
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS 1

Strategic Interaction Over Age of Incorrect
Information for False Data Injection in

Cyber-Physical Systems
Valeria Bonagura, Student Member, IEEE, Stefano Panzieri, Federica Pascucci, Senior Member, IEEE,

and Leonardo Badia, Senior Member, IEEE

Abstract—Ambient monitoring through remote sensing is the first required step of many control operations in cyber-physical systems
to enable accurate decision-making by network intelligence. We consider a controller that sends status updates about a process to a
receiver, incurring a cost when doing so. The process is dynamical, implying that the information the receiver has may become
outdated due to a natural drift of the process. To determine the correctness of the information at the receiver, we model this interaction
using a Markov Chain with two states, namely right (R) and Wrong (W). The controller can restore the receiver status to R by
performing a new transmission, which comes at a cost. The staleness of information, when the system state is erroneous, is quantified
through the average value of the age of incorrect information metric. Moreover, an adversary may inject false data at a price to make
the information available at the receiver less fresh, which can only be contrasted by additional measurements by the controller.
This results in a game played by strategic agents, namely the controller and the adversary. The adversary’s objective is to maximize the
time the receiver is in the W state of the Markov Chain, while the controller’s objective is to minimize it. We provide a mathematical
formulation of this strategic interaction using Game-Theory, demonstrating the existence of a Nash equilibrium. In our analysis, we
discuss the role of different system parameters and the implications on the resulting system performance, providing a quantitative
evaluation of the parameter ranges where an adversary can be effectively counteracted is an important guideline to improve security of
cyber-physical systems.
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1 INTRODUCTION

Remote sensing, the acquisition of information from a
distance, plays an important role in cyber-physical systems
(CPSs), providing up-to-date environmental data for en-
hanced monitoring, control, and decision-making. Its inte-
gration contributes to the efficiency, reliability, and respon-
siveness of various domains such as smart cities, trans-
portation, energy management, and eHealth monitoring [1],
[2], [3]. As a fundamental step in network control, remote
sensing involves data acquisition, transmission, processing,
and fusion, leading to informed control decisions within
CPSs.
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However, the physical deployment of sensing units ex-
poses them to potential tampering or unauthorized access,
presenting security challenges that are not as prevalent in
centralized components. Vulnerabilities in data transmis-
sion, often relying on wireless communication, introduce
risks such as interception, eavesdropping, or unauthorized
access [4].

While existing research focuses on detecting and pre-
venting attacks through secure communication protocols,
authentication mechanisms, and tamper-resistant strategies
[5], [6], false data injection (FDI), particularly in stealthy
or replay attacks [7], poses a distinct challenge. Unlike
typical security measures, our paper explores strategic in-
teractions between an adversary injecting false data and a
system controller aiming to mitigate the attack’s impact.
FDI, though unavoidable, can be countered by increasing
the effort required by the adversary, resulting in a game-
theoretic approach [8], [9], [10], [11].

Framed as an adversarial game [12], our approach uses
the average age of incorrect information (AoII) as the ob-
jective. AoII measures the time elapsed since inaccurate in-
formation was last updated, crucial for assessing the impact
of FDI on the timeliness of decision-making in CPSs [13].
Unlike the age of information (AoI), AoII emphasizes the
delay between an event and the system’s acknowledgement
of that change, making it pertinent for FDI scenarios [14].
Successful FDI can elevate AoII, leading to compromised
system behaviour. To formalize the problem, we incorporate
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a drift into the process tracked by remote sensing, caus-
ing inaccuracies over time. While the controller requests
measurements to minimize AoII, adversary-induced FDI
increases the drift and AoII. Introducing costs for both
players prevents an undesirable scenario where both players
increase their activity without consequence, making our
game a non-zero sum [15].

Our analysis reveals that containment of the adversary is
possible, depending on associated costs and the natural drift
rate. When an adversary faces high costs, it remains inactive.
Conversely, if the cost of injection for the adversary is low
compared to the cost of transmission for the legitimate user,
the system performance is compromised. Yet, this situation
prompts the network controller to respond strategically. The
subsequent findings enhance our comprehension of FDI
dynamics within cyber-physical systems. [16].

The remainder of this paper is organized as follows.
Section 2 reviews related literature. Section 3 introduces
the system model, analyzed using game theory. Numerical
results are presented in Section 4, followed by conclusions
in Section 5.

1.1 Paper Contributions

In this study, we analyze a sensing scenario involving the ex-
change of status updates between a controller and a receiver.
Notably, this scenario unfolds in the presence of a malicious
agent, termed the adversary, equipped with the ability to
inject false data. The adversary aims to maximize damage to
the targeted system, represented by the receiver. In contrast,
the controller endeavors to minimize the inflicted damage,
setting the stage for a compelling game-theoretic interaction.
Our study introduces a novel approach to counter false
data injection attacks, leveraging game theory to model and
understand the strategic interactions between these agents.
Our contributions can be summarized as follows.
Markov Modeling of the Adversarial Interaction. We formulate
the strategic interaction from the receiver’s standpoint using
a Markov Chain comprising two states: ”right” (R) and
”wrong” (W ). The state is W when the available information
fails to accurately reflect reality and R otherwise. Transitions
between these states hinge on the system dynamics and
the actions of the involved agents. The adversary aims to
maximize a penalty depending on the receiver’s duration in
the W state while the controller endeavors to minimize it.
Game-Theoretic Analysis. We approach the interaction
through the lens of game theory. The controller and the le-
gitimate agent can determine the transmission and injection
rates, respectively. This paper assumes that this decision-
making process is driven by maximizing a utility function.
For the controller, this utility function encapsulates the im-
perative to minimize the time the receiver spends in state W ,
while for the adversary, it reflects the objective to maximize
this duration. The game is non-zero-sum since both agents
are constrained by a transmission cost that limits the rate.
We establish the existence of a unique Nash Equilibrium for
the considered game.
System Parameter Analysis. In our analysis, we examine the
influence of various system parameters on the resultant
system performance. Offering a quantitative assessment of
the parameter ranges within which an adversary can be

effectively countered serves as a crucial guideline for en-
hancing the security of cyber-physical systems.

Indeed, there exists an extensive body of literature on
security threats in cyber-physical systems, including discus-
sions on the potential interactions between FDI attackers
and systems, as highlighted in works such as [17], [18].
However, what sets our study apart is our characterization
of these interactions in a strategic manner, utilizing the lens
of game theory [19]. In our approach, the evaluation goes
beyond merely considering the attacker’s planning of mali-
cious actions. Instead, we incorporate the decision-making
process of both the attacker and the network operator. This
includes developing and implementing countermeasures by
the network operator, to which the attacker responds, and
so forth. By adopting this strategic perspective, we provide
a more nuanced and detailed mathematical framework for
modelling smart attacks, encompassing multiple layers of
interactions between the involved parties.

2 RELATED WORK

Among the security challenges faced by CPSs, FDI is one of
the most troublesome. In [16], a comprehensive discussion
of this kind of problem was given, and it was especially
highlighted how a sufficiently smart and system-aware
attacker could elude detection under proper assumptions.
This is the fundamental motivation of our analysis since we
consider a game theoretic setup [9], in which the system
controller can only increase the rate of measurements per-
formed to compensate for false data injected in the network.

Most of the literature exploring FDI in CPSs is primarily
interested in either giving taxonomies of the problem or
finding joint detection and control schemes to overcome the
problem. For example, [7] combines a watermarked signal
and a nonlinear static auxiliary function to limit the disclo-
sure resources of the adversary and obtain an unidentifiable
moving target. Such a strategy is effective against a broad
class of FDI attacks.

In [4], coding the sensor reading was proposed so that
stealthy false data injection attacks are detected by increas-
ing the estimation residues under intelligent data injection
attacks. The problems of malicious sensor detection and
secure estimation are considered in [6], where optimal filter-
ing and learning are proposed to exclude malicious sensor
observations and detect injection attacks.

Analogously, [5] propose a secure control scheme based
on moving target defence and reinforcement learning,
where attack detection and isolation schemes are designed
to locate and exclude the compromised actuators accurately.
This last paper introduces some strategic elements in the al-
gorithm design through a reinforcement learning approach.
This implies the assumption that nodes can control their
choices to optimize their benefit, which is the crucial ingre-
dient of game theory [9]. Another approach is considered in
[20], but only from the attacker’s perspective.

When both the adversary and the controller are strategic,
we obtain a game theoretic perspective such as that of [8],
similar to our study. In that paper, an infinite horizon linear
quadratic Gaussian system is considered, where an attacker
injects malicious data. False alarm probability is regarded
as the reward, which the controller and the attacker want
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to minimize and maximize, respectively. This marks a dif-
ference from our approach since we consider an AoII-based
reward, which implies that instead of just minimizing the
probability that the information about the system is wrong,
we also account for its persistence. Another difference is that
instead of analyzing a zero-sum game, like is done there, we
also include costs in the operation of the players.

Game theory is a powerful tool to model security prob-
lems, design robust control for network systems, and iden-
tify strategies against attackers. At the same time, game
theoretic approaches exist for AoI [2], [21]. Yet, these aspects
(security, AoI, and game theory) are rarely seen together. For
the most, game theoretic approaches for AoI analyze sym-
metric problems with mutual interference conditions [10],
[15], [22], or the need for privacy-preserving crowdsensing
[23]. Fewer papers address AoI or AoII about performance
losses related to lack of security, and they do so only for less
sophisticated attacks such as jamming, i.e., preventing the
system from being updated to the recent value [11], [24].

The main novelty of this paper is to use the AoII metric
instead of AoI, to connect the system control with its seman-
tic meaning. This is a recent idea proposed for the first time
in [13], to weigh the time elapsed since the last drift that
makes the state information no longer up-to-date. It can be
seen as a generalization of shaping the concept of AoI with
different penalties, as argued in [25].

Nevertheless, all the main contributions discussing AoII
to date only focus on the original definition with a linear
penalty for aging [14], [26], [27], [28]. We adopt this ap-
proach as well, considering AoII as a quantity that is reset to
zero after each successful update, and stays at that value as
long as the monitored process does not significantly change.
Whenever the last update no longer accurately describes the
status of the environment, either because a natural variation
occurred or the attacker injected false data, we have a linear
AoII increase as a negative reward (i.e., a penalty) [29].

Some investigations of AoII revolve around the relation-
ship between the mean absolute error in the reports of a
specific (piecewise linear) signal over a noisy channel and
AoII [14]. Other studies consider the minimization of AoII
through proper setup of slotted ALOHA parameters [26] or
proper scheduling of updates [27].

Finally, [28] and [29] consider a real-time tracking of a
Markov chain, similar to our scenario. However, we are not
interested in characterizing the source but in understanding
the impact of adversarial attacks. Hence, our analysis will be
limited to a two-state Markov chain, not because the system
state is binary, but because we need to distinguish whether
the information available at the controller is accurate. This
can represent a system with any number of states, where all
that matters is whether the controller is aware of what form
the system is in, and the probability that the system reverts
to correct information after drift is negligible.

3 SYSTEM MODEL

In this section, we present our system model, which revolves
around a dynamical system described by the equations:{

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t)),

(1)

Here, x(t) represents the plant state, u(t) is the control input,
and y(t) is the output at time t. The functions f(·) and h(·)
denote the state transition and output selection functions,
respectively. In this framework, x(t) ∈ Rn, u(t) ∈ Rp,
y(t) ∈ R. The control input u(t) is generated by a network
controller N that communicates with a remote station (e.g.,
a SCADA system) by transmitting the output measurement
y(t). For the sake of simplicity, we assumed that the output
measurement is scalar. Still, the problem could be easily
adapted to the vector case by conducting the same analysis
for each of the outputs. We assume no propagation delay
between the controller and the remote station, allowing us
to compute time on either end.

The value of age of information (AoI) at time t is

γ(t) = t− tu , (2)

where tu is the time corresponding to the reception of the
most recent update before time t, inclusive.

To capture the model of this behaviour, we introduce
a continuous-time Markov chain with two states: ”right”
(R) and ”wrong” (W ). The transitions between these states
depend on system dynamics and actions, as illustrated in
Fig. 1. In particular, a malicious agent M, also called “adver-
sary,” can increase the frequency of transitions to state W ,
to cause havoc in the system. After every update, Age of
Information (AoI) linearly increases. However, the informa-
tion available at the receiver might still correctly represent
the system’s state. As an extension of the AoI metric, in
[10] the Age of Incorrect Information (AoII) was introduced.
The primary goal of AoII is to assess the amount of time
the receiver possesses incorrect information. This concept is
formalized by multiplying a cost function, denoted as ℓ(·)
in our paper, which increases over time, and an information
penalty function, denoted as g(·), capturing the disparity
between the current information available at the receiver
and the actual process state. Our research is centred around
discerning whether the information available at the receiver
remains accurate or has deviated due to natural drift or
malicious updates. Consequently, our metric of interest is
AoII, not AoI. AoI is inadequate for modelling false data
injection, as adversarial interventions of this nature solely
elevate AoII without affecting AoI. Based on the definition
provided in [13], the value of the AoII at time t is:

δ(t) = ℓ(t) · g(y(t), y(tu), ya(tm)) , (3)

where, g(·, ·, ·) quantifies the discrepancy between the actual
system output y(t), the last correct update transmitted y(tu),
and the most recent false sensor reading sent by malicious
agent M, ya(tm). The function ℓ(·) imposes penalties as the
discrepancy g(·, ·, ·) increases.

Notably, our specific formulation employs a basic ex-
pression of AoII, where the information penalty function
is binary (taking values of 0 or 1) based on the correctness
or incorrectness of the information, and the time-increasing
penalty function is linear. In particular,

g(y(t), y(tu), y
a(tm)) =

{
1 if |y(t)− y(ts)| ≥ ϑ

0 otherwise
, (4)

where ts = max{tu, tm} is the index of the last time
instant the receiver received an update, without distinguish-
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Fig. 1. Continuous time Markov process with the respective rates of
moving from one state to one another.

Fig. 2. Age metrics are initialized to 0 at t0. From that instant onwards,
AoI increases linearly, whereas AoII initially stays at 0 (status is obsolete
but correct). At t1, AoII starts increasing as well due to drift. At t2, the
status is refreshed. For any t ∈ (t1, t2), AoI and AoII are t−t0 and t−t1,
respectively.

ing between legitimate and malicious. If ts = tm, then
y(ts) = ya(tm), otherwise y(ts) = y(tu). This function
reflects the gap between the current system output y(t), the
last update available at the receiver, and a threshold ϑ. We
assume that, following a drift or a malicious transmission,
|y(t)− y(ts)| > ϑ until a legitimate update takes place.

The linear time-increasing penalty function ℓ(·) is

ℓ(t) = t− td,

where td is the last time-instant over a period where
g(y(t), y(tu), y

a(tm)) = 0. Despite its apparent simplicity,
this formulation serves a crucial purpose in our analysis.
Indeed, with our proposed formulation, AoII is zero when
the receiver possesses correct information. Subsequently,
it increases linearly when the receiver acquires erroneous
information and continues to rise until a new legitimate
update occurs. Hence, AoII measures the time elapsed since
the last drift, whether a natural occurrence or maliciously
induced one. To better clarify the difference between AoI
and AoII, see Fig. 2. The figure provides a comparative illus-
tration of AoI and AoII in a straightforward scenario where
a drift (either naturally present or maliciously induced by
an adversary) occurs at time t1, while at t2 a new legitimate
update is performed. The age metrics are initialized to 0 at
t0. Starting from that moment, AoI exhibits a linear increase,
while AoII remains at 0 initially (indicating an obsolete but
correct status). At t1, AoII begins to increase due to the drift.
At t2, the status is refreshed. For any t ∈ (t1, t2), AoI and
AoII are represented as t−t0 and t−t1, respectively.

The system parameters involved in the transitions are
the following. We set the measuring rate of the controller as

p, which corresponds to the rate by which the system enters
state R, since the measuring action sets the information
about the states as correct. Afterwards, the information
slowly becomes stale but is still correct, until either a system
drift or a malicious injection by the adversary occurs, since
these events send the system state to W . We denote the
rate of (natural) drift of the system as d and the rate of
malicious injection by an adversary as q. We further assume
that natural drifts, malicious injections, and reading by the
controllers all happen according to memoryless processes
independent of each other. Thus, the transition from W to
R happens with rate p, whereas that from R to W has rate
d+q, see Fig. 2.

We consider the expected value of the AoII
∆ = Et

[
δ(t)

]
meant as a time average. From standard

derivations of Markov models, ∆ can be promptly
computed as [15]

∆ =
1/(2 · p2)
1/p+ 1/b

, (5)

where b = d + q. In (5), 1/2p2 represents the average
area below the AoII function, specifically denoted by (3),
within a given period. To provide a visual reference, this
corresponds to the area of the purple triangle in Fig. 2.
On the other hand, the denominator 1/p+ 1/b signifies the
expected value of the time elapsed between two consecutive
updates, referred to as a period. This metric accounts for the
average time between two updates, balancing the update
rate p with the total rate b of system drift and malicious data
injection. Additionally, we introduce respective cost terms
associated with transmission of controller N and false data
injection of adversary M. These terms can be interpreted as
energy expenditures or limiting factors on their frequency of
activity. We assume that both cost incurred by these agents
are linearly proportional to their activity rate, i.e., p and q
for N and M, respectively.

The linear proportionality between the activity rates
(transmission and injection rates) and the associated costs
can be grounded in both mathematical and technical rea-
sons. It can be seen, for example, as a shadow price, that
is, as a Lagrange multiplier associated to the constraint of a
maximum allowed activity [30]. At the same time, it can
also be seen as associated to energetic or computational
expenditures [10], [15], where a linear relationship in the
frequency of activity is expected. By maintaining a linear
proportionality assumption, our model captures the essence
of resource constraints, making it a pragmatic choice for
scenarios where energy considerations play a significant
role. The linear coefficient is denoted as C > 0 for the
controller and K > 0 for the adversary.

With these definitions, we formulate utility functions for
both controller and malicious agent as

uN(p, q) = −∆− C · p, uM(p, q) = ∆−K · q . (6)

Here, uN(p, q) represents the utility of the controller,
aiming to minimize the sum of the expected AoII and
its transmission costs, while uM(p, q) is the utility of the
malicious agent, seeking to maximize the expected AoII of
the controller but also limiting the cost undertaken for the
malicious injections.
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In the absence of an adversary, the controller’s optimal
transmission rate p is determined by balancing the cost term
C · p and the natural drift rate d, which ultimately result in
maximizing the single-variable function

uN(p, 0) = −∆− C · p , (7)

which implies that, without M in the network, the problem
boils down to just a single-agent optimization.

However, due to the simultaneous presence of N and
M, their interaction can be formalized as a static game of
complete information G = (P,A,U), defined by the set of
players P = {N,M}, their respective set of actions A where
player N chooses p ∈ [0,∞) and M chooses q ∈ [0,∞), and
the utility set U = {uN, uM}. All of this is common knowl-
edge among the players. Characterizing the game as static
implies that the players choose one value of their action
independently and unbeknownst to each other. The most
desirable outcome for the players is typically characterized
by the Nash equilibrium (NE). The NE obeys the properties
formalized by the following theorems for the specific game
under exam.

Theorem 1 (Existence of an NE). Game G admits a NE.

The proof is provided in Appendix A.

Corollary 1.1 (Uniqueness of the NE). The NE is also unique.

Proof. This is a direct consequence of the utility function of
the controller and the adversary being both monotonic over
their entire span. This ensures that the ε-fixed point to which
they converge is always the same.

For the specific formulation at hand, the NE conditions
can be numerically derived by looking at the critical points
of the analytical expressions, which implies to solve the
following conditions [3]

∂uM(p, q)

∂q
= 0

∂uN(p, q)

∂p
= 0 , (8)

which imply

∂∆

∂q
= K

∂∆

∂p
= − C. (9)

Rearranging the terms in ∂∆
∂q = K results in a second-

degree equation with respect to q:

1

2 (d+ p+ q)
2 = K .

Solving this equation is straightforward and yields two so-
lutions, one negative for all possible values of K . Therefore,
the only viable solution to our problem is given by

q = −d− p+
1√
2K

.

Substituting this expression for q into ∂∆
∂p = −C and

rearranging the terms, we obtain a second-degree equation
with respect to p:

K − 1

2p2
= C.

Once again, it is straightforward that this equation has two
solutions, one of which is negative for all possible values of
C . We conclude that at the equilibrium

p =
1√

2K + 2C
.

Thus, the NE is

p =
1√

2K + 2C
,

q = − d − p +
1√
2K

.
(10)

In (10), K must be sufficiently small to ensure that q is
positive. If the mathematical solution of (10) yields a value
of q less than zero, it implies that the attacker gains no
benefit from the manipulated data and therefore chooses
to remain silent. In this case the NE still exists, but the
condition degenerates to the border points of the feasibility
intervals, in particular q is equal to 0 and the optimal
update frequency p is reduced to a single-agent optimization
problem that maximizes uN (p, 0) as per (7).

Hence, in (10), the injection cost term K is balanced
against the natural drift d and the transmission rate p. If
these terms become too large, q can only remain positive if
K is low enough. This highlights the trade-off between the
different factors influencing the system dynamics.

Taking a broader perspective, we can explore the range
of appropriate values for K , ensuring that player M actively
participates in the game and (10) accurately reflects the NE
of the system. From (10), if K > d−2/2, it is impossible to
get q > 0.

Even if K < d−2/2, it might be inconvenient for the
adversary to transmit, as it must also hold

− d − 1√
2K + 2C

+
1√
2K

> 0. (11)

Considering that K and C are positive and so is d, the
following theorem states that a threshold value K∗ exists
that defines the border between the conditions for the NE to
lie in an inner point or to degenerate at the border. In more
detail, if K > K∗, the cost is too high for the adversary and
it does not really partake in the interaction, leaving the only
drift to the natural rate d.

Theorem 2 (Existence and uniqueness of K∗). For all C ∈
(0,∞) and d ∈ (0,∞), a value K∗ exists such that for K <
K∗,

−d − 1√
2K+2C

+ 1√
2K

> 0,

holds.

The proof is provided in Appendix B.
This result implies that player M will avoid transmitting

if K > K∗ since the cost is too high. According to
(10), a higher transmission cost for the controller lowers the
transmission rate p. Thus, the theorem implies that for the
adversary to conveniently transmit, the controller’s update
rate must be low enough to undermine the system.

To sum up, the NE conditions are
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Fig. 3. Utility uM(p, q) for C = 1, K = 0.1, d = 0.1, and
p = 0.1, 0.5, 1.

p =



1√
2K + 2C

if K < K∗

1
6

−3d+
√
3
√
s+

3

√
d2

3 + 1
3 s+

2
√

3d
C

√
s

C

 otherwise

(12)

q =

−d − p +
1√
2K

if K < K∗

0 otherwise
, (13)

where

s = d2 +
d4C

r
+

r

C
,

and

r =

(
27d2C

2
+ d6C3 +

3

2

√
3
√
d4C2(27 + 4d4C2)

) 1
3

.

Those equations are derived in one case by resolving
the static game where N and M are involved, while in the
other by maximizing (7) i.e., the objective function of the
controller when the malicious agent is not playing the game.

4 NUMERICAL RESULTS

This section demonstrates the application of the derived NE
(12)-(13) and Th. 1, illustrating how the equilibrium changes
with variations in the system parameters. Specifically, it ex-
amines a setting involving a strategic interaction between a
controller and an adversary injecting false data. Both agents
strategically pursue their objectives within the framework
of reducing and increasing AoII at a remote station, respec-
tively. Concurrently, they aim to minimize their respective
costs due to their activities. We start by exploring the utility
functions, namely uM(p, q) and uN(p, q), representing the
malicious agent and the controller’s objectives, respectively.
These are graphically depicted in Figs. 3 and 4, offering
insights across various parameter combinations of p and q.

Fig. 3 demonstrates how the malicious agent strategi-
cally selects its activity rate q to maximize its utility uM(p, q)
under different fixed values of p. As the transmission rate
p increases, the maximum of the utility uM(p, q) decreases.

Fig. 4. Utility uN(p, q) for C = 1, K = 0.1, d = 1, and q = 0.1, 1, 10.

Fig. 5. Comparison of strategical update rate p with and without a
malicious agent, K = 0.1 and d = 0.5

This phenomenon arises because the higher the transmis-
sion rate, the lower the average AoII at the receiver. This
implies a lowering of the value of the utility function of
the malicious agent. Similarly, Fig. 4 provides insights into
how the controller strategically adjusts its activity rate p to
maximize its utility uN(p, q) for different fixed values of q.
As the injection rate q increases, the maximum of uN(p, q)
decreases. This is because the controller has to transmit more
often to minimize AoII, resulting in higher costs.

Figs. 6 and 5 illustrate the strategic transmission rate

Fig. 6. Comparison of strategic update rate p with and without a mali-
cious agent, K = 0.1 and d = 1.
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Fig. 7. Transmission and Injection rate at the NE to the change of drift
rate d.

p at the NE versus the cost parameter C indicating the
transmission cost of the legitimate user. The two figures
consider a constant natural drift rate d, equal to 0.5 and 1,
respectively. Also, we compare the situations with or with-
out a strategic adversary, where in the former case the cost
for the adversary is constant and equal to K = 0.1. These
figures show that, when the adversary is absent, the activity
of the transmitter follows a linearly decreasing relationship
with its cost, being just aimed at counteracting the natural
drift of the system. This is the same behavior observed if an
adversary is present but the cost of the transmitter is low.
Indeed, the strategic adversary possesses complete knowl-
edge on these parameters and realizes that it is pointless to
contrast a transmitter that can transmit very often to balance
both the natural drift and the malicious injections. However,
the curves show a transition in an angular point when the
transmission costs C and K satisfy Theorem 2. At this point,
the adversary becomes active and forces the transmitter to
a higher activity. While the transmission probability still
decreases with cost C , the transmitter is facing an increased
drift due to the malicious adversary, which results in the
inflation of the curve to higher values of p. A comparison
of the figures show that this phenomenon is stronger if the
natural drift of the system is lower, since in this case the
presence of the adversary has a stronger impact.

Figs. 8 and 9 show the impact of strategic behaviour on
the transmission and injection rates. As the transmission
cost for the malicious agent increases, the injection rate q
decreases, discouraging the adversary from injecting data.
Moreover, as the natural drift rate d increases, the injection
rate decreases, necessitating a higher update rate from the
controller N to counteract the malicious injections.

Our findings highlight that the strategic selection of
injection and transmission rates can mitigate the impact
of misleading data injection. The presence of the malicious
agent becomes less threatening if it incurs higher costs for
data injection. A proper increase in the controller’s activity
rate can significantly curtail the impact of data injection.

Furthermore, we discuss the evolution of the Markov
Chain depicted in Fig. 1 according to the outcome of the
game. The average residence time in the ”wrong” (W ) state
corresponds to the average AoII ∆. However, for certain
applications, the peak AoII may be more interesting, which
corresponds to the maximum dwell time in state W , instead.

Fig. 10 presents the cumulative distribution function of

Fig. 8. Transmission rate p and injection rate q at the NE, for C = 0.1
and d ∈ {0.1, 0.5, 1, 2}.

Fig. 9. Transmission rate p and injection rate q at the NE, for K = 0.1
and d ∈ {0.1, 0.5, 1, 2}.

the probability of transitioning out of the W state over time.
In scenarios with low costs of FDI, the controller strategi-
cally increases its update rate, resulting in a shorter duration
spent in state W . Conversely, when both transmission and
injection costs are high, both agents tend to reduce their
transmission frequency, leading to longer dwell times in the
W state, which may be critical for the peak AoII.

Fig. 10. Cumulative Distribution Function of the probability of getting out
of W at NE as game-theoretic characteristic parameters change.
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Fig. 11. On the abscissa, the mean AoII, and on the ordinate, is the 99%
percentile of the peak AoII.

Fig. 11 illustrates the variations in average AoII and
peak AoII at the NE, as the characteristic parameters of the
system change. We observe that the peak AoII increases as
the natural drift rate d decreases, while the average AoII
decreases. Note that optimizing the peak AoII was not a
primary objective in this study, but alternative strategic
choices could potentially improve this parameter.

5 CONCLUSIONS

We analyzed a setting where a controller and a remote sta-
tion exchange status updates over a network, while facing a
malicious agent that sends fake updates. Using game theory,
we studied the controller and adversary interaction [17].

The malicious agent aims to maximize AoII at the remote
station while minimizing its own cost. At the same time, the
controller seeks to minimize AoII at the remote station and
its own cost. We computed the NE, which is both unique
and guaranteed to exist in our setting. This reveals condi-
tions where the adversary remains inactive, simplifying the
problem to a regular nonlinear optimization. Even when
the adversary is active, the controller’s policy can achieve
relatively unchanged performance compared to scenarios
without the adversary.

Our analysis emphasizes the importance of vigilant
monitoring to detect threats early and underscores the sig-
nificance of further exploration of strategic scenarios. Future
research can build upon these findings by considering more
general scenarios [23]. Overall, we are able to shed light
on the dynamics of controller-adversary interactions and
enables the exploration of strategic scenarios.

APPENDIX A
PROOF OF THE EXISTENCE OF AN NE
Proof. The utilities defined by (8) are continuous,
polynomial-like functions. Coherently with the adversarial
setup set in our study, they follow a strictly monotonic
behavior of the action chosen by the player they refer to.
In other words, uN(p, q) is strictly increasing in p for fixed q
and uM(p, q) is strictly increasing in q for fixed p. Moreover,
they are also concave, i.e., the first and second derivatives
are positive and negative, respectively [30].

As a result, we can invoke Glicksberg’s theorem [31] that
extends Nash’ theorem to the continuous case.

In more detail, the NE can be found as a 0-Nash equi-
librium, i.e., an ε-Nash equilibrium for ε=0 that is the limit
point of a sequence of actions that alternates between best
responses of the players, whose ε-convergence to a fixed
point is guaranteed by the aforementioned properties of
continuity, monotonicity, and concavity.

APPENDIX B
PROOF OF THE EXISTENCE AND UNIQUENESS OF K∗

Proof. By manipulating (11), we obtain the following in-
equality:

2K <

(
1√

2K + 2C
+ d

)−2

.

Adding 2C to both sides of the inequality, we have:

2K + 2C <

(
1√

2K + 2C
+ d

)−2

+ 2C.

Substituting α =
√
2K + 2C , we can rewrite the in-

equality as

α2 <

(
1

α
+ d

)−2

+ 2C.

For simplicity, define f(α) = α2 and g(α) =(
1
α + d

)−2
+ 2C .

We will show that there exists a unique value α∗ such
that f(α∗) = g(α∗), and{

f(α) < g(α) if α < α∗

f(α) > g(α) if α > α∗

when C, d ∈ (0,∞). Note that α can only take positive
values, so our interval of interest is α ∈ (0,∞).

To prove this, we first show that f(α) and g(α) are
continuous and differentiable in the interval α ∈ (0,∞).
f(α) is defined for every α and is therefore a continuous
function, whereas g(α) is defined for α ̸= − 1

d . Since d is a
positive scalar and α only takes positive values, g(α) is also
continuous in the interval of interest.

Next, consider their first order partial derivatives:{
∂f(α)
∂α = 2α

∂g(α)
∂α = − 2d

(1+αd)3 + 2
(1+αd)2

.

Again, ∂f(α)
∂α is defined for every α and is therefore

continuous. ∂g(α)
∂α is defined for α ̸= − 1

d . Since d is positive
and α only takes positive values, ∂g(α)

∂α is continuous in the
interval of interest. Hence, both functions are continuous
and differentiable in the interval.

Furthermore, by mathematical manipulation, it can be
shown that both derivatives are strictly greater than 0 in the
interval of interest, implying that they are monotonically
increasing.

Through further mathematical manipulations, we can
establish that ∂f(α)

∂α < ∂g(α)
∂α for α ∈ (0,∞). This implies

that in the interval of interest, the function f(α) grows faster
than the function g(α), and therefore f(α) and g(α) can
intersect at most in one point.

Let us consider the limits of f(α) and g(α) as α tends to
0 from the right:

lim
α→0+

f(α) = 0 ,
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lim
α→0+

g(α) = 2C

thus, it is clear that f(0+) < g(0+). Next, consider the limits
of f(α) and g(α) as α tends to +∞, i.e.,

lim
α→+∞

f(α) = +∞ ,

lim
α→+∞

g(α) =
1

d2
+ 2C .

Since C and d are both in (0,∞), it is clear that f(∞) >
g(∞). By the intermediate value theorem, we conclude that
there exists at least one α∗ such that f(α∗) = g(α∗) in the
interval α ∈ (0,∞). Combining this with the fact that α2 =
2K + 2C , and K,C ∈ (0,∞), we conclude that for a given
transmission cost C , there exists a unique K∗ such that

K∗ =
α∗2 − 2C

2
.

This completes the proof.

f(α)
g(α)

1 2 3 4 5 6
α

5

10

15

20

25

30

35

f (α ), g(α )

α*·
Fig. 12. f(α) and g(α) plot setting d = 1 and C = 2

.
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