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Abstract—Intelligent reflecting surfaces (IRSs) are being
widely investigated as a potential low-cost and energy-efficient
alternative to active relays for improving coverage in next-
generation cellular networks. However, technical constraints in
the configuration of IRSs should be taken into account in
the design of scheduling solutions and the assessment of their
performance. To this end, we examine an IRS-assisted time
division multiple access (TDMA) cellular network where the
reconfiguration of the IRS incurs a communication cost; thus, we
aim at limiting the number of reconfigurations over time. Along
these lines, we propose a clustering-based heuristic scheduling
scheme that maximizes the cell sum capacity, subject to a fixed
number of reconfigurations within a TDMA frame. First, the
best configuration of each user equipment (UE), in terms of joint
beamforming and optimal IRS configuration, is determined using
an iterative algorithm. Then, we propose different clustering
techniques to divide the UEs into subsets sharing the same
suboptimal IRS configuration, derived through distance- and
capacity-based algorithms. Finally, UEs within the same clus-
ter are scheduled accordingly. We provide extensive numerical
results for different propagation scenarios, IRS sizes, and phase
shifters quantization constraints, showing the effectiveness of our
approach in supporting multi-user IRS systems with practical
constraints.

Index Terms—Intelligent Reflecting Surfaces (IRS); millimeter
wave (mmWave) communication; multiple access; scheduling;
clustering; optimization.

I. INTRODUCTION

The ever-increasing growth of mobile traffic has called both
academia and industry to identify and develop solutions for
extending the radio spectrum beyond the crowded sub-6 GHz
bands. As a result, the use of millimeter wave (mmWave) band
for cellular communications has been included in the latest
releases of the 3rd Generation Partnership Project (3GPP)
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standard, namely fifth-generation (5G) New Radio (NR) [2].
Moreover, Terahertz (THz) frequencies are being investigated
as enablers for sixth-generation (6G) networks as well [3].

However, transmissions in the mmWave and THz bands are
subject to challenging propagation conditions, mainly due to
severe path loss and susceptibility to blockages [4]. To miti-
gate these limitations, the research community has explored
solutions to improve network coverage, for example using
integrated access and backhaul (IAB) nodes, as also approved
by the 3GPP as part of 5G new radio (NR) specifications
for Rel-16 [5]. In particular, IAB allows base stations, or
next generation Node Bases (gNBs) in 5G NR parlance, to
establish wireless (rather than traditional fiber-like) backhaul
links, possibly through multiple hops, to a donor, thus reducing
deployment costs [6]. Still, IAB involves complex signal
processing and saturation of the available resources and may
be costly and energy-consuming for network operators.

In light of this, intelligent reflecting surfaces (IRSs) are
being investigated as solutions to overcome the harsh prop-
agation conditions shown by mmWave and THz bands in a
cost- and energy-efficient manner [7]. IRSs are meta-surfaces,
whose radiating elements can passively tune the phase shift of
impinging signals to favorably alter an electromagnetic field
towards an intended destination. They can be configured to
beamform the reflected signal virtually in any direction, hence
acting as a relay to improve the signal quality without an active
(power-consuming) amplification [8].

A. Prior Work

Despite the substantial research hype, most recent studies on
IRSs rely on strong assumptions that do not match real-world
deployments. Specifically, a significant body of literature is
based on the assumption that IRSs establish an ideal (i.e., fiber-
like) control channel with the base station [9]–[12]. Instead,
actual deployments are expected to feature a wireless, i.e.,
error-prone, IRS control, possibly implemented with low-cost
technologies [13], [14]. This introduces constraints on the
IRS reconfiguration period, which needs to be synchronized
with the base station to beamform the signal towards the user
equipment (UE) served during the specific time slot [7], a
similar research problem to scheduling in cellular networks.

In this perspective, IRS-assisted downlink scheduling so-
lutions have been widely studied in different domains, each
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with its own theoretical constraints. For example, in orthogonal
frequency-division multiple access (OFDMA) user scheduling,
all the users scheduled in a given time slot must be served
using the same reflection coefficients, due to the lack of
frequency selective beamforming capabilities at the IRS. In
this context, dynamic optimization schemes, wherein the IRS
configurations are adjusted at each time slot, have been studied
in [15], [16]. The authors of [17] consider a two-user
downlink transmission problem in an IRS-assisted scenario
over fading channels, and compare the results of different
basic orthogonal multiple access (OMA) and non-orthogonal
multiple access (NOMA) schemes. It is found that, while
NOMA is the best solution, by exploiting IRS reconfiguration
in each slot of the fading block, time division multiple ac-
cess (TDMA) outperforms frequency division multiple access
(FDMA), and its performance is similar to that of NOMA. A
hybrid TDMA-NOMA approach, instead, was investigated in
an uplink scenario in [18], [19], in the context of a wireless-
powered network, where users are grouped based on their
channel gains. Then, UEs within the same group transmit in
a non-orthogonal fashion, while different groups are assigned
to different time slots. Moreover, a user scheduling algorithm
based on graph neural networks, able to jointly optimize the
IRS configuration and the gNB beamforming in downlink, was
recently presented in [20]. Similarly, the authors of [21]–[23]
evaluated the performance of several non-orthogonal downlink
scheduling methods, such as rate-splitting multiple access
(RSMA). Finally, IRSs with energy harvesting capabilities are
considered in [24]. In this work, the authors propose a trade-off
between the system sum capacity and the IRS energetic self-
sustainability, with the goal of achieving coverage flexibility
and low deployment costs.

Still, most of the literature poses little to no reconfiguration
constraints for the IRS. However, early IRS control circuitry
prototypes, which have low power consumption (i.e., a few
hundreds of mW), have a non-negligible phase-shifts recon-
figuration time [25], [26], thus posing additional constraints
in the system design. For example, the prototypes in [27]
and [28] have a reconfiguration time of a few tens of ms,
even though architectures based on field programmable gate
array (FPGA) such as in [29] promise to achieve much lower
configuration times, i.e., in the order of tens of microseconds.
Still, the overhead (in terms of time) increases as the number
of IRS elements increases, as investigated in [30]–[32]. In
any case, a constraint on the number of reconfigurations (and
relative period) is desirable to ensure system synchronization
and minimize the IRS downtime during reconfiguration. In
this regard, it is of interest to (i) investigate the level of
performance degradation experienced by IRS-assisted systems
when considering practical constraints, including limitations in
the number of reconfigurations, and (ii) design algorithms that
can mitigate these constraints. The limitation on the number of
IRS reconfigurations in a given time frame has been initially
studied in [25], where the authors evaluate the capacity of both
OMA and NOMA schemes of a 2-user IRS-assisted single
input single output (SISO) system under Rayleigh fading
conditions. Still, additional research efforts is required to fully
characterize the impact of IRS reconfigurations constraints on

the network.

B. Contributions

In this paper, we propose a TDMA scheduling policy
for downlink cellular transmissions based on clustering algo-
rithms, to maximize the sum capacity in IRS-assisted network
deployments with practical constraints. Our main contributions
are summarized as follows:

• We account for practical IRS limitations by considering
a fixed maximum number of reconfigurations of IRS
reflecting elements within a time frame, thus setting a
simple constraint on the overhead entailed by the control
of the IRS.

• We formalize an optimization problem to determine the
optimal IRS configurations to maximize the sum capacity
while satisfying the reconfiguration per frame constraint.
Then, we convert the sum capacity problem into a clus-
tering problem. The latter determines sets of UEs that
can be served with the same (possibly suboptimal) IRS
configuration while minimizing the related capacity loss.

• We design, as an alternative to typical clustering al-
gorithms based on distance measures, a new class of
algorithms which we denote as capacity-based clus-
tering. These algorithms adjust the cluster configura-
tion taking into account the sum capacity and the user
fairness. Specifically, we propose three clustering al-
gorithms: capacity-weighted clustering (CWC), which
favors users experiencing the best channel conditions,
one-shot capacity-based clustering (OSCBC), which rep-
resents a low-complexity alternative to the former, and
inverse capacity-weighted clustering (ICWC), which pro-
motes fairness among the cluster UEs.

• We compare via simulation the performance of distance-
and capacity-based clustering in different IRS-assisted
scenarios. Extensive numerical results show that schedul-
ing based on clustering can reduce by up to 50% the
number of IRS reconfigurations, thus promoting commu-
nication efficiency at the expense of a slightly lower sum
capacity.

With respect to [1], we introduce new capacity-based cluster-
ing strategies to improve fairness and provide more extensive
numerical results to demonstrate the scalability of the proposed
solutions as a function of the density of UEs and the IRS
size. Moreover, we evaluate the performance of the proposed
scheduling strategies considering realistic IRS network con-
straints, including the quantization of phase shifts, and for
different channel propagation conditions. In this sense, we
provide additional results in terms of the computational com-
plexity of the proposed distance- and capacity-based clustering
algorithms, as well as in terms of fairness. Finally, we remark
that due to the novelty of the considered scenario, to the best
of our knowledge the effectiveness of our solution cannot be
directly compared with any works in the literature. Indeed, the
most similar works [16], [17], [25], [30] exhibit substantial
differences in the considered contexts. More specifically:

• In comparison to [16], which assumes the IRS configu-
rations to be fixed, our work focuses on optimizing user
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scheduling in conjunction with IRS configurations in a
dynamic manner.

• [17], [25] analyze a basic scenario where a single-
antenna gNB serves single-antenna UEs, while we con-
sider multiple antennas at both the base station and UEs,
and an OFDMA multiuser access scheme.

• While [25] characterizes the capacity region for K >
1 UEs, the computational complexity of the proposed
scheme limits its applicability to K = 2 UEs. In contrast,
our solution supports more realistic scenarios, where
K ≫ 1.

• The authors of [30] use the position estimate of a moving
UE to minimize the IRS reconfiguration overhead while
guaranteeing a minimum signal-to-noise-ratio (SNR) in
the single-UE context. In our work, on the other hand,
we consider a multi-user scenario and reduce the number
of IRS configurations by clustering UEs in the channel
state information (CSI) domain.

These fundamental differences in system setup and assump-
tions prevent a meaningful simulation-based comparison.

C. Organization and Notation

The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we present
the sum capacity optimization problem. In Section IV, we
describe the scheduling framework, while in Sections V and
VI we present distance-based and capacity-based clustering
algorithms, respectively. In Section VII, we show numerical
results and compare the different scheduling and clustering
solutions. Finally, Section VIII draws the main conclusions.

Scalars are denoted by italic letters; vectors and matrices
by boldface lowercase and uppercase letters, respectively;
sets are denoted by calligraphic uppercase letters. diag(a)
indicates a square diagonal matrix with the elements of a on
the principal diagonal, and vec(A) denotes the vectorization
operator, staking the columns of matrix A into a column
vector. AT and A† denote the transpose and the conjugate
transpose of matrix A, respectively. [A]kℓ denotes the scalar
value in the k-th row and ℓ-th column of matrix A, while [a]k
denotes the k-th element of vector a. The imaginary unit is
denoted as j =

√
−1, and ∠a denotes the phase of a ∈ C.

The operator ⋄ denotes the Khatri-Rao product. Finally, E[·]
denotes statistical expectation.

II. SYSTEM MODEL

We consider downlink data transmissions for the multi-user
multiple input multiple output (MIMO) communication system
shown in Fig. 1, wherein the transmission from the gNB to
the K UEs is assisted by an IRS. The gNB and the UEs are
equipped with Ng and NU antennas, respectively. We assume
that the direct link between the gNB and the UEs is unavailable
due to blockage. As a consequence, the gNB transmits signals
to the UEs by exploiting the virtual link offered by the IRS.
In this context, the IRS configuration is managed by the
gNB through the IRS controller, by exploiting a dedicated
link between the gNB and the IRS, thus with no additional
communication overhead in the gNB-UE link. Time is divided
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Fig. 1. Downlink TDMA scheduling for multi-user IRS-aided systems.

into frames of K slots, and each UE is served exactly once
in a frame in a TDMA fashion, which ensures there is no
co-channel interference as UEs are separated in the time
domain. In our scenario we expect that the gNB-IRS channel
has rank one, i.e., a single dominant path, which effectively
prevents multi-stream transmissions and spatial multiplexing.
However, when higher-rank channels are available, either
multi-stream transmission to each UE or spatial multiplexing
can be considered. For the former case, the proposed solution
applies straightforwardly. Moreover, our approach can to be
suitably modified to accommodate for the latter scenario. A
detailed investigation of this point is left for future work.
We assume that UEs are either static or moving slowly,
which is the most typical application scenario for IRS-assisted
networks. Under such conditions, the channel coherence time
is in the order of 10 ms [33, Fig. 5]. Considering that perfect
CSI of all UEs is acquired at the gNB at the beginning of
each frame (a realistic assumption that does not affect the
proposed scheduling framework for IRS communication), it
is reasonable to conclude that the channel remains constant
throughout the whole time frame. Here, we assume that the
CSI is available for any IRS configuration.

A. IRS Model

Each of the NI elements of the IRS acts independently as
an omnidirectional antenna unit that reflects the impinging
electromagnetic field by introducing a tunable phase shift on
the baseband-equivalent signal. We denote as ϕn = ejθn the
reflection coefficient of the n-th IRS element, where θn ∈ Pθ
is the induced phase shift, and Pθ is the set of possible phase
shifts. Recent works argue that continuous phase shifts are
hardly implementable in practice [34]. Therefore, we consider
both continuous and quantized phase shifts. While in the
former case the set of phase shifts is Pθ = [−π, π), in the
latter we have Pθ =

{
0, 2π

2b
, . . . , 2π(2b−1)

2b

}
where b > 0 is

the number of bits employed to quantize the phase shifts.
We denote with H ∈ CNI×Ng the channel matrix between

the IRS and the gNB, and with Gk ∈ CNU×NI the channel
matrix of the link between the IRS and UE k, respectively. We
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consider single-stream transmissions,1 with wk ∈ CNg×1 and
vk ∈ CNU×1 defined as the beamforming vectors at the gNB
and UE k, respectively. Let xk be the single-stream signal
transmitted by the gNB to UE k; the received post-processing
signal can be expressed as

zk = vT
kGkΦHwkxk + vT

k nk, (1)

where nk ∈ CNU×1 represents the circularly symmetric
complex Gaussian noise vector with entries having zero mean
and variance σ2

n, while Φ ∈ CNI×NI is the IRS configuration,
i.e., a diagonal matrix defined as Φ = diag(ϕ1, . . . , ϕNI

). Note
that different, and specific, IRS configurations can be adopted
for different UEs. Accordingly, in the rest of the paper we let
Φk be the IRS configuration adopted when UE k is served.

The SNR at UE k under IRS configuration Φk is

Γk(Φk) =
|vT
kGkΦkHwk|2σ2

x

|vk|2σ2
n

, (2)

where σ2
x is the power of the transmitted signal. To maximize

the SNR of a given UE, a specific IRS configuration should
be adopted, tailored to the UE position in the cell and the
channel conditions. However, the goal of this paper is to limit
the number of IRS reconfigurations to comply with realistic
overhead constraints, as well as to improve the communica-
tion efficiency, and algorithms seeking to comply with these
requirements will be presented in Section IV.

III. SUM CAPACITY OPTIMIZATION PROBLEM

We impose a constraint on the number of IRS reconfigura-
tions per time frame, with the goal of either limiting the recon-
figuration,2 or accounting for practical limitations that might
arise in realistic deployments. On the downside, achieving this
objective usually leads to SNR degradation as suboptimal IRS
configurations might be adopted for some UEs. To mitigate
this effect, we formulate a constrained optimization problem
on the average cell sum capacity. Specifically, we assume the
following conditions:

1. at most Z IRS reconfigurations can occur per time frame;
2. the gNB serves K UEs by partitioning them into Z

disjoint subsets U1, . . . ,UZ , Z ≤ K;
3. for each UE in Uz , the same IRS configuration Φ(z) is

used, i.e., Φk = Φ(z),∀ k ∈ Uz,∀ 1 ≤ z ≤ Z.
Then, the achievable rate of UE k ∈ Uz is

Rk(Φ
(z)) = log2

(
1 + Γk

(
Φ(z)

))
, (3)

where Γk(Φ
(z)) is the SNR experienced by the k-th UE while

configuration Φ(z) is adopted at the IRS, i.e., the configuration
shared by all UEs belonging to subset Uz .

1The assumption of single-stream transmissions is justified by the rank of
the cascade channel matrix, which is likely equal to one. This conclusion
comes from the considerations reported in [35]–[37], and has been verified
numerically for the considered setup.

2We remark that the gNB typically communicates a (possibly new) IRS
configuration in each transmission time interval (TTI). The reconfiguration
constraint introduced in the proposed IRS scheduling framework is able to
reduce this overhead by a factor Z/K ≤ 1.

Let I = {Φ(1),Φ(2), . . . ,Φ(Z)} be the set of IRS configu-
rations corresponding to subsets U1, . . . ,UZ . The system sum
capacity within a time frame is defined as

C(U1, . . . ,UZ , I) = B

Z∑
z=1

∑
k∈Uz

Rk
(
Φ(z)

)
, (4)

where B is the transmission bandwidth. The optimization
problem is then formulated as

max
U1,...,UZ ,I

C(U1, . . . ,UZ , I), (5a)

s.t. ∠
[
Φ(z)

]
n,n
∈ Pθ, ∀n, z. (5b)

Problem (5) determines the optimal grouping strategy for
the UEs subsets U1, . . . ,UZ , and assigns the best IRS config-
uration accordingly. Therefore, (5) is both continuous (i.e., the
optimization of the IRS configuration) and combinatorial (i.e.,
the grouping of the UEs), and can be thus classified as a mixed
integer nonlinear programming (MINLP) problem. Moreover,
the following theorem holds.

Theorem 1. The sum capacity maximization problem (5) is
NP-complete.

Proof: First, we observe that the problem falls within
the general NP class. This is because if (5) is solved to
find U1, . . . ,UZ , I, both the sum capacity and the phase-shift
constraints (5b) could be verified in polynomial time. To prove
that the problem in NP-complete, we set I, and consider the
simplified problem

max
U1,...,UZ

C(U1, . . . ,UZ , I). (6)

This problem can be viewed as a multi-knapsack problem
with different clusters U1, . . . ,UZ as knapsacks, and the goal
is to maximize the total system capacity. This is known to
be NP-hard, as it is a generalization of the classic knapsack
problem. The original sum capacity maximization problem (5),
where we consider the additional degrees of freedom of the
IRS configurations, remains NP-hard, thus making the problem
NP-complete.

Given the inherent problem complexity, we adopt heuristic
clustering algorithms to obtain approximated, though close-to-
optimal, solutions, as described in Section IV.

IV. HEURISTIC SUM CAPACITY MAXIMIZATION

In this section, we provide heuristic solutions to (5). First,
we present two clustering-based approaches to identify and
group UEs with a similar optimal IRS configuration. Then, we
solve the scheduling problem on the identified clusters with a
TDMA approach [38]. We compute the UEs clusters by first
estimating the optimal individual IRS configurations, denoted
as Φ∗

k, 1 ≤ k ≤ K, i.e., the IRS configurations leading to
the maximum capacity for each UE k, as described in Sec-
tion IV-A. These configurations would solve (5) for Z = K,
as in this case all UEs are served in a TDMA fashion and
with their optimal IRS configuration. The phase coefficients of
the optimal IRS configuration matrices are then chosen as the
initial points of a procedure leveraging clustering algorithms
in the NI-dimensional space, as explained in Section IV-B.
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A. Optimal Individual IRS Configurations

In MIMO systems, both the gNB and the UEs adopt
properly tuned beamformers to match the signal transmissions
and receptions to the spatial direction providing the highest
channel gain [7]. For the optimization of the IRS configuration
of each individual UE, we adopt a procedure similar to that
presented in [32], focusing on single-stream transmissions and,
without loss of generality, on UE k.

For a given IRS configuration, the optimal beamform-
ing vectors vk and wk coincide with the singular vectors
corresponding to the highest singular value of the wireless
channel matrix. In particular, we calculate the singular value
decomposition (SVD) of the overall cascade channel matrix

GkΦkH = UΣV †, (7)

where the right and left singular vectors of GkΦkH are the
columns of V and U , and the corresponding singular values
are the diagonal entries of Σ.

In our formulation, the IRS configuration Φk is one of the
optimization variables. Indeed, given vk and wk, we can solve

Φ∗
k =argmax

Φk

Rk(Φk), (8a)

s.t. ∠[Φk]n,n ∈ Pθ, ∀n, (8b)

where Rk is the achievable rate of user k, 1 ≤ k ≤ K,
according to (3).

The derivation of the optimal IRS configuration of user
k requires the alignment of the channel phase coefficients.
According to [39], the cascade channel can be expressed as

vT
kGkΦkHwk = vec

(
vT
kGkΦkHwk

)
=
(
wT
kH

T ⋄ vT
kGk

)
diag(Φk)

(9)

where ⋄ denotes the Khatri-Rao product operator and
diag(Φk) return the column vector with all the elements in
the diagonal of Φk. Then, it is sufficient to observe that the
SNR is maximized when the phase shifts introduced by the
IRS are aligned with the phase shifts accumulated along the
various paths, i.e.,

θk,n = −(∠
[(
wT
kH

T ⋄ vT
kGk

)]
n
), ∀n. (10)

Note that, in general, we need to know the estimated phase
shift of each component resulting from the Khatri-Rao product
in (10), rather than the exact phase coefficients of H and
Gk. Moreover, as pointed out in [39], for structured channel
models adopted at mmWaves, where multipath scattering is
sparse and propagation is often dominated by strong specular
components, the estimation of the separated channel matrices
H and Gk can be simply accommodated by optimizing a
limited number of parameters.

Taking into account the possible quantization, the optimal
phase shifts are given by

∠[Φ∗
k]n,n ← argmin

ψ∈Pθ

(
∠ej(θk,n−ψ)

)
, ∀n. (11)

To overcome the interdependence between optimal IRS con-
figurations and beamforming vectors, we propose an iterative
alternate optimization approach. We first estimate the optimal
beamforming vectors for a given IRS configuration using (7).

Algorithm 1 Iterative Alternate IRS Optimization
Require: Gk,H
Ensure: Φ∗

k

1: t← 0
2: vk,wk ← 1
3: repeat
4: θk,n ← −(∠

[(
wT
kH

T ⋄ vT
kGk

)]
n
), ∀n

5: ∠[Φk,t]n,n ← argminψ∈Pθ
(∠ej(θk,n−ψ))

6: U ,Σ,V † ← SVD of vT
kGkΦkHwk

7: vk ← column of V corresponding to
the largest singular value

8: wk ← column of U corresponding to
the largest singular value

9: t← t+ 1
10: until |Rk(Φk,t)−Rk(Φk,t−1)| < ν
11: Φ∗

k ← Φk,t

Then, we plug the derived beamformers into (8a), and obtain
the corresponding optimal IRS configuration. We repeat this
two-step procedure until convergence, which, for practical pur-
poses, is assumed to be reached when the difference between
the achievable rates Rk, ∀k, in two consecutive iterations is
lower than a tolerance ν > 0. This procedure is summarized
in Algorithm 1, where t is the iteration index. The number of
iterations grows with the numbers of antennas and IRS phase
shifters. However, from preliminary simulations, and based
on the set of parameters we considered (see Section VII),
convergence is typically reached in less than 10 iterations.

B. Clustering-based TDMA Scheduling

For an approximated but close-to-optimal solution to (5), we
resort to a clustering-based approach. Our proposed clustering
algorithms estimate both the subsets of UEs U1, . . . ,UZ ,
and the relative set of IRS configurations I. We operate on
the phase vector space, i.e., the points to be clustered are
identified by the IRS phase shifts vector [∠ϕ1, . . . ,∠ϕNI

]
T
=

[θ1, . . . , θNI
]
T, which maps each IRS configuration Φ to a

point in [−π, π)NI . In case of quantized phase shifts, the phase
vector space is a lattice in the continuous space [−π, π)NI .

The general clustering-based procedure works as follows:
• Step 1: find Φ∗

k, ∀k, i.e., the optimal individual IRS
configurations for each UE as in Section IV-A;

• Step 2: build UE subsets Uz, z = 1, . . . , Z, by using a
clustering algorithm, according to Sections V and VI;

• Step 3: assign Φ(z) to all UEs ∈ Uz .
The core idea of this procedure is to use clustering algo-

rithms to group UEs, and assign the respective IRS config-
urations, which are mapped to the centroid of the cluster.
In the case of quantized phase shifts, once the clustering
procedure is performed, clusters may share the same centroid
and be merged. Therefore, Z represents the maximum number
of clusters, not the effective number. Moreover, we remark
that the procedure above does not rely on the assumption of
perfect CSI, as the grouping strategy (Step 2) and the individ-
ual optimization step (Step 1) are performed independently.
Nevertheless, in the case of imperfect CSI, the estimated
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individual optimal configurations may differ from the actual
optimal configurations, leading to a suboptimal grouping.

In the following, we propose different techniques to build
the clusters based on either a distance metric (Section V) or
the achievable rate (Section VI).

V. DISTANCE-BASED CLUSTERING ALGORITHMS

The class of distance-based clustering contains methods that
group data points based on their similarity or dissimilarity
according to a distance metric. This approach has several
advantages, including the efficiency in handling large datasets,
and the flexibility to adapt to many different scenarios of
interest. However, distance-based clustering can be sensitive to
the choice of the distance metric (which depends on the nature
of the data and the clustering problem), and the initialization
values. Moreover, in our specific case, it does not take into
account the achievable rate, which is not directly related to
the distance among the points in the phase vector space.

Since the scalar field is the range [−π, π), the adopted
distance has to take into account the circularity of data.
However, the convergence to a local minimum for most of
the clustering algorithms is guaranteed only if the points to
be clustered belong to a Euclidean space. For distance-based
algorithms, we thus define the bijective mapping function
f : PNI

θ → R2NI as

f(θ) = f([θ1, . . . , θNI
])

= [cos(θ1), sin(θ1), . . . , cos(θNI
), sin(θNI

)] , (12)

and then define the pairwise distance between two generic IRS
configurations α and β as

δ(α,β) = ||f(α)− f(β)||, (13)

i.e., the Euclidean distance between the mapping on the unit
NI-sphere of their respective phase vectors. In the following,
with a slight abuse of notation, f(Φ) maps the phases of
the complex entries in the diagonal of Φ as in (12), and
δ(Φ1,Φ2) denotes the pairwise distance between the phases
of the elements in the diagonal of matrices Φ1 and Φ2. The
sum of squared distances is defined as

J(U1, . . . ,UZ , I) =
Z∑
z=1

∑
k∈Uz

δ
(
Φ∗
k,Φ

(z)
)2

, (14)

and the distance-based clustering schemes are used to solve
the following problem:

min
U1,...,UZ ,I

J(U1, . . . ,UZ , I), s.t. (5b). (15)

We consider and compare some of the most popular
distance-based clustering algorithms, namely, K-means, ag-
glomerative hierarchical clustering, and K-medoids.

K-means. K-means (KM) clustering [40] aims at finding
Z disjoint clusters minimizing the within-cluster squared Eu-
clidean distances. Here, we consider the generalized Lloyd
algorithm [41], which randomly selects Z points in the space
of phase vectors as the initial centroids. In our setup, to
ensure optimal performance when Z = K, we force the
algorithm initialization to a random selection among the phase

vectors of the optimal individual IRS configurations derived in
Section IV-A. Then, in the assignment step KM assigns each
data point to the closest centroid, according to the specified
distance metric. In the subsequent update step, the set of
centroids is re-computed as the average of the data points
that belong to each cluster. These steps are repeated until
either convergence or a maximum number of iterations IKM

max

is reached.
Agglomerative hierarchical clustering. The agglomerative

hierarchical clustering (HC) [42] partitions a set of data points
into disjoint clusters by iteratively merging points into clusters
until a target number of partitions is met. In our setup, clusters
are initialized as the optimal phase vectors, which thus act as
the respective centroids. Then, the average distance between
all pairs of data points in any pair of clusters is evaluated. The
closest pair of clusters are merged into a new single cluster,
whose centroid is computed as the mean of its data points.
The procedure is repeated until the number of clusters is Z.

K-medoids. K-medoids (KMed) [43] is a clustering tech-
nique similar to KM, but instead of the mean of the data points
within each cluster, it uses the medoid, i.e., the data point that
is closest to the center of the cluster. In our setup, we consider
the partition around medoids (PAM) method [44], which starts
by randomly selecting Z medoids among the optimal phase
vectors and assigns each point to the cluster with the closest
medoid. In each iteration, the algorithm evaluates potential
swaps of medoids with non-medoids. A swap is accepted only
if it results in a lower value of the sum of the squared distances
to all other data points within the same cluster. The algorithm
continues until the medoids no longer change.

Theorem 2. The proposed distance-based clustering tech-
niques converge to a local minimum of (14).

Proof: The proof directly derives from the well-known
results of clustering with Euclidean distance. The exact proofs
for each of the considered algorithms under distance metric
(13) are reported in the Appendix.

VI. CAPACITY-BASED CLUSTERING ALGORITHMS

The distance-based clustering techniques presented in Sec-
tion V do not directly take into account the actual capacity
achievable by the UEs, which is a crucial factor for the sum
capacity maximization (5). Thus, in the following we propose
original capacity-based clustering algorithms that go beyond
the state of the art, namely CWC (Section VI-A), OSCBC
(Section VI-B), and ICWC (Section VI-C).

A. Capacity-Weighted Clustering (CWC)

Similarly to distance-based clustering, also CWC proceeds
iteratively. However, the stopping condition is based on the
variation of the sum capacity of each cluster, rather than on the
distance between the centroids. In this approach, the clustering
algorithm itself weighs the UEs based on their achievable
capacity, so that the parameters of the resulting clusters are
closer to those preferred by the UEs with higher rates, thus
promoting the maximization of the sum capacity.
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Let Φ(z)
i be the IRS configuration of cluster Uz,i at iteration

i. UEs are initially sorted in decreasing order of achievable
rate. The algorithm then selects the Z UEs providing the
highest achievable capacity based on the expression in (3) with
their optimal IRS configurations. Without loss of generality,
we let z = 1, . . . , Z be the index of those UEs, and set
Φ

(z)
1 = Φ∗

z , ∀ 1 ≤ z ≤ Z, as the centroids of the initial
clusters U1,0, . . . ,UZ,0. In the following, for simplicity, we
denote with zk,i the cluster such that k ∈ Uz,i. Each UE k > Z
is assigned to the cluster whose centroid provides the lowest
rate difference with respect to its ideal configuration. Let
Rk(Φ

∗
k) be the maximum achievable rate of UE k, obtained

from the solution of problem (1). UE k is assigned to cluster

zk,i = argmin
z

[Rk(Φ
∗
k)−Rk(Φ

(z)
i )], (16)

where Rk(Φ
(z)
i ) is the rate achieved by UE k adopting the IRS

configuration of cluster z at iteration i. Note that, despite being
always non-negative, the rate difference in (16) cannot be
considered a distance metric as, in general, it does not satisfy
the triangle inequality. However, we prove that, as the distance
from the optimal configuration increases, the corresponding
rate decreases, thus supporting the use of the rate difference
as a clustering criterion.

Theorem 3. Given the optimal IRS configuration Φ∗
k, the

rate Rk(Φ) is monotonically decreasing with respect to the
magnitude of any phase shifts error ϵ.

Proof: Let ϵ ∈ [−π, π] be an arbitrary error phase
shift, and consider the configuration Φϵ

k = Φ∗
kE, where

E = diag(ejϵ, 1, . . . , 1), i.e., the suboptimal configuration
where only the first IRS element is affected by the error ϵ.
Assuming, without loss of generality, that Ng = Nk = 1
and σx = σn = 1, the rate Rk(Φ

ϵ
k) is proportional to

Γk(Φ
ϵ
k) when using configuration Φϵ

k. The SNR Γk(Φ
ϵ
k) can

be written as

Γk(Φ
ϵ
k) = |gkΦ∗

kEh|2 (17)

= |[gk]1[Φ∗
kE]1,1[h]1 +A|2 , (18)

where A =
∑NI

n=2[gk]n[Φ
∗
k]n,n[h]n. Since Φ∗

k is the optimal
configuration, it satisfies (10). It follows that A ∈ R+, so (17)
can be further manipulated into

Γk(Φ
ϵ
k) = ||[gk]1||[h]1|ejϵ +A|2 (19)

= A2 + (|[gk]1||[h]1|)2 + 2A|[gk]1||[h]1| cos(ϵ). (20)

Finally, we evaluate the sign of the derivative of Γk(Φϵ
k) with

respect to the error ϵ as

∂Γk(Φ
ϵ
k)

∂ϵ
= −2A|[gk]1||[h]1| sin(ϵ), (21)

and observe that Γk(Φ
ϵ
k), and therefore Rk(Φ

ϵ
k), is strictly

decreasing for 0 < |ϵ| ≤ π.
After all the remaining UEs have been assigned to the

corresponding clusters, the coordinates of the centroids are
updated. At iteration i+1, the new IRS configuration (centroid)

Algorithm 2 CWC Algorithm
Require: Z, H , Gk, ∀k
Ensure: U1, . . . ,UZ , I

1: Compute Φ∗
k,∀k with the procedure of Algorithm 1

2: Sort the UEs in decreasing order of Rk(Φ∗
k)

3: Select the Z UEs providing the highest Rk(Φ∗
k),

4: Set Φ(z)
1 = Φ∗

k, z = 1, . . . , Z as the initial centroids.
5: repeat
6: for each UE k do
7: zk,i ← argminz Rk(Φ

∗
k)−Rk(Φ

(z)
i )

8: end for
9: for each cluster z do

10: Compute Φ
(z)
i+1 as per (22), (23)

11: end for
12: i← i+ 1
13: until

∣∣∣∑k∈Uz
Rk(Φ

(z)
i )−

∑
k∈Uz

Rk(Φ
(z)
i−1)

∣∣∣ < µ

14: Assign Φ(z) to all k ∈ Uz .

of cluster Uz,i+1 is computed as the average of the data points
in the cluster, weighted by their achievable rate, i.e.,

Φ
(z)
i+1 = f−1

(∑
k∈Uz

f(Φ∗
k)Rk(Φ

∗
k)∑

k∈Uz
Rk(Φ∗

k)

)
. (22)

Also, in the case of phase shift quantization, an additional
approximation step must be performed as

∠[Φ(z)
i+1]n,n ← argmin

ψ∈Pθ

(
∠ej(∠[Φ

(z)
i+1]n,n−ψ)

)
, ∀n. (23)

This two-step procedure is repeated until convergence, which
is reached when the rate difference between two consecutive
iterations is lower than the sum capacity tolerance µ > 0.

The rationale behind the algorithm is that, based on the
initial centroid assignment, the UEs experiencing the best
channel conditions, i.e., those dominating the system sum
capacity, are initially served with their optimal (individual)
IRS configurations. Even after the adjustment of the clusters,
these UEs will always get the largest weight coefficient within
the cluster. The remaining UEs, instead, will be penalized
by the configuration constraints, but their impact on the sum
capacity will be limited. The whole workflow of the CWC
procedure is summarized in Algorithm 2.

B. One-Shot Capacity-Based Clustering (OSCBC)

The main drawback of CWC presented in Section VI-A is
that it requires solving problem (16) at each iteration, relative
to all the UEs in each cluster. Considering massive MIMO
systems, the CWC procedure could become exceedingly com-
plex, as it requires the SVD computation of extremely large
matrices. Therefore, we propose another lower-complexity
clustering algorithm, denoted as OSCBC.

As in CWC, also in OSCBC: (i) the UEs are sorted in
decreasing order of achievable rate; (ii) the Z IRS configura-
tions of the Z UEs experiencing the highest rates are chosen
as initial centroids for the clusters; and (iii) the remaining
UEs are assigned to the closest centroid in terms of circular
distance, as per (13). Then, compared to CWC, instead of
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TABLE I
COMPUTATIONAL COMPLEXITY OF DISTANCE-BASED VS.

CAPACITY-BASED CLUSTERING.

Clustering algorithm Computational complexity

KM (Lloyd) O(IZKNI)
KMed (PAM) O(Z3K2NI)
HC O(K3NI)

CWC/ICWC O(IZKNgN
2
I )

OSCBC O(Z(K − Z)NI)

recomputing the coordinates of the centroids at each iteration
until convergence, the algorithm stops right after the initial
association. Therefore, with OSCBC the computed centroids
are the optimal configurations relative to the Z UEs achieving
the highest individual rate, which provides suboptimal (non-
optimized) performance for the rest of the UEs in the clusters.

C. Inverse Capacity-Weighted Clustering (ICWC)

The CWC algorithm is designed to optimize the capacity of
the UEs experiencing the best channel conditions and is unfair
to the other UEs in the system, which may use suboptimal IRS
configurations. Therefore, we propose an additional variation
of CWC, named ICWC, with the goal of achieving higher
fairness among the UEs in the system. In ICWC, while the
cluster association principle of (16) is preserved, the initial
condition is reversed. Specifically: (i) UEs are sorted in in-
creasing order of achievable rate; (ii) the initial configurations
of the clusters Φ

(z)
1 = Φ∗

z , z = 1, . . . , Z, are based on the
optimal configurations of the UEs with the worst channel
conditions. The remaining k > Z UEs are associated as in
(16). Then, at iteration i, the IRS configuration is updated as

Φ
(z)
i+1 = f−1

(∑
k∈Uz

Φ∗
kR

−1
k (Φ∗

k)∑
k∈Uz

R−1
k (Φ∗

k)

)
, (24)

and the discretization step (23) is performed (if needed). As in
CWC, convergence is achieved if the rate difference between
two consecutive iterations is lower than the tolerance µ. While
ICWC obtains lower sum capacity than CWC, it can provide
significant improvements in terms of fairness, especially from
the perspective of the UEs with the worst channel conditions.

D. Computational Complexity

The computational complexity is evaluated as the number of
iterations required for the clustering algorithms to: (i) obtain
the optimal IRS configuration of each UE; (ii) partition the
UEs into disjoint subsets, or clusters, based on distance or
capacity metrics; and (iii) for each cluster, find the best IRS
configuration to serve the corresponding UEs.

Specifically, at each iteration, the main source of complexity
is the computation of the overall cascade channel matrix
GkΦkH , which has complexity O

(
NgN

2
I +NgNINU

)
. Ad-

ditionally, in the case of quantized IRS phase shifts, after
obtaining the optimal beamformers, the optimal phase shifts
for the IRS are obtained through an exhaustive search over

the set of possible phase shifts Pθ, yielding a complexity
O(2bNI).

Notice that different clustering algorithms, in general, re-
quire a different number of iterations I to reach convergence,
thus possibly introducing practical limitations. Moreover, the
complexity introduced in each iteration depends on the clus-
tering algorithm itself. In Table I and in the following text
we characterize the computational complexity of each of the
clustering algorithms presented in Sections V and VI.

Distance-based clustering. These algorithms do not require
specific initialization. For KM, based on the Lloyd implemen-
tation in [41], each iteration involves calculating the distances
between data points and centroids. As a result, the computa-
tional complexity is influenced by the number of iterations
required for convergence, the number of data points, the
number of clusters, and the dimensionality of data, resulting
in an overall complexity O(IZKNI). KMed can be solved
with the PAM algorithm [44], so the computational complexity
is O(Z3K2NI) due to the pairwise distance computations
between data points and medoids. Finally, the computational
complexity of the agglomerate HC is primarily determined by
the computation of pairwise distances among all data points,
resulting in a total complexity O(K3NI) [45].

Capacity-based clustering. The complexity of the OSCBC
algorithm is dominated by the centroid assignment upon
initialization, which has complexity O

(
Z(K − Z)NI

)
. In-

stead, for the CWC and ICWC algorithms, the complexity
is O(IZKNgN

2
I ), as demonstrated in the following theorem.

Theorem 4. The time complexity of CWC and ICWC scales
quadratically with NI as O(IZKNgN

2
I ).

Proof: Capacity-based clustering requires an initialization
stage where the algorithm selects the Z UEs providing the
highest (or lowest) Rk

(
Φ∗
k

)
, resulting in a complexity of

O(K logK) due to the sorting of K scalars. In the subsequent
iterations:

1) Both CWC and ICWC compute the rate difference be-
tween each UE and the Z centroids. The complexity
of computing Rk(Φ

(z)
i ) can be dominated either by the

matrix multiplication in (2), or by the SVD for the
single stream beamforming which require, respectively,
O
(
NgN

2
I +NgNINU

)
and O

(
NgNU min(Ng, NU)

)
op-

erations for each UE and each centroid.
2) The computation of the centroids as per (22)-(24) requires

NI + 1 scalar operations per UE, which has negligible
complexity with respect to the rate computation.

In typical IRS-assisted systems, NI ≫ Ng > NU. Therefore,
the complexity at each iteration is dominated by the chan-
nel matrix product, and the overall algorithm complexity is
O(IZKNgN

2
I ).

VII. NUMERICAL RESULTS

After presenting our various simulation scenarios and eval-
uation metrics in Sections VII-A and VII-B, respectively, we
assess in Section VII-C the scheduling performance of an IRS-
assisted network with practical constraints.
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TABLE II
SIMULATION PARAMETERS.

Parameter Value

Carrier frequency 28 GHz
Total bandwidth (B) 100 MHz
Noise power spectral density −174 dBm/Hz
Number of UEs (K) 100
gNB antenna array (Ng) 8H×8V
gNB transmit power 33 dBm
UE antenna array (NU) 2H×1V

IRS elements (NI)
{10H×20V, 20H×40V,
40H×80V, 60H×120V}

Phase shift quant. bits (b) {unquantized, 1-bit, 2-bits}
LoS probability (pLoS) Eq. (26)
Individual rate opt. tolerance (ν) 10−6 [bit/s/Hz]
KM max. iterations (IKM

max) 50
CWC/ICWC rate tolerance (µ) 10−3 [bit/s]

A. Simulation Parameters

Our simulation parameters are reported in Table II.

Scenario. All devices are assumed to lie on a 2D plane,
and we consider an urban microcell (UMi) scenario, according
to the 3GPP nomenclature [46], with the gNB placed at the
center. According to the 3GPP specifications, the coverage area
of the gNB is characterized by an average radius of 167 m and
is assumed to lie in the positive x-axis region.

We assume that K = 100 UEs are randomly deployed
according to a uniform distribution within the cell area, to
be served in downlink by the gNB, assisted by an IRS at
coordinates (75, 100) m. The gNB is equipped with a uniform
planar array (UPA) with 8H×8V antennas (i.e., Ng = 64),
and the UEs with uniform linear arrays (ULAs) of 2H×1V
antennas (i.e., NU = 2). For the IRS, if not otherwise
specified, we adopt a 40H×80V reflective panel (NI = 3200).

Channel and Frame Structure. The system operates at a
carrier frequency of 28 GHz (that is in the lower part of the
mmWave bands), the transmission power at the gNB is set to
33 dBm, the noise power spectral density at the receivers is
−174 dBm/Hz, and the total system bandwidth is 100 MHz.
We consider the fourth numerology of the NR frame structure
[47], wherein each 10 ms frame is split into 160 slots. With
this assumption, as already pointed out in Section II, channels
can be considered constant over the entire frame duration. We
consider the 3GPP TR 38.901 spatial channel model [46],
which supports a wide range of frequencies, from 0.5 to
100 GHz (and including therefore our carrier frequency of
28 GHz), and can be integrated with realistic beamforming
models. As such, channel matrices, and multipath fading, are
computed based on the superposition of N different clusters,
each of which consists of M rays that arrive (depart) to
(from) the antenna arrays with specific angles and powers.
Based on [46], and using the simplifications proposed in [48],
the generic entry [A]pq of the channel matrix can then be

computed as:

[A]pq = γ

N∑
n=1

√
Pn
M

M∑
m=1

Frx
(
θAn,m, ϕAn,m

)
×

 ejΦ
θ,θ
n,m

√
K−1
n,mejΦ

θ,ϕ
n,m√

K−1
n,mejΦ

ϕ,θ
n,m ejΦ

ϕ,ϕ
n,m


× Ftx

(
θDn,m, ϕDn,m

)
× ejk

T
rx,n,mdrx,pe

jkT
tx,n,mdtx,q

,

(25)

where γ is the large-scale fading coefficient (LSFC) of the
considered link, which incorporates the path loss and shad-
owing terms. For a complete description of the remaining
terms appearing in (25) we refer the interested reader to [48].
Specifically, while the gNB and the IRS can be assumed to
operate in line-of-sight (LoS), the path loss between a generic
UE k and the IRS is modeled based on the following channel
conditions:
• non-line-of-sight (NLoS): UE k is in NLoS with the IRS;
• deterministic LoS (LoS): UE k is in LoS with the IRS;
• probabilistic LoS (LoS): the IRS-UE k link is in LoS∨NLoS
with respective probabilities pLoSk (dk) ∨ 1−pLoSk (dk), with

pLoSk (dk) =

{
1 if dk≤18,
18
dk
+
(
1− 18

dk

)
e−

dk
36 if dk>18,

(26)

where dk is the distance (in m) between the IRS and UE
k. In the considered UMi scenario, and based on 3GPP
specifications [46], the average LoS probability in (26) is 0.35.

For each wireless link, based on the presence of the LoS
component, the path loss is then derived according to [46,
Table 7.4.1-1], with shadowing standard deviation set to σSF =
0. For the optimal individual IRS configuration (Section IV-A),
we set ν = 10−6 [bit/s/Hz].

Clustering algorithms. In the following subsections, we
present extensive simulation results to compare the perfor-
mance of distance-based (KM, HC, KMed) vs. capacity-based
(CWC, OSCBC, ICWC) clustering algorithms to perform
scheduling in an IRS system with reconfiguration constraints.
The KM clustering has been implemented with the Lloyd algo-
rithm [41] with a maximum number of IKM

max = 50 iterations.
Instead, for both CWC and ICWC, we set µ = 10−3 [bit/s].

As an upper bound to the system performance, we also
consider an “unclustered” scheduling, wherein we assume that
all UEs are served with their optimal IRS configuration. This
scheduling clearly violates the constraint on the maximum
numbers of reconfiguration per frame, but can be regarded as
the limit case when Z = K, i.e., all UEs belong to a cluster
with cardinality one. As such, it is a suitable approach for
benchmarking the performance of more practical schemes.

B. Performance Metrics

The performance of the proposed clustering-based schedul-
ing techniques is evaluated in terms of average sum capacity
and fairness, as a function of the numbers of both clusters and
UEs, under different channel conditions, IRS dimensions, and
degrees of quantization for the phase shifts.
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Fig. 2. Average sum capacity as a function of the maximum number of
clusters Z, for an unquantized 40H×80V IRS, and considering a pLoS
channel for the IRS-UEs links.

Average sum capacity. It is derived from (4) as

C̄ =
1

K
E [C(U1, . . . ,UZ , I)] , (27)

where the expectation is computed across the different channel
realizations. Moreover, as each UE is served in its specific
slot, we average over the TDMA frame length, dividing the
empirical expectation by the number of UEs (slots) K.

Fairness. We consider the 95% percentile of the achieved
individual user capacity, computed as

C95% =
B

K
inf{x : CDF(x) ≥ 0.95}, (28)

where CDF(·) is the empirical cumulative distribution func-
tion of Rk(Φ(z)), ∀k, z. Notice that the 95% percentile of the
user capacity is a practical and meaningful way to evaluate
fairness, as it measures the performance of the majority of the
UEs, excluding only the top 5%.

C. Scheduling Performance

In this section, we compare the IRS scheduling performance
considering distance-based vs. capacity-based clustering, and
as a function of different channel conditions, reconfiguration
constraints, and degrees of quantization of the phase shifts.

Impact of the clustering algorithm. First, Fig. 2 displays the
average sum capacity C̄ per slot as a function of the number of
clusters Z, for unquantized IRS phase shifts, and considering
a pLoS channel for the IRS-UEs links. It is evident that all the
scheduling policies perform better whenever Z increases, and
converge to the “unclustered” policy when Z = K. In fact,
increasing the number of clusters corresponds to a smaller
intra-cluster average distance, which eventually becomes zero
when Z = K. Among the considered clustering policies, CWC
and OSCBC provide the highest sum capacity, as they are
designed to maximize C̄, and choose the IRS configurations
of the UEs that achieve the highest rate. Instead, distance-
based clustering achieves worse performance as it does not
exploit the knowledge of the rate achievable with different IRS
configurations when building the clusters. As expected, ICWC
is designed to promote fairness, thus performs worse than both
CWC and OSCBC in terms of sum capacity; still, it achieves
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Fig. 3. 95% percentile of the user capacity as a function of the maximum
number of clusters Z, for an unquantized 40H×80V IRS, and considering a
pLoS channel for the IRS-UEs links.

similar performance as distance-based clustering. Finally, the
gap between CWC and OSCBC is almost negligible: this
implies that a single iteration in the clustering process is
enough to achieve good sum capacity, while also promoting
lower computational complexity as reported in Table I, which
demonstrates the good scalability of the proposed techniques.

Fig. 3 compares the fairness performance of the different
clustering algorithms, measured as the 95% percentile of the
average sum capacity C95%, as a function of the maximum
number of clusters Z in pLoS conditions. Our results identify
ICWC as the best clustering approach in terms of fairness,
which comes at the cost of a lower sum capacity, as shown in
Fig. 2. Therefore, there exists a trade-off between the achiev-
able sum capacity and fairness. We also observe that OSCBC
achieves very low fairness, as the UEs with worst channel
conditions are forced to aggregate to the strongest UEs, thus
via a suboptimal IRS configuration. On the other hand, we see
that CWC is more than acceptable in terms of fairness, and
achieves comparable performance than most of the distance-
based clustering algorithms. Furthermore, C95% increases as Z
increases, and eventually approaches the “unclustered” base-
line for Z = K. This is due to the fact that the LoS probability
in the pLoS scenario increases with the number of clusters, i.e.,
as the inter-cluster distance becomes smaller, which permits to
experience better channel conditions, thus a higher capacity,
even for the worst UEs. Finally, despite performing worse than
their capacity-based counterparts, the distance-based methods
are a viable alternative for constrained IRS control nodes
thanks to their lower computational complexity. In such cases,
HC is to be preferred for sum-capacity maximization, while
KM is the best alternative to capacity-based algorithms when
the 95% percentile of the average sum capacity represents the
metric of interest.

Impact of the channel. From the above results, we concluded
that distance-based clustering provides lower sum capacity
and fairness compared to capacity-based scheduling, so the
rest of our simulation campaign has been focused on the
latter. Figs. 4 and 5 display the average sum capacity and the
95% percentile, respectively, for CWC, ICWC, and OSCBC
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Fig. 4. Average sum capacity as a function of the maximum number of
clusters Z, for NI = 3200, unquantized phase shifts, and for different channel
conditions.
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Fig. 5. 95% percentile of the user capacity as a function of the maximum
number of clusters Z, for NI = 3200, unquantized phase shifts, and for
different channel conditions.

in different channel conditions. First, we observe that in the
dLoS scenario, where UEs are in LoS with the IRS, the sum
capacity is up to 2.6 (2.4) times higher than in the NLoS
(pLoS) scenario for Z = K. This is mainly due to the fact
that NLoS links experience (i) a higher path loss, and (ii) the
lack of a dominant multipath component, thus of a clear
steering direction for the IRS beam, which deteriorates the link
quality. In particular, in the pLoS scenario the LoS probability
decreases exponentially with the distance, therefore, the UEs
that are far from the IRS typically operate in NLoS. For similar
reasons, both CWC and ICWC in the dLoS scenario start to
reach stability in terms of capacity with a relatively lower
number of clusters than in the pLoS and NLoS scenarios.

As expected, OSCBC performs worse than its competitors,
and the gap is even more significant in the dLoS scenario
(around −30% in terms of sum capacity). The bad perfor-
mance of OSCBC compared to CWC and ICWC is confirmed
also in terms of fairness, as illustrated in Fig. 5 (see, in
particular, the zoom for 50 ≤ Z ≤ 90).

Finally, even though ICWC is not explicitly designed to
maximize the sum capacity, it shows similar performance (if
not even slightly better) as CWC in the dLoS scenario. The
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Fig. 6. Average sum capacity for CWC and ICWC as a function of the
number of reflecting elements at the IRS, for unquantized phase shifts, and
considering a pLoS channel for the IRS-UEs links.
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Fig. 7. 95% percentile of the user capacity for CWC and ICWC as a function
of the number of reflecting elements at the IRS, for unquantized phase shifts,
and considering a pLoS channel for the IRS-UEs links.

rationale behind this behavior is not clear and deserves more
investigation. Most likely, it is related to the fact that, in the
dLoS scenario, all UEs have similar channel conditions, which
permits ICWC to choose, on average, a good IRS configuration
even among the worst UEs in the clusters.

Impact of the IRS configuration. Figs. 6 and 7 show the
impact of the number of IRS radiating elements on the system
performance when considering the CWC and ICWC clustering
algorithms. As expected, both fairness (measured in terms of
the 95% percentile of the average sum capacity) and sum
capacity increase as the IRS is larger and operates with more
reflecting elements, regardless of the number of clusters. For
example, we observe that CWC is able to approach the optimal
sum capacity with as few as 20 clusters for small-sized IRS,
i.e., with 10H×20V or 20H×40V arrays. The same trends are
shown also in Fig. 7 in terms of fairness. Still, notice that C̄ is
below 100 Mbps, which is not compatible with the requirement
of most 5G applications when the IRS is made of fewer than
200 elements, which justifies the use of larger IRS panels [12].

Nevertheless, we still observe that the number of reflecting
elements has an impact on the number of clusters that are
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number of clusters Z, for NI = 3200 and for different degrees of quantization
of the phase shifts, and considering a pLoS channel for the IRS-UEs links.

needed to provide maximum performance. Indeed, the num-
ber of possible IRS configurations increases as we consider
larger IRS antennas. In turn, this decreases the likelihood of
UEs having the same (or similar) ideal configurations, and
therefore, it increases the probability of being associated with
increasingly suboptimal centroids if the number of clusters
is small. However, if the number of phase shifters is large,
the suboptimality is mitigated by the increasing number of
reconfigurations. Typically, the IRS reconfiguration cost is
proportional to the number of radiating elements, and therefore
the specific reconfiguration cost may be different for different
IRSs in general. A detailed quantitative analysis of this issue
would need to go into the specifics of the various IRS
architectures, which goes beyond the scope of the present
paper, and will be considered in our future work.

Impact of quantization. Figs. 8 and 9 display the average
sum capacity and the 95% percentile, respectively, as a func-
tion of the maximum number of clusters Z for CWC and
ICWC, and of the number of quantization bits b of the phase
shifts. Notice that energy and hardware constraints pose a
limit to b [49], which implies restricting the infinite set of
possible IRS configurations to a finite set of cardinality 2bNI .
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Fig. 10. Sum capacity as a function of the maximum number of clusters
over the number of UEs Z/K, for different values of K, for an unquantized
40H×80V IRS, K = {50, 100, 150}, and considering a pLoS channel for
the IRS-UEs links. For readability, the results are shown without averaging
over the TDMA frame length.
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Fig. 11. 95% of the user capacity as a function of the maximum number
of clusters over the number of UEs Z/K, for different values of K, for an
unquantized 40H×80V IRS, K = {50, 100, 150} UEs, and considering a
pLoS channel for the IRS-UEs links.

Moreover, the quantization constraint affects the beamforming
capabilities of the IRS [10], with negative implications for the
resulting achievable sum capacity. In [1], results were obtained
considering that the quantization was performed only at the
end of the clustering procedure. Here, instead, we assume that
the quantization of the phase shifts is taken into account from
the initial optimization stage. The results reveal that the use of
non-ideal phase shifters leads to a 30% degradation in the sum
capacity when using b = 1 at the IRS, while the performance
is close to the unquantized baseline if more quantization
bits are used. Furthermore, it is shown that the gap between
quantized and the unquantized performance increases with Z.
As a result, 1-bit quantization is sufficient to guarantee a
performance comparable to the unquantized case with a small
number of clusters, while more quantization bits are needed
to achieve higher capacity. In any case, we can conclude that
our proposed capacity-based clustering algorithms are robust
to phase-shift quantization.

Scalability. Finally, we prove the scalability performance of
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the proposed clustering algorithms. To do so, we first show
the performance of capacity-based clustering as a function
of the number of UEs in Figs 10 and 11. In particular, we
compare CWC and ICWC with HC as a function of the ratio
K/N , for an unquantized 40H×80V IRS, K = {50, 100, 150}
UEs, and considering a pLoS channel for the IRS-UEs links.
The results are in line with the plots in Figs 2 and 3,
which demonstrates the scalability of the proposed clustering
techniques for different numbers of UEs. Finally, Fig. 12
depicts the average minimum number of IRS configurations
Zmin needed to achieve 80% of the maximum achievable
sum capacity (“unclustered” baseline) as a function of the
number of UEs K in the system. Notably, we observe that
CWC and OSCBC are confirmed to be the best algorithms
to optimize the sum capacity, even for a limited number of
IRS configurations. For example, both solutions achieve 80%
of the maximum sum capacity with less than half the number
of configurations than in the “unclustered” deployment. More-
over, we recognize the same trends as in the previous results.
Specifically, capacity-based clustering outperforms distance-
based clustering and requires fewer IRS reconfigurations to
maximize the sum capacity (up to −37% considering CWC
vs. KMed). Furthermore, the gap increases as the number of
UEs increases.

VIII. CONCLUSIONS

We considered a MIMO cellular network, in which a gNB
serving multiple UEs is assisted by an IRS acting as a relay.
Notably, we considered practical constraints on the IRS recon-
figuration period. We studied a TDMA scheduling for down-
link transmissions and formulated an optimization problem to
maximize the average sum capacity, subject to a fixed number
of IRS reconfigurations per time frame. We first discussed
an iterative algorithm to obtain the optimal IRS configuration
of each UE. Then, we proposed clustering-based scheduling
algorithms, which group UEs with similar (ideal) IRS config-
urations based on either a distance metric or the achievable
capacity, to mitigate the performance degradation due to the
constraint in the number of possible reconfigurations. Different

clustering algorithms were numerically evaluated in terms of
computational complexity, sum capacity, and fairness under
different channel conditions, as a function of the size of
the IRS size and the number of users, and with or without
quantization of phase shifts. The results showed that capacity-
based clustering outperforms distance-based clustering, and
can achieve up to 85% of the sum capacity obtained in an ideal
deployment (with no reconfiguration constraints), reducing by
50% the number of IRS reconfigurations.

APPENDIX

PROOF OF THEOREM 2

Proof for KM (LLoyd): In the assignment step, each
UE k is assigned to the cluster z that minimizes the squared
distance δ

(
Φ∗
k,Φ

(z)
)2

. This guarantees that the total sum
J(U1, . . . ,UZ , I) does not increase. Then, in the update step,
Φ(z) is recalculated as the average Φ∗

k within each cluster,
so as to minimize the intra-cluster sum of squared distances∑
k∈Uz

δ
(
Φ∗
k,Φ

(z)
)2

, for all z. Therefore, the conditions
of [50, Lemma 5] are satisfied, which ensures the convergence
to a local minimum. Notice that [50] does not specify the
number of iterations needed to reach convergence, which could
be large in the case of highly dimensional spaces. Therefore,
in practice, we limit the maximum number of iterations to
IKM
max.

Proof for Agglomerative HC: At each step, clusters are
merged to minimize the increase of the total intra-cluster
sum of squared distances. This is equivalent to choosing
the merged cluster that results in the smallest increase of
J(U1, . . . ,UZ , I). Then, as in the update step of KM, the
average of the data points minimizes

∑
k∈Uz

δ
(
Φ∗
k,Φ

(z)
)2

,
for all z. Once the number of clusters Z reaches the desired
value, convergence to a local minimum is reached.

Proof for KMed (PAM): Since, at each iteration, a
swap is performed only when it leads to a lower value of
the intra-cluster sum of squares, J(U1, . . . ,UZ , I) does not
increase over different iterations. Given the finite number
of data points and possible configurations, the algorithm is
guaranteed to converge to a configuration where no swap
can further decrease the objective function, thus reaching a
local minimum.
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