, define the assignment variables

xk,z,i =

{
1 if k ∈ Uz ∩ Si,

0 otherwise.
(3)

The joint resource allocation and configuration optimization problem
can be stated as the following generalized assignment

max
Φz ,αz
xk,z,i

Z∑
z=1

K∑
k=1

F∑
i=1

Rk(Φz, fi)xk,z,i (4a)
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s.t.Φz ∈ CΦ, (4b)

xk,z,i ∈ {0, 1}, ∀k, z, i, (4c)∑Z
z=1

∑F
i=1 xk,z,i = 1 ∀k, (4d)∑K

k=1

∑F
i=1 xk,z,i = αzF ∀z, (4e)

where constraint (4b) imposes the IRS configurations to be chosen
within codebook CΦ, and (4c)-(4d) denote the assignment of each
UE to a unique RB. Instead, constraint (4e) imposes the cluster
cardinalities as an integer multiple of F , reflecting the frequency non-
selectivity of the IRS configuration. Due to (4d)-(4e),

∑Z
z=1 αz =

K/F , and αz is the number of time slots for which Φz is kept.
Note that (4) belongs to the class of generalized multi-knapsack

problems, well-known as NP-complete. Its solution requires an ex-
haustive search over all the discrete parameters, therefore, a heuristic
approach, which splits (4) into two sub-problems, is convenient.
Moreover, we remark that the size of codebook CΦ may be extremely
large, up to the case |CΦ| = 2bINI , i.e., all the combinations of phase
shifts, thus exacerbating the problem complexity.

A. Optimization Problem Decomposition

To simplify (4), we first decompose the joint resource allocation
and configuration assignment into two sub-problems named the
configurations assignment and the RB assignment, respectively.

The configuration assignment sub-problem assigns one UE per
cluster, leaving K−Z UEs unassigned, and sets the IRS configuration
for each cluster. The problem can be written as

max
Φz

xk,z,i

Z∑
z=1

F∑
i=1

Rk(Φz, fi)xk,z,i (5a)

s.t. (4b), (4c),
∑K

k=1

∑F
i=1 xk,z,i = 1 ∀z. (5b)

In the RB assignment sub-problem, instead, the remaining UEs are
assigned to the clusters defined with (5) as

max
αz

xk,z,i

Z∑
z=1

K∑
k=1

F∑
i=1

Rk(Φz, fi)xk,z,i, s.t. (4c), (4d), (4e). (6)

Note that both the RB assignments and the cluster cardinality
constraint (4e), are assessed in this second step, as αz , z = 1, . . . , Z
are optimization variables. Moreover, (6) is still a multi-knapsack
assignment problem with variable knapsack capacities, therefore
belonging to the class of NP-complete problems.

B. Greedy Maximum-Rate Scheduler (GMAX)

To reduce the complexity of (4), we resort to a greedy approach,
denoted as Greedy MAXimum-rate scheduler (GMAX) algorithm,
summarized in Algorithm 1.

First, we observe that (5) can be solved by exhaustively computing
Rk(Φ, fi) for all i = 1, . . . , F , Φ ∈ CΦ, and k = 1, . . . ,K, and
then selecting the Z UEs (with their IRS configuration) providing
the highest rate. Each of the selected UEs is assigned to the RB
maximizing (2), respectively.

To handle the remaining UEs and solve (6), instead, we resort to
a greedy approach. Let P = {Φ1,Φ2, . . . ,ΦZ} be the set of IRS
configurations of each cluster, GMAX solves

(k, z, i) = argmax
k,z,i

Rk(Φz, fi) (7a)

s.t. (4e), Φz ∈ P, (7b)

k ∈ {k : xk,z,i = 0 ∀ z, i}, (7c)

(z, i) ∈ {(z, i) : xk,z,i = 0 ∀ k}. (7d)

Algorithm 1 Greedy Maximum-Rate Scheduler
1: Input: Rk(Φ, fi) for all k, i,Φ ∈ CΦ
2: Output: P, xk,z,i, for all k, z, i
3: αz ← 1, for all z
4: xk,z,i ← 0, for all k, z, i
5: (xk,z,i,Φz)← solve (5) exhaustively
6: while

∑Z
z=1

∑K
k=1

∑F
i=1 xk,z,i < K do

7: while
∑Z

z=1

∑K
k=1

∑F
i=1 xk,z,i ≤ F

∑Z
z=1 αz do

8: xk,z,i ← 1 for k, i solving (7)
9: end while

10: if
∑Z

z=1

∑K
k=1

∑F
i=1 xk,z,i < K then

11: (k, z, i)← solve (7) neglecting constraint (4e)
12: αz ← αz + 1

13: xk,z,i ← 1
14: end if
15: end while

Since Z ≤ K
F

in general, the UEs are firstly allocated considering
only F RBs per cluster, i.e., one-time slot per IRS configuration, by
setting αz = 1 for all z. Once the first ZF UEs are allocated, the
algorithm proceeds by solving problem (7), considering the allocation
of new time slots in the resource grid (i.e. increasing αz by one).

We remark that neither the exact nor the estimate of matrices
Gk(f) and H(f), for all f, k are required for the scheduling task
itself. Indeed, GMAX relies on iterative computations of (2), which
only depends on the cascade product Gk(f)ΦH(f), for all f, k and
each codebook entry Φ.

At the end of the procedure, each UE is assigned to a specific
RB, satisfying all the constraints of problem (4). As per (3), sets
U1, . . . ,UZ , and Si are uniquely determined by variables xk,z,i, for
z = 1 . . . , Z, i = 1, . . . , F , k = 1, . . . ,K.

C. Codebook Design And Control Overhead

To obtain the cell-specific codebook of IRS configurations CΦ, a
clustering-based approach is employed. Similar to the distance-based
clustering proposed in [15], the points to cluster are the IRS phase
shifters (with bI-bits quantization) that maximize the achievable rate
(2), at each f ∈ F , of M UEs deployed at random positions in the
cell, with M ≫ K. Such configurations are grouped into |CΦ| ≪ M
clusters, according to the well-known K-means (KM) clustering [21],
and the codebook entries are the resulting cluster centroids.

The codebook allows a substantial reduction of the IRS control link
overhead. Indeed, for each IRS reconfiguration, the gNB transmits
bq = log2 |CΦ| bits, instead of the bINI bits needed to configure each
phase shifter individually. Moreover, by further limiting the number
of reconfigurations per time frame to Z, the total number of control
bits is reduced by a factor ZF

K
≤ 1.

D. Computational Complexity

The computational bottleneck of GMAX is the maximum rate
evaluation for the initial choice of the Z IRS configurations to
solve (5). Specifically, the cascade channel matrix product GkΦkH
dominates computations with a complexity O

(
NgN

2
I +NgNINU

)
,

and the procedure must be done for all UEs, carrier frequencies,
and IRS configurations in the codebook. Similarly, the second loop
computes Rk in the same fashion, but the search is restricted to set P ,
and typically |P| = Z ≪ 2bq . As a result, the overall complexity of
GMAX is O

(
ZF (2bq+1)(NgN

2
I +NgNINU)

)
. Note that, in the first

step the complexity grows exponentially with the codebook overhead,
penalizing codebooks of large resolution. This suggests the adoption
of a cell-specific codebook to maximize the rate with low overhead.
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TABLE I
AVERAGE SUM RATE FOR DIFFERENT IRS SIZES [bit/s/Hz]

bq = 12 bq = 14 bq = 16 bq = NI

10H×20V 12.89 19.06 20.92 21.36
20H×40V 44.65 69.97 78.33 92.16
30H×60V 86.90 108.33 131.65 162.19

However, a further complexity reduction can be achieved by ob-
serving that, in the first loop, only the optimal IRS configuration of
each UE, i.e., the one maximizing its transmission rate, is needed. A
possible approach is to derive the optimal IRS configuration Φ

′∗
k (fi)

for all k, i in the continuous phase domain. Φ
′∗
k (fi) is then mapped

to the closest (in the sense of circular distance [15]) codeword in the
codebook Φ∗

k ∈ CΦ. While the time complexity of deriving Φ
′∗
k (fi)

for each k, i is O
(
NgN

2
I +NgNINU

)
[15], its approximation requires

O(2bqNI) operations. Thus, the total complexity can be reduced to
O
(
K(2bq + (NgN

2
I +NgNINUNI)) + ZF (NgN

2
I +NgNINU)

)
.

IV. NUMERICAL RESULTS

We consider a urban micro-cell (UMi) 3GPP scenario [22], with
all devices lying in the 2-D plane with the gNB placed at the center.
According to the 3GPP specifications, the coverage area of the gNB
is characterized by an average radius of 167 m and is assumed to lie
in the positive x-axis region. We consider K = 90 UEs are randomly
deployed according to a uniform distribution within the cell area, to
be served in downlink by the gNB, assisted by an IRS at coordinates
(75, 100) m. The gNB and the UEs are equipped with uniform linear
array (ULA) with Ng = 32 and NU = 4 antennas, while for the IRS,
if not otherwise specified, we adopt a 20H×40V reflective panel
(NI = 800), bI = 1 phase shift quantization bits, and bq = 14 bits
for the codebook overhead.

Channel. The system operates at a central frequency fc = 28 GHz,
the gNB transmission power is 33 dBm, and the noise power density
at the receivers is −174 dBm/Hz. Carriers are uniformly spaced in
(fc−10 MHz, fc+10 MHz). We employ the 3GPP TR 38.901 spatial
channel model [22], wherein channel matrices are computed based
on the superposition of different clusters, each consisting of multiple
rays that arrive (depart) to (from) the antenna arrays with specific
angles and powers. The link between gNB and UEs experiences deep
blockage, while we consider a LoS link between the gNB and the
IRS; the channels between the IRS and the UEs may exhibit a LoS
component depending on the distance, according to [22].

The performance is evaluated in terms of average sum rate

R̄ = E

[
Z∑

z=1

K∑
k=1

F∑
i=1

Rk(Φz, fi)xk,z,i

]
, (8)

where we average over multiple channel realizations and randomly
generated UEs positions.

A. Compared Solutions

In the following, we compare GMAX with different resource
allocation policies, under different codebook sizes.

Deterministic allocation (DA). A baseline scheduling where each
UE is directly assigned to an RB in cluster z and, upon the
assignment, the IRS configuration Φz ∈ CΦ maximizes the cluster
sum rate.

Unconstrained capacity-based clustering (UOSCBC). This is an
extension to OFDMA scheduling of the one-shot capacity-based clus-
tering (OSCBC) proposed in [15] for TDMA. The unique assignment
to a particular RB, i.e., constraint (4d) is violated, as there is no
limitation imposed in the number of UEs associated with each RB.
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Genetic algorithm (GA). This is a GA [23] with fitness function
(4a), whose initial population includes the GMAX solution. In such
GA approach the population generation, crossover, and mutation
functions are customized such that all the constraints (4b)-(4e) are
always satisfied. This provides the (almost) optimal solution of
problem (4).

B. Performance Results

Firstly, Table I shows the relationship between codebook size and
system sum rate in the ideal case with F=1 and each UE scheduled
with its optimal IRS configuration Φ∗

k. The results reveal the need
for a large codebook to approximate the continuous case (i.e., bq =
NI for bI = 1). Also, larger IRS panels are more sensitive to the
codebook size, as a result of the higher degree of freedom provided
by the independent control of each phase shifter. E.g., a 10H×20V-
element IRS achieves around 60% of the sum rate achievable with
the continuous codebook with only bq = 12, and 98% for bq = 16.
Instead, a 30H×60V-element IRS requires bq = 16 to reach 81% of
the sum rate achievable in the continuous case.

Fig. 3 depicts the average sum rate as a function of the number
Z of clusters, comparing the different clustering strategies. Since
each UE must be scheduled once in the resource grid, Z is bounded
by K/F . The results show a huge performance gap between the
proposal and the DA baseline and highlight the huge performance
degradation due to the codebook resolution compared to the slight
impact of the frequency assignment constraints (4d)-(4e). In particu-
lar, GMAX and UOSCBC with high-resolution codebook (bq = NI)
show a substantial sum rate gap with their respective low-resolution
codebook case (bq = 14), while the negligence of constraints (4d)-
(4e) with UOSCBC does not provide any substantial benefit on the
performance. The proposed GMAX scheduler performs very close
to the GA, which is shown to deviate very slightly from the greedy
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solution. Even though the GA approach is not always optimal, such
a negligible gap is representative of the validity of GMAX in this
context. To emphasize the performance gap between the compared
schemes, Fig. 4 shows the empirical cumulative distribution function
(ECDF) of the per-UE rate for fixed numbers of clusters Z ∈ {7, 14}.
While the performance hierarchy remains invariant for almost all
compared schemes, the adoption of the sum rate as the fitness
function of GA may result in a different rate distribution than GMAX,
promoting the UEs experiencing the best channel conditions while
penalizing the others.

Fig. 5 shows the average sum rate vs K, for F = 3 carrier
frequencies. While the sum rate increases with K, for low numbers of
clusters (Z = 4) the performance gap between GMAX with the low-
resolution codebook and GMAX with bq = NI becomes negligible
for a large number of UEs, as the configurations associated to each
cluster are sub-optimal in maximizing the sum rate in both cases.

Finally, to analyze the impact of the number of carrier frequencies,
Fig. 6 shows the sum rate as a function of ZF . Since 1 ≤ Z ≤ KF ,
the best performance is achievable for fewer carriers, allowing for
more frequent reconfigurations. Moreover, it is shown that for large
Z the cases F = 1 and F = 3 exhibit very similar performance. This
peculiar behavior is a direct consequence of the considered UMi cell,
as ∼ 33% of the UEs on average exhibit a LoS channel component.
The channel gain experienced by such UEs is significantly larger than
the gains of the UE in non-line-of-sight (NLoS). For Z = K/3, such
UEs are allocated in different clusters and their optimal configurations
are therefore chosen to serve their respective clusters. Thus, Z =
K/3 is enough to obtain a high sum rate performance.

V. CONCLUSIONS

We have discussed the OFDMA downlink scheduling in an IRS-
assisted multi-user MIMO system, considering a limited number of

IRS reconfigurations per time frame and a discrete codebook of
possible configurations. We have tackled the sum rate maximization
as an NP-complete generalized multi-knapsack problem, proposing
a heuristic solution for the joint IRS configuration and resource
allocation and showing its effectiveness in guaranteeing close-to-
maximum sum rate compared to a GA-based approach.
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