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Abstract—Random access protocols are usually adopted in the
Internet of Things to enable uncoordinated medium sharing.
Tackling this setting, we explore the statistics of the packet inter-
delivery times under slotted ALOHA contention, considering
two backoff schemes (reactive vs. proactive). We further discuss
the efficiency of these schemes in minimizing the average age
of information. Finally, we investigate age minimization both
as a centralized optimization and via game theory, obtaining
numerical solutions for both cases. A reactive scheme applied in
a centralized manner is found to be the most suitable to systems
that require a bounded age, whereas a proactive solution applied
distributedly is best used to minimize the average age.

Index Terms—Age of Information, Signal Flow Graphs, Game
Theory, Collision Management

I. INTRODUCTION

ENSURING the timeliness of shared information among
nodes is critical for effective decision-making in massive

distributed scenarios, often encountered in the Internet of
things (IoT). Consequently, age of information (AoI) has
emerged as a new performance metric [1]. Communication
channels in IoT settings are often shared among nodes, and
random access solutions based on variations of ALOHA are
employed [2]. Moreover, allocating resources individually for
each node in a centralized manner may not always be feasible.
From this standpoint, game theory is a useful tool to obtain
distributed solutions, allowing nodes to make autonomous
decisions for optimizing their individual utility, and reducing
the overhead needed for network control [3], [4].

Under ALOHA access, simultaneous communication at-
tempts lead to collisions, resulting in the loss of in-flight
packets [5], [6]. For this reason, efficient communication
protocols aim to mitigate the impact of channel congestion, so
as to improve throughput. Under this perspective, the literature
proposes many types of countermeasures for issues arising
both in collision avoidance and collision resolution [7], [8], but
the impact on information freshness is relatively unexplored.
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In [9] and [10], AoI was analyzed for different random
access protocols, but without considering backoff. Yet, as
suggested by [11], there is a basic tradeoff between throughput
and delay that can be tuned through the choice of the backoff
policy, and since AoI is also somehow mediating between
throughput and latency [12], it ought to reflect on that too.

A study that explicitly considers the impact of backoff
on AoI is [13], but it only considers a proportional backoff
scheme and assumes that the nodes adhere to the same protocol
without any strategic planning. Also, [14] proposes three
backoff strategies for slotted ALOHA based on random and
deterministic approaches and analyzes the optimal and Nash
Equilibrium (NE) solutions. Yet, it only considers the average
AoI, not discussing other AoI-related metrics.

In this letter, we analyze two backoff strategies in slotted
ALOHA: (i) a proactive scheme in which nodes enter backoff
whenever attempting a transmission regardless of the outcome
of the communication attempt and (ii) a reactive approach
where backoff is undergone only when collision happens.

Our contribution is twofold: firstly, we propose an analysis
based on signal flow graphs (SFGs) to obtain closed-form
expressions for the average peak AoI (PAoI), the average
AoI and the age violation probability. Secondly, we explore
the optimization of a metric combining the average AoI and
a communication cost, in either a centralized or distributed
(i.e., game theoretic) fashion, for both schemes. We discuss
the performance in terms of AoI, PAoI, and the age violation
probability when fixing a threshold for the peak age.

We find that a reactive scheme is not the best choice to
obtain low average AoI values, but an optimal centralized
solution that implements it can be suitable to avoid high PAoI.
Conversely, a proactive backoff scheme has generally low
average AoI, especially if applied in a distributed fashion, but
struggles in preventing sudden AoI spikes.

II. SYSTEM MODEL

We consider a discrete time divided into slots. In our
scenario, N nodes communicate over a shared channel to a
common receiver, sending time-stamped packets following a
slotted ALOHA contention. Accordingly, nodes independently
transmit in each slot and collisions ensue when the number of
accessing nodes is larger than 1. We adopt a collision channel
model [2], [5], [6], i.e., the receiver cannot extract information
out of a collision, whereas a slot accessed by a single node
leads to correct reception. We account for an instantaneous and
error-free feedback after each slot to make the nodes aware
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of the transmission outcome. We are interested in maintaining
information freshness at the receiver. To this end, we compute
the instantaneous AoI for node i as the difference between
the current time t and the timestamp τi of the last correctly
received packet sent by that source:

δi(t) = t− τi . (1)

For age computations, each node always has fresh information
(generate-at-will model) as common in the literature [4], [12],
and we neglect transmission delays. To capture the long-term
performance, we compute the average AoI for node i as

∆i = lim
T→∞

1

T

T∑
t=1

δi(t) . (2)

Moreover, we explicitly incorporate a backoff phase to
mitigate the effects of collisions. This approach contrasts with
most existing studies, where medium access is modeled using
an independent and identically distributed (i.i.d.) transmission
probability p for each slot [15], [16]. Instead, in our analysis,
the nodes switch between an idle phase (I) and a backoff phase
(B), which can be interpreted as states in a Markov chain [5].

We examine two different transition schemes. In each of
them, during the idle phase, nodes transmit with i.i.d. prob-
ability p. However, they vary in how they handle backoff.
The first scheme implements a Reactive Backoff (RB): After
a collision, a node enters the backoff state, where it remains
silent for a random number of slots. This is obtained by setting
a ≤ 1 as the probability of going back to idle, leading to a
geometric backoff. The second scheme implements a Proactive
Backoff (PB): Nodes enter backoff after each transmission,
regardless of the outcome. Similar to RB, we set a geometric
backoff duration with parameter a ≤ 1. This strategy takes
inspiration from Threshold ALOHA [17] and it improves on
it by applying ideas from collision avoidance.

For both schemes, we describe the state of a node with a
discrete time Markov chain (DTMC), whose states I and B
correspond to idle and backoff, respectively. State transitions
are not memoryless, as the number of nodes in state I directly
affects the probability of collisions. However, the steady state
probability of the DTMC provides a reasonable approximation,
particularly under conditions of large N (e.g., N ≥ 10) [5].

Each node i independently chooses its own parameters p and
a, represented as pi and ai. However, for symmetry reasons,
both the optimal configuration and the NE will have them
converging to the same values across all nodes [14]. If π

(i)
I

and π
(i)
B are the steady state probabilities that node i is in state

I or B, respectively, we have that the transmission probability
of node i in the RB and PB schemes is ti = π

(i)
I pi.

Successful transmission of node i in a slot depends on that
no other node transmits concurrently. Denote the probability
of this latter event as ri =

∏
j ̸=i(1− tj) and with r̄i = 1− ri

its complementary. For PB, ti admits an exact expression, i.e.,
ti = aipi/(ai+pi), thereby providing a closed form for ri. For
RB, instead, πi

I can only be expressed as a recursive function
of the steady state probability of each node, such that

πi
Ipi

∏
j ̸=i

(1− πj
Ipj) + ai − (ai + pi)π

i
I = 0. (3)
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Fig. 1. Difference between the iterative solution for the equation of ti of
RB and a Monte Carlo simulation for N = 10 nodes averaging 5 runs with
70000 steps each.
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Fig. 2. Signal Flow Graph for node transitions: PB (a) and RB (b) cases.

Due to the correlated behavior of the nodes relative to col-
lisions, this expression for πi

I is an approximation for the
steady state distribution, but can be shown to be robust in
practice. This assertion can be validated through Monte Carlo
simulations, as done in the literature for our domain of interest
[14]. The result of a simulation for N = 10 is reported in
Fig. 1.

We characterize the AoI for a generic node i formalizing
the DTMCs for PB and RB as signal flow graphs [18]. This
allows us to obtain a closed form expression for the probability
generating function (PGF) of the inter-update time, denoted as
Y . We refer the reader to [19] for more details. To this aim,
we modify the original MC by splitting the backoff state for
PB and the idle state for RB to include an extra reset state.
In both cases, the chain transitions to this state whenever the
node resets AoI. This state is further divided into Ṙ (with only
outgoing edges) and R̈ (with only incoming edges). The SFG
is shown in Fig. 2, where x is a dummy variable multiplying
the transition probabilities between states. Leaning on this, a
direct application of the Mason’s gain formula [18] between Ṙ
and R̈ provides the PGF of Y , GY (x) = E[xY ], not explicitly
reported here in the interest of space.

III. AOI CHARACTERIZATION AND NE ANALYSIS

PAoI is the highest AoI reached before a successful trans-
mission. and is commonly used to gauge worst-case system
performance. By definition, the average PAoI Ki for node i is
computed as the average of the interupdate times, i.e., [20]

Ki = E[Y ] = G′
Y (1) , (4)
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where G′
Y (x) denotes the first order derivative of GY with

respect to x. For PB and RB, the average PAoI is thus

KPB
i =

ai + pi
aipiri

(5)

KRB
i =

ai + pi − piri
aipiri

. (6)

On the other hand, the average AoI can be computed from
the first and second order moments of Y [12]. Denoting as
G′′

Y (x) the second derivative of the PGF, the average AoI is

∆i =
E[Y 2]

2E[Y ]
=

G′′
Y (1) +G′

Y (1)

2G′
Y (1)

(7)

With this formula, we obtain closed form expressions for the
average AoI ∆PB

i and ∆RB
i of PB and RB, respectively, as

∆PB
i =

a2i (2− piri)− aipi[(pi + 2)ri − 4] + 2p2i
2aipiri(ai + pi)

, (8)

∆RB
i =

a2i (2− piri) + aipi(ri − 1)(pir − 4)− 2p2i (ri − 1)

2aipiri(ai − piri + pi)
.

Finally, through PGF GYi
(x), a closed form for the proba-

bility mass function (PMF) ρk of the interarrival times Yi can
also be computed. However, ρk = G

(k)
Yi

(0)/k! is computation-
ally infeasible for an exact expression. An alternative considers
the decomposition of the PGF in partial fractions. As GYi

(x)
is rational in the dummy variable x, it can be decomposed
into partial fractions with reasonable complexity. The full
procedure is described in [21] and applying it to our case leads
to the following expressions. For the sake of compactness, let
d =

√
(ai + pi)2 − 4aipiri, ξj = ai + pi − 2 + (−1)jd and

νj = ai − 2piri + pi − 1 + (−1)jd. For any τ ∈ N, the PMF
for the interarrival times in PB is

ρPB
τ =


0 if τ = 0

aipiri2
−τ−1

d[ai(pir − 1)− pi + 1]
×
[
ξ1 (−1/ξ0)−τ −ξ0 (−1/ξ1)−τ ] if τ ≥ 1

,

(9)
and for RB

ρRB
τ =



0 if τ = 0

piri2
−τ−1 (d−aiν0−pi) (−1/ξ1)−τ

d[ai(pir − 1)− pi + 1]

+
piri2

−τ−1 (d+aiν1+pi) (−1/ξ0)−τ

d[ai(piri − 1)− pi + 1]

if τ ≥ 1
.

(10)
With these expressions, we compute the age violation prob-

ability, i.e., the probability that at any point in time the AoI
exceeds the average PAoI K:

P[δi > K] = 1−
K∑

τ=0

ρτ . (11)

Similar to the literature [4], [6], we consider a cost paid
by nodes for every transmission, even if it ends up in a
collision. This is captured by coefficient c, which can be
connected to energy consumption, or a shadow price to limit
the aggressiveness of nodes [16], [22]. The utility of node i is

ui (t) = −∆i (t)− cti , (12)
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Fig. 3. Expected utility obtained by each node. Full markers for N = 10
nodes, empty markers for N = 25 nodes.

meant as an objective that node i seeks to maximize. Vector
t = (t1, t2, . . . , tN ) collects the N transmission probabilities
of all nodes; its best global choice is a symmetrical vector
t∗ = (t∗, t∗, . . . , t∗).

For a distributed solution, we model the problem as a static
game of complete information G = {N ,A,U} where N is
the set of players, i.e., the nodes, and A is the set of actions
available to the nodes, namely, choosing parameters p and
a. Finally, U is the set of utilities as described in (12). The
NE for the game G is derived from each player’s unilateral
optimization of their utility, meaning that each player seeks
a best response to the fixed actions of the other players. For
simplicity, we concentrate on player 1. A NE must satisfy

∇u1 (t) = 0 , (13)

indicating that the utility’s partial derivatives with respect to p1
and a1 are zero. In the PB scheme, the partial derivative of the
utility with respect to a1 (the expression for p1 is analogous
with a and p interchanged) can be expressed as

∂u1 (t)

∂a1
=

2a1p1 + p21 − a21(r1 − 1)

a21r1(a1 + p1)2
+ c

a1p1
(a1 + p1)2

= 0 .

(14)
For RB similar expressions can be obtained, which are not
reported here due to space constraints.

By replacing index 1 with that of a generic player, the
expression can be evaluated for all nodes. Remembering the
symmetry of the scenario and that acceptable solutions are
in the domain of probabilities, we can solve a system of
differential equations to obtain the NE, which can be done
by numerical means. It is notable that the solutions are
symmetrical as in the centralized optimal case, therefore the
index i will be omitted for the remainder of this letter.

For small values of c, there is no solution to the system,
which means that the only NE is a catastrophic equilibrium,
where p = a = 1 for all the nodes. This is undesirable, because
the majority of nodes would be constantly colliding or in a
backoff state, thus not transmitting. For sufficiently high costs,
another more efficient NE appears [4].

IV. NUMERICAL RESULTS

We report numerical evaluations of the derived equations.
We use a normalized cost c̃ = c/N to abstract from the number



4

0 10 20 30 40 50 60
normalized cost (c̃)

0.04

0.06

0.08

0.10

tr
an

sm
is

si
on

pr
ob

ab
ili

ty PB optimal
RB optimal
PB NE
RB NE

BB optimal

Fig. 4. Transmission probability, N = 10 nodes.
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Fig. 5. Average AoI ∆i. Full markers for N = 10 nodes, empty markers
for N = 25 nodes.

of nodes N . In all the following figures, we set N = 10, but
Figs. 3 and 5 also plot the results for N = 25. To evaluate the
effect of backoff optimization, we simulated, as a benchmark, a
non-optimized backoff with binary exponential increase of the
contention window. In this binary exponential backoff strategy,
denoted as BB, the optimization is limited to t, chosen so as to
maximize utility (12), whereas the backoff follows a procedure
similar to IEEE 802.11, i.e., each colliding node retransmits
after a number of slots randomly selected within [20, 2k] where
k ∈ {1, . . . , 5} is the number of consecutive collisions [23].

Fig. 3 shows the utility obtained by the different backoff
schemes both at the optimum and at the NE. PB obtains
the best utility, but the NEs for RB and PB approach the
optimal centralized solution for increasing normalized cost.
The performance of BB is similar to RB, which proves that our
chosen strategies are meaningful (yet, unlike BB, they allow
for distributed control). A larger number of nodes causes the
NE to exist only for higher values of c̃, in line with the findings
of [4]. Interestingly, under RB the NE quickly approaches the
optimal solution, whereas, under PB, the NE performance is
worse as the nodes transmit more aggressively.

Fig. 4 plots the transmission probability of the nodes either
in a centralized configuration, corresponding to the optimiza-
tion of (12), or at the NE. PB has the lowest centralized
transmission probability. This is explained by the conservative
approach of this strategy, which undergoes backoff after each
transmission. However, limiting the transmission probability
also reduces the collision probability when a node eventually
makes an attempt. Still, the NE solution has the highest trans-
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Fig. 6. Backoff exit probability, N = 10 nodes.
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Fig. 7. Average peak AoI, N = 10 nodes.

mission probability, confirming that a distributed approach is
actually more aggressive. RB instead has higher transmission
probability, since nodes enter a backoff state only after a
collision, but the NE converges very rapidly to the optimal
value. For higher number of nodes N , the trends do not change
much and are therefore not reported here.

In Fig. 5, we report the average AoI vs. c̃, for all backoff
schemes. Recall that the optimization goal is not AoI alone,
but a linear combination of AoI and transmission cost. The
two optimal solutions have similar slope and PB obtains the
best values. The lowest average AoI is obtained by PB at
the global optimum with c̃ = 0 and at the NE for higher
costs. This is not in contrast with the results for the utility,
as at the NE the nodes transmit more frequently. As for the
transmission probability, NE for RB quickly goes towards the
optimal solution for increasing cost. For N > 10, the solution
trends remain consistent. In both PB and RB, NE solutions
occur at higher normalized costs as the network size increases,
more notably in PB, indicating its design hinders collaborative
behavior. However, the lowest AoI value at NE exceeds the
global optimal one at c̃ = 0. This plot also shows that BB is
mostly aligned with RB and only takes an advantage in terms
of AoI only for very high c̃ and at the expense of higher
transmission probability.

Fig. 6 shows the probability a of exiting backoff. The
centralized optimal choice for RB is a = 1, i.e., each node
backs off for one slot and immediately resumes transmission.
This aggressive strategy is not employed at the NE, as it
would mean that all nodes prefer to be idle, which is the more
expensive state when a transmission attempt occurs.

Fig. 7 displays the mean peak AoI K for the backoff strate-
gies. Interestingly, while optimizing for the average AoI, PB
has the highest average peak AoI. This is possibly due to the



5

0 10 20 30 40 50 60
normalized cost (c̃)

0.37

0.38

0.39
av

er
ag

e
pe

ak
vi

ol
at

io
n

RB NE
RB optimal
PB NE
PB optimal

Fig. 8. Average Peak AoI violation probability, N = 10 nodes.

increased time nodes spend in backoff state. Furthermore, the
optimal solutions for PB and RB start from the same point and
then have different slopes depending on the backoff strategy.
Also in this case, the NE solution for RB approaches the
optimal centralized one indicating that also for the peak AoI
the most influential parameter is the transmission probability.
This difference in performance with respect to the average AoI
underlines the importance of choosing the backoff strategy of
the system according to the KPI of interest as PB performs
best for the average AoI but not for the average PAoI.

Fig. 8 displays the probability that the AoI violates the
average peak AoI values reported in Fig. 7. RB is better at
containing the age violation probability than PB both for the
optimal solution and for the NE one. This could be explained
once again by the similar transmission probability adopted by
the method for both solutions. Interestingly, all probabilities
are around 38%, implying that the average peak AoI is not a
good bound for the robustness of the system when it comes
to guaranteeing good quality of service.

Fig. 9 shows the values of AoI for c̃ = 0 for different
number of nodes. It is evident that RB and BB have similar
performance, while PB has incresing advantages as the number
of nodes increases. For higher values of the normalized cost,
the trends remain the same, but the gap between RB and PB
increases superlinearly as hinted in Fig. 5.

V. CONCLUSIONS

We derived analytical expressions for two backoff strategies
in slotted ALOHA, concerning the average AoI, average peak
AoI, and PMF of the interarrival times. We also numerically
solved an average AoI minimization problem under centralized
management, as well as in a distributed way by finding the
NEs of a static game of complete information. We argue
that a distributed implementation of PB scheme is more
efficient at minimizing the average AoI than its competitors,
but struggles more at guaranteeing high quality of service
when considering peaks in the AoI evolution through time.
Similarly, a centralized scheme for RB obtains higher average
AoI, but is more resilient to AoI spikes.
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