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Abstract—Smart grids provide energy distribution with em-
powered capabilities thanks to the technological resources of
information systems. However, this also poses security threats
related to cyberattacks that are difficult to characterize. In this
paper, we present a game theoretic model of the interplay between
2 prosumers of a smart grid, interacting as attacker and defender
in a strategic setup, and one consumer which is assumed to
be passive. We analyze this problem by framing it as a static
game of complete information and providing theoretical and
numerical discussions of the Nash equilibrium solutions. Finally,
we obtain results that can serve as guidelines to characterize the
performance of smart grid systems and handle their reliability.

Index Terms—Energy management; Game theory; Smart
grids; Power system security; Cyberattacks.

I. INTRODUCTION

Smart grids enable two-way communication and data ex-
change between power generators, consumers, and grid oper-
ators to enhance the efficiency, reliability, and sustainability
of electricity generation, distribution, and consumption [1],
[2]. They are a special kind of networks, where nodes are
the consumers, all of which require energy and are supported
by advanced communication and control systems, but some
of them, called prosumers, are also able to generate energy,
e.g., through solar cells or other forms of energy harvesting,
in addition to utilize it [3], [4]. Some SG implementations,
such as community smart microgrids, foresee the option for
peer-to-peer energy exchange that can happen on multiple
timescales, even real-time. This is crucial to balance energy
fluctuations when the production is based on harvesting from
the environment, e.g., from solar or wind sources, which can
vary rapidly [5], [6], and is one of the key scenarios envisioned
by next generation communication networks [7], [8].
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However, due to their high reliance on cybercomponents,
smart grids are vulnerable to cyberattacks from both external
agents and internal participants. A particular threat is repre-
sented by false data injection (FDI), involving adversaries that
sabotage the communication through data alteration, resulting
in wrong choices of the network management [9]. FDI is often
assumed to be committed by an outside attacker [10]–[13], but
in a community SG environment, the prosumers themselves
can perform it, to damage neighboring competitors for their
own advantage, such as obtaining better profit from the energy
production towards the consumers [14].

In this contribution, we investigate the latter case, i.e.,
strategic interaction in a community microgrid between pro-
sumers. We focus on the attack-defense interplay between 2
prosumers with the aim to sell energy to a consumer, where the
outcome entirely follows from the communication signaling
exchanges and is therefore vulnerable to FDI [15]. Through
a game theoretic framework, we discuss the resulting Nash
equilibria (NEs) as possible operating points, which allows
to gain insight on the interaction but also hint at possible
guidelines for improving security in community SGs [16]. We
remark that, while our analysis focuses on the simultaneous
interaction of 2 prosumers with complete information, ours
are to be seen as foundational results that allow the extension
in future work to more complex scenarios, including more
than 2 prosumers, different timescales, and possibly incom-
plete information complemented with Bayesian reinforcement
learning [17]–[21].

A. Related literature

Driven by the need to decrease carbon emissions and im-
prove energy efficiency, energy management systems for smart
homes are gaining momentum [8]. In particular, peer-to-peer
sharing mechanisms enables prosumers within a community
microgrid to trade energy resources such as small-scale wind
turbines, solar photovoltaic panels, electric vehicle batteries
among each other, based on decentralized markets [22].

However, the integration with the communication network
also brings vulnerability to cyber-threats [11]. For example, the
exchange of false information may lead to wrong operations
and service disruptions [9]. In a less conspicuous way, this is
also a loophole that can be exploited by network prosumers
to their own profit [14]. This problem was investigated via
several methodologies, such as bi-level (attackers and de-
fenders) models that allow sequential and security-constrained
economic dispatch [23]. Most studies consider the problem



from the attacker’s standpoint, or identify the problem in
a scenario of complete information, without exploring the
strategic consequences [24], [25]. Other papers handle the
case of incomplete information, tackled by techniques such as
Q-learning, used to identify the optimal strategy of attack [26],
or attack region identification for unknown topologies by
adding lines with arbitrary reactance values [27], and an
adaptation of matrix theory to the case of incomplete informa-
tion [28]. These studies often provide approximate solutions
via heuristics.

Some more investigations took the perspective of the de-
fender, and examined its protection; however, these studies
are mostly just concerned on identifying how generic security
mechanisms can be introduced in the measurements, and it
ought to be noted that this often involves complex, possibly
NP-hard, techniques [29]. Detection schemes have adopted,
e.g., a joint transformation combined with Kullback-Leibler
distance [30] and short-term forecasting leveraging temporal
correlation [31]. Automated reasoning is exploited also in
these cases, based on deep supervised [32] or reinforcement
learning [20], [33]. These latter models are evaluated as-
suming that decisions made by either attackers or defenders
do not condition future decisions of the other agents. This
is reasonable only under the assumption that security is a
probabilistic measurement on the resilience and mitigation
of the system, which unfolds into a complex analysis [34].
Another proposed detection approach is a forecasting-aided
anomaly detection system exploiting a sequence-to-sequence
autoencoder to combat FDI via a two-stage approach: (i)
forecasting and (ii) detection of anomalies within the fore-
casting [35]. A deep learning architecture was used in [36], to
discover data intrusions, which allows the model to focus on
the parameters that show whether an attack was launched.

These approaches only take into account one side of the
decision process (either attackers or defenders). To study both
sides of cybersecurity attacks, a game theory rationale is
required [21]. Multiple re-interpretations of this same scenario
can be framed as static games, such as zero-sum interactions
to identify defense and attack in electricity markets [10]
or to optimize the deployment of PMUs [15]. Stackelberg
games [37] can be employed to decide which sensors to attack,
in the cases of 1 [18] up to n [17] adversaries, or games of
incomplete information [19]. Finally, a formulation as a bi-
level multi-stage Bayesian game where players exploit game
history to update their beliefs can be used to identify the losses
caused by FDI attacks that target a specific measurement [38].

B. Contribution of the paper

We present a game theoretic analysis of cyberattack and
defense among prosumers in a smart microgrid community
[2]. This is a scenario where multiple prosumers can sell their
overproduction of energy to a consumer, with a transaction
system that can take place over a very fast timescale, with little
supervision or regulation [14], [27]. The consumer, which is
not taken here as a strategic agent, would just choose to buy
energy from the prosumer reporting the highest production

level. However, another prosumer with lower production may
employ FDI to falsely alterate the reports and gain the spot
to sell energy to the consumer. In turn, the prosumer with the
legitimate highest level of production can adopt (or not) some
countermeasures to nullify this intervention [35].

In the end, our analysis considers the interaction between
these prosumers, seen as an attacker and a defender; however,
this can be expanded to multiple prosumers with different
levels of productions and the option to attack each other or
defend themselves by focusing on their pair-wise interplay.
The focus here is to analyze the strategic interaction between
these two prosumers, i.e., a game, for which we derive NEs
and infer practical conclusions through quantitative evaluations
[15].

On a broader level, our analysis enables the derivation of
criteria for enhancing security of community SG systems, such
as giving analytical guidelines for how to prevent FDI attacks.
This can be based on increasing surveillance so as to make
them more costly, or assessing the level of self-defense success
rate for which the attack can be thwarted - actually, if the
attacker is aware of these parameters being unfavorable to a
malicious activity, it will not even attempt it [9].

C. Paper outline

The rest of this paper is organized as follows. Section
II introduces the game theoretic model. We then derive the
pure Nash equilibria in Section III, general strict dominance
relations in Section III, and the mixed Nash equilibria in
Section IV. Numerical evaluations are shown in Section V,
which leads to the conclusions and future research directions
in Section VI.

II. GAME THEORY ANALYSIS

We consider a smart grid community with multiple pro-
sumers and one consumer. Each prosumer has a different
energy production level and is interested in selling it to the
consumer. The latter chooses the prosumer providing the
highest energy level, to ensure efficiency and reliability [6].
As will be clear in the following, we can restrict the analysis
to the case of two prosumers only, denoted as 1 and 2, without
loss of generality. This is because we assume that prosumer 2
is the one with the highest energy level, yet prosumer 1 is able
to launch attacks to gain the opportunity to serve the customer.
The case with more than 2 prosumers, all able to attack each
other, can generalize this atomic interaction through pairwise
attack-defense relationships in a broader network [17].

In the absence of malicious activity by prosumer 1, pro-
sumer 2 will be selected by the consumer as the energy
provider, as it reports a higher energy level. However, pro-
sumer 1 can launch an FDI attack [9], [25] to manipulate the
selection process and cause a denial of service to prosumer 2.
For example, prosumer 1 can falsely report a higher energy
level, or a lower energy level on behalf of prosumer 2. This
misrepresentation causes the consumer to believe that 2 has
less available energy than 1, resulting in the latter being
selected as the energy provider.



This kind of attack implies that the malicious provider
must be able to conduct reconnaissance to gather information
about the communication protocols, data formats, and security
measures used for reporting energy levels in the smart grid
[16]. Therefore, this relies on known vulnerabilities in the data
reporting system, such as weak authentication mechanisms
or lack of encryption. However, it is not easy to prevent
this kind of attack as the malicious provider, having access
to the communication channels for its own legitimate data,
can also exploit them to inject false information, possibly by
intercepting and altering data packets in transit or directly
submitting fabricated data into the reporting system.

As a result of receiving the falsified lower energy report for
prosumer 2, the consumer incorrectly selects prosumer 1 as the
energy provider. This acts like a denial of service attack for
prosumer 2 as it effectively prevents it from supplying energy,
disrupting the efficiency and reliability of the smart grid.

Prosumer 2 can actually defend against this kind of attack
by implementing more robust data authentication mechanisms,
encrypt communication channels to prevent tampering, deploy
anomaly detection systems to identify unusual data patterns,
and use redundancy and cross-validation to verify the accuracy
of reported energy levels. In the end, all of these countermea-
sures are energy-consuming and can possibly lower the actual
energy that prosumer 2 is able to supply to the consumer. For
this reason, we model any kind of defense action by prosumer
2 as an energy-consuming activity d, which ought to enacted
only if prosumer 1 is deemed to be maliciously active.

This reasoning underlines the strategic interaction between
the prosumers as game-theoretic players. Prosumer 1 can
exploit vulnerabilities to mislead the consumer into selecting
it over prosumer 2 through a FDI; however, prosumer 2 can
enact some form of defense against this attack and it may
well be that this successfully counteract the FDI. Both of
these actions (attacks and defense) are not guaranteed to be
successful and come at a cost, assuming that part of the energy
available for transfer to the consumer is spent for attacking
or defending, which stacks up, each action having its own
cost [35]. Moreover, the eventual outcome of this interaction
depends on the joint strategic choices of both prosumers.
The prosumer that is eventually selected by the customer
gets a positive return, but this is decreased by the related
energy expenditure if it needed to spend energy to attack or
self-defend. A prosumer that is not selected has no return
whatsoever [14].

The action set of the players i ∈ P = {1, 2} is defined as
Ai = N × {0, 1} 3 (Xi, di), where Xi denotes the number
of attacks launched towards the other prosumer [38]. For the
sake of generality, we allow player 2 to attack player 1,
and conversely player 1 to defend, even though, as will be
shown next, these are dominated strategies and therefore it is
correct to see players 1 and 2 as an attacker and a defender,
respectively.

We define set S ⊆ P to be such that

P[i ∈ S] =
(
1− pqdi

)∑
j∈P Xj

. (1)

TABLE I
NOTATION ADOPTED IN THE PAPER

symbol meaning
Xi number of attacks performed by prosumer i
di self-defense binary indicator of prosumer i

Ci(Xi, di) cost encountered by prosumer i
ci = E[Ci(Xi, di)], i.e., expected cost by prosumer i

Eask energy requirement of the consumer
Eout

i energy provision level of prosumer i
p probability of successful attack
q probability of self-defense failure
ai attack cost of prosumer i
bi defense cost of prosumer i
ã = a1/Eask, relative attack cost of prosumer 1
b̃ = b2/Eask, relative defense cost of prosumer 2
ui utility value of prosumer i

Further, we define the utilities associated with each strategy.
We assume that each player wants to maximize its own
(monetary) gain, for which we define a fixed price per unit of
power. Each of the players incurs (separate) expenditures for
enacting attacks or self-defense mechanisms. We assume that
for player i, attack and defense have respective costs ai > 0
and bi > 0. Thus, the cost of the action chosen is

Ci (Xi, di) = aiXi + bidi. (2)

We denote the generation of prosumer i as Eout
i , whereas the

consumer asks for power Eask so that Eout
i ≥ Eask. If this

condition is not satisfied, then the prosumer cannot be selected
by the consumer. All these parameters are common knowledge.
Since the prosumer indices are ordered w.r.t. Eout

i , we have
Eout

1 ≤ Eout
2 . We can then define the utility for player i to be

the quantification in monetary terms of its profit, being equal
to the difference between the revenue and the paid cost, as

ui

(
(Xi, di)1≤i≤2

)
=

[
[i ∈ S ∧

∧
i<j≤2

j /∈ S
]
Eask − Ci (Xi, di) .

(3)

What computed in (3) is actually a random variable, yet
we can apply expected utility theory, positing that a rational
player i will strive to maximize the expected value of ui [39].
Thus, if we set ci = E

[
Ci(Xi, di)

]
, we obtain

E
[
ui

(
(Xi, di)1≤i≤2

)]
=E
[[
i ∈ S ∧

∧
i<j≤2

j /∈ S
]]
Eask − ci

=P[i ∈ S]

( ∏
i<j≤2

P[j /∈ S]

)
Eask − ci.

(4)

We remark that some models of agents in the smart grid
electricity markets may follow different definitions of the ob-
jective of the players. For example, the profit of the prosumer
may not be linear in the production level, due to increasing
marginal costs. However, since in our analysis we give an
ordinal meaning to utilities, our conclusion is still unaffected



as long as we can claim that higher profits are desirable for
prosumers [40].

Each attack may succeed and defense may fail with prob-
abilities p and q, respectively, with p, q ∈ [0, 1]. When an
attack/defense action is successful, we say it to be effective.
If an effective attack is performed against an ineffectively-
defended prosumer, the latter will not be able to provide
enough power to the consumer, therefore it will not be se-
lected. A prosumer that does not choose self defense, is always
ineffectively defended if attacked. By considering expected
utilities, we can write

u1 ((X1, d1) , (X2, d2)) = P[1 ∈ S]P[2 /∈ S]Eask − c1
u2 ((X1, d1) , (X2, d2)) = P[2 ∈ S]Eask − c2

(5)

Lemma II.1. Player 2 has no incentive to attack player 1,
that is, any strategy with X2 6= 0 is strongly dominated by its
equivalent with X2 = 0.

Proof. See Appendix A.

Lemma II.2. Player 1 has no incentive to defend, that is,
d1 = 0 strongly dominates d1 = 1.

Proof. See Appendix B.

We can then further simplify (5) to

u1 (X1, d2) =
(

1−
(
1− pqd2

)X1
)
Eask − a1X1 (6)

u2 (X1, d2) =
(
1− pqd2

)X1
Eask − b2d2 (7)

III. PURE NASH EQUILIBRIA

If Eask = 0 then both utilities are reduced to pure costs,
and the only pure strategy NE is X∗1 = 0 ∧ d∗2 = 0; hence
in the following Eask 6= 0, and we write ã = a1

Eask and
b̃ = b2

Eask . Note that ã can be interpreted as the maximum
number of attacks that can be performed before becoming
counterproductive. Pure strategy NEs correspond to X∗1 , d∗2
satisfying both

X∗1 = arg max
X1

u1 (X1, d
∗
2) (8)

d∗2 = arg max
d2

u2 (X∗1 , d2) (9)

Substituting (7) in (9) we have that

(1− pq)X
∗
1 − (1− p)X

∗
1 ≤ b̃ =⇒ d∗2 = 0

(1− pq)X
∗
1 − (1− p)X

∗
1 ≥ b̃ =⇒ d∗2 = 1

(10)

whereas for (8), we exploit (6) and solve the maximization by
relaxing the constraint X1 ∈ N, obtaining

X∗1 = arg max
x

(
1−

(
1− pqd

∗
2

)x
− ãx

)
(11)

for x ∈ R. We then need to study the sign of

∆
(

1− (1− pqd
∗
2 )x − ãx

)
= (1− pqd

∗
2 )x − (1− pqd

∗
2 )x+1 − ã

= (1− pqd
∗
2 )xpqd

∗
2 − ã

(12)

with ∆ denoting the forward difference operator, that is,
(∆T )(x) = T (x+1)−T (x), as a function of x. There are two
extreme cases to consider: (i) q = 0 and d∗2 = 1, giving perfect
defense, i.e., prosumer 1 cannot make an effective attack. In
this case, the right-hand side of (12) is equal to −ã and
therefore the optimal x is 0; but b̃ > 0 = (1− pq)0− (1− p)0
and therefore d∗2 = 1 cannot be an equilibrium; and (ii)
p = 1 and d∗2 = 0, that is the case of perfect attack, where
prosumer 1’s attacks are always effective. Then, (12) is equal
to [x = 0]− ã and has x = 0 if ã ≥ 1 and x = 1 if ã ≤ 1 as
optimal values; the former is always an equilibrium, whereas
the latter is one only if b̃ ≥ 1 − q. We can now assume
0 < pqd

∗
2 < 1. There is an inflection point around

x =
ln
(
ã−1pqd

∗
2

)
ln
(
1− pqd∗2

)−1 (13)

and thus, for x 6= Z, X∗1 = max{dxe, 0}. For x < 0, the
only solution is 0, whereas for x ∈ N both x and x + 1 are
solutions.

In (10), p > 0 and pq > 0, (1− p)x and (1− pq)x are both
decreasing functions of x; as a result, substituting X∗1 we get

(1− pq)max{dxe,0} − (1− p)max{dxe,0}

=

{
0 x ≤ 0

(1− pq)dxe − (1− p)dxe x > 0

= max
{

(1− pq)dxe − (1− p)dxe, 0
}
.

(14)

The following equivalences allow us to remove b̃ ≥ 0 and
b̃ ≤ 0, which are always true and false conditions, respectively:

max{a, b} ≤ c ⇐⇒ a ≤ c ∧ b ≤ c
max{a, b} ≥ c ⇐⇒ a ≥ c ∨ b ≤ c

(15)

The result of these simplifications is shown in Table II, along
with better representations of u1 and u2 whenever available.

Now that all pure strategy NEs have been identified, some
properties can be proven about them.

Theorem III.1. If Eask 6= 0 and p ≤ ã then there is a pure
strategy NE such that X∗1 = 0 and d∗2 = 0 for any q < 1.

Proof. See Appendix C.

Moreover, the following Theorem also holds.

Theorem III.2. If Eask 6= 0 and p < ã then the equilibrium
defined by Theorem III.1 is the only pure strategy NE.

Proof. See Appendix D.

These two theorems justify the notion that, for low values
of attack success p, it becomes unfeasible for the attacker to
attack at all, as the risk of not incapacitating the defender is
higher than the benefit gained from an effective attack.



TABLE II
PURE NASH EQUILIBRIA. RELATIVE COST OF ATTACK ã, CONSUMER REQUIREMENT Eask , PROBABILITIES (p, q) OF (ATTACK SUCCESS, DEFENSE

FAILURE).

d∗2 X∗1 x u1 u2 Condition on b̃ Other conditions
from (12) (utilities for players 1 and 2) (relative cost of defense)

0 0 0 0 Eask = 0 or p = 1 and ã ≥ 1

0 1 1− ã 0 b̃ ≥ 1− q Eask 6= 0, p = 1 and ã ≤ 1

0 max {dxe , 0} ln ã
p

ln(1−p)
b̃ ≥ (1− pq)dxe − (1− p)dxe Eask 6= 0 and p < 1

1 max {dxe , 0} ln ã
pq

ln(1−pq)
b̃ ≤ (1− pq)dxe − (1− p)dxe Eask 6= 0 and q > 0

0 x+ 1
ln ã

p

ln(1−p)
1− ã

(
x+ 1

p

)
1−p
p

ã b̃ ≥ (1− pq)x − (1− p)x Eask 6= 0, p < 1 and x ∈ N

1 x+ 1
ln ã

pq

ln(1−pq)
1− ã

(
x+ 1

pq

)
1−pq
pq

ã− b̃ b̃ ≤ (1− pq)x − (1− p)x Eask 6= 0, q > 0 and x ∈ N

IV. STRICT DOMINANCE

Despite a countable infinity of actions being available to
prosumer 1, those not strongly dominated are finite in number.
The analysis to prove this is split, as for the pure strategy NEs.
If Eask = 0, (6) becomes −a1X1, (7) becomes −b2d2, then
X1 = 0 and d2 = 0 is a strictly dominant strategy. There are,
in other words, no strictly mixed strategy NEs. If Eask > 0 but
q = 0 and p = 1, we have that X1 = 1 strictly dominates all
X1 = x > 1 as the conditions for strict dominance ultimately
reduce to ã (x− 1) > 0. Furthermore, if ã > 1, then X1 = 0
strictly dominates X1 = 1, whereas the converse is impossible
as it requires ã < 0. If Eask > 0 and q = 0 but p < 1, (6)
becomes (

1− (1− p[d2 = 0])
X1

)
− ãX1 (16)

and X1 = x strictly dominates X1 = x+ 1 whenever

(1− p[d2 = 0])
x
< (1− p[d2 = 0])

x+1
+ ã (17)

which is always true for d2 = 1 whereas for d2 = 0 we get

x >
ln
(
ã−1p

)
ln(1− p)−1

(18)

and therefore the remaining choices for X1 are finite. If
Eask > 0 and q > 0 but p = 1. Thus, (6) becomes(

1−
(
1− qd2

)X1
)
− ãX1 (19)

so that X1 = x strictly dominates X1 = x+ 1 whenever(
1− qd2

)x
<
(
1− qd2

)x+1
+ ã (20)

which is equal to x > 1 ∨ ã > 1 for d2 = 0 whereas for
d2 = 1 we get

x >
ln
(
ã−1q

)
ln(1− q)−1

. (21)

If Eask > 0 and p < 1, q > 0. We get that X1 = x strictly
dominates X1 = x+ 1 whenever

x >
ln
(
ã−1pqd2

)
ln (1− pqd2)

−1 (22)

with a computation similar to the one above. This analysis
justifies the intuition that it is not sensible to attack indefinitely,
since the cost will eventually exceed the (expected) gain. Also,
if ã > 1, then X1 = 0 strictly dominates all other choices for
X1, which forces d2 = 0, leaving this as the only joint strategy.

From the analysis above we derive the following properties.

Theorem IV.1. If Eask > 0, then a strategy with X∗1 6= 0
is not strictly dominated only if d2 = 1 and ã < q ≤ p or
ã < p ≤ q or only if d2 = 0 and q < ã < p.

Proof. See Appendix E.

Corollary IV.1.1. With the same assumption of Theorem IV.1:
if p > ã, q > ã with ã ≈ 0, q > p or p > q and d2 = 1, then
there is a strategy X∗1 6= 0 that is strictly dominant.

Proof. See Appendix F.

V. MIXED NASH EQUILIBRIA

To find the mixed strategy NEs, Eask > 0 and ã ≤ 1 are
assumed. We have that d2 = 1 never strictly dominates d2 = 0
since the condition for dominance is

b̃ < inf
x

(
(1− pq)x − (1− p)x

)
(23)

that requires b̃ < 0 for the case x = 0. Yet, d2 = 0 can strictly
dominate d2 = 1 as in the following cases from

b̃ > sup
x

(
(1− pq)x − (1− p)x

)
. (24)

1) The case p = 1 and q = 0: For the dominance condi-
tion, (24) is in this case equivalent to b̃ > 1; this corresponds
to one or both of the first two pure strategy NEs in Table II.
When b̃ ≤ 1, two cases follow. (i) ã = 1: n this case, X1 = 0
is equivalent to X1 = 1 as far as payoffs are concerned;
therefore, strategies of the form β 〈X1 = 0〉+(1−β) 〈X1 = 1〉
constitute a NE when combined with d∗2 = 0, with the
condition that β ≥ 1 − b̃. Or (ii), if ã < 1: the players
choose strategies, neither of which are dominated. Therefore,
we can compute a mixed strategy NE by setting the strategy
of prosumer 1 to be α 〈d2 = 0〉 + (1 − α) 〈d2 = 1〉 and for



prosumer 2, β 〈X1 = 0〉 + (1 − β) 〈X1 = 1〉. The equations
for the mixed equilibrium are

(1− β)(α− ã) = 0

(1− β)(α− ã) = α(1− ã)− (1− α)ã

αβ + (1− α)(1− b̃) = β

αβ + (1− α)(1− b̃) = 1− b̃

(25)

that are satisfied for α = ã and β = 1− b̃. Therefore, we have
a mixed strategy NE with

(1− b̃) 〈X∗1 = 0〉+ b̃ 〈X∗1 = 1〉
ã 〈d∗2 = 0〉+ (1− ã) 〈d∗2 = 1〉

(26)

and there are no other mixed strategy NEs.
2) The case p < 1 and q = 0 (perfect defense): Firstly, (24)

is valid if and only if b̃ ≥ 1. When 1−(1−p)dxe ≤ b̃ < 1 there
exists a pure strategy NE, namely the third one in Table II.
Now let m1 be a mixed strategy whose support contains three
distinct values i < j < k for X1. Among the conditions for
it to be a mixed strategy NE, we get that α = j−i

(1−p)i−(1−p)j ã
and the same replacing j for i and k for j. The two must be
equal, which implies

(1− p)j−i
(
1− (1− p)k−j

)
1− (1− p)j−i

=
k − j
j − i

. (27)

The LHS is strictly decreasing in p for 0 < p < 1 and its limit
value for p→ 0 is k−j

j−i . In other words, equality never holds,
and there cannot be more than two values in the support of any
mixed strategy NE. We are left with four equations, namely
the conditions for β 〈X1 = i〉+ (1−β) 〈X1 = j〉, with i < j,
and α 〈d2 = 0〉 + (1 − α) 〈d2 = 1〉 to be an equilibrium; the
first two conditions on u1 solve for α as given above, whereas
for β we have that

(1− β)(1− p)j + β(1− p)i = 1− b̃ (28)

whose solution is

β =
1− (1− p)j − b̃

(1− p)i − (1− p)j
. (29)

The other two equations are trivial. The equilibrium inequali-
ties for X1 have the form

∀k 6= i.
1− (1− p)j−i

j − i
≥ 1− (1− p)k−i

k − i
. (30)

As the function 1−(1−p)x
x is decreasing in x, an interesting

remark can be made: if i 6= 0, then k = 0 is a valid choice in
the function above; but also, as i < j, the LHS with parameter
0 < j − i will always be lower than the RHS. On the other
hand, when i = 0 then the lowest value that k can go is k = 1,
which therefore forces j = i + k = 1. Ultimately, we have a
mixed strategy NE with(

1− b̃

p

)
〈X∗1 = 0〉+

b̃

p
〈X∗1 = 1〉 (31)

ã

p
〈d∗2 = 0〉+

(
1− ã

p

)
〈d∗2 = 1〉 , (32)

which only exists for ã, b̃ < p. For ã = p a similar mixed
strategy NE exists for d∗2 = 0 and arbitrary β ≥ 1 − b̃

p . One
can see that these equilibria are nothing but a generalization
of (26) with p < 1.

3) The case p = 1 and q > 0 (perfect attack): We consider
as in the previous case a mixed strategy m1 with support
containing at least three distinct values i < j < k, and
again we obtain that such a strategy can never be a NE. We
can see it by distinguishing two cases: if i > 0 then the
formula for α is opposite to the one found above, namely
α = 1− j−i

(1−q)i−(1−q)j ã, and the conclusion follows from the
previous analysis; for i = 0, on the other hand, we get the
same formula for j and k, whereas for i and j it has the
form α = 1 − ãj−1

(1−q)j . However, we know from (21) that all
values of X1 greater than a bound, which is easily seen to
be always below ã−1, are strictly dominated; an equilibrium,
mixed or otherwise, containing a value j > ã−1 is therefore
impossible: but that implies α > 1, which is impossible. We
are left with the only case of i > 0. The value for β is seen
to be β = b̃−(1−q)j

(1−q)i−(1−q)j ; but the additional condition for u2
in i > 0 implies that α = 1, which is impossible (it would
require i = j). Ultimately, there are no mixed strategy NEs
for this case. Note that we did not refer to (24), which holds
when b̃ > 1− q, and does not need to be exploited. One can
also see that said condition would hold for β to be valid in
the first place.

4) The case p < 1 and q > 0: Similar to above, we prove
that for a generic mixed strategy m1 we cannot have three
different values i < j < k in its support; repeating the analysis
for i and j as before, we obtain

α =
ã(j − i)−

(
(1− pq)i − (1− pq)j

)(
(1− p)i − (1− p)j

)
−
(
(1− pq)i − (1− pq)j

) . (33)

This value is in the correct range only if

(1− pq)i − (1− pq)j < ã(j − i) < (1− p)i − (1− p)j (34)

and this double inequality allows us to prove that it is
impossible that there be two values of α satisfying a similar
equivalence as those above. We find a formula for β, namely

β =
(1− pq)j − (1− p)j − b̃(

(1− p)i − (1− p)j)− ((1− pq)i − (1− pq)j
) (35)

Conversely, equilibrium inequalities are complex and do not
easily admit closed-form analysis. A detailed study is left for
future research.

VI. NUMERICAL RESULTS

For a better understanding of the results, we consider some
quantitative evaluations. These are all assessments of the
performance at the NEs found in the analysis. For this reason,
they are not affected by issues of numerical convergence or
computational complexity, as they just correspond to substi-
tuting different parameters into the formulas.
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These are not to be interpreted in a comparison sense
among different techniques, but rather as theoretical perfor-
mance assessments. Contrarily to studies where alternative
approaches are confronted, we enable an evaluation of the
resulting performance that the prosumers can get [13], [38].
An immediate application would be in the identification of
guidelines and trends for enhancing security of community
SGs, e.g., showing the ranges of parameters causing the
attacker to be inactive.

A first set of results displays the performance in terms of
number of attacks carried by player 1 at the Nash equilibrium,
i.e., X∗1 , or the resulting utilities of the players, as a function
of the attack success probability p. The latter is reported in
logarithmic scale to allow for a wider range of values.

Fig. 1 shows X∗1 for the third NE in Table II as a function of
p. The curves are ordered from flattest to sharpest, for various
values of ã. The locus of maxima for X∗1 is displayed as the
dashed line, obtained from the definition of x as x∗ = 1−p

p .
Seen as a function of ã, it decreases exponentially, since
when ã diminishes i.e., the relative attack cost goes down, the
amount of failures that can be tolerated increases as attacks are
cheap and can be massively launched. Eventually, the linearly
additive cost of attacks prevails over the diminishing gain
expected from it. This occurs until p = ã, at which point
there is no incentive to attack.

Utilities u1 and u2 are shown in Fig. 2 as functions of p in
the case of the third pure equilibrium; the values for ã are the
same as before. Interestingly, in the case of no defense, u2 is
not monotonically decreasing; this is especially evident in the
jagged case a = 10−1. The defender may yet prefer slightly
higher successful attack probabilities, as they will trick the
attacker into launching fewer attacks, for which they are not
prepared (as d∗2 = 0).

Fig. 3 shows the same analysis, but considers an increasing
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probability p for various relative attack costs ã.
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Fig. 3. Number of attacks at equilibrium X∗1 vs. attack success probability
p for various defense failure probabilities q and relative attack costs ã.

value of ã and a decreasing value of q, to quantify the attacks
that prosumer 1 is expected to launch. The number of attacks
generally increases as their cost decreases and the probability
of successful defense increases. However, the curves also show
a decrease as the probability of a successful attack becomes
very high, since in this case it is convenient for prosumer 1 to
avoid unnecessary extra attacks, as a lower number would still
be enough, to contain the costs. This general trend is present
in all the following plots, albeit to a different extent depending
on the parameters.

Fig. 4 represents the extreme case; for values of q lower
than ã, the attacker has no incentive to attack at all, and
therefore X∗1 reduces to a flat zero. This is consistent with
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the results in Theorems III.1 and III.2, and is a general game
theoretic principle that an attacker, realizing that intervention
is too expensive or easily counteracted, will abstain from
malicious activity [9]. This may also serve a useful guideline to
identify practical countermeasures to inhibit attacks, from the
perspective of either a security agency or a network manager;
this would correspond to increase the costs of an attack (even
in expectation), e.g., by establishing external penalties.

Similarly, Fig. 5 considers a setting where the defender has
a very high defense failure probability q. It is shown how
there is no need to significantly increase the number of attacks
launched, as even few attempts will be successful. The number
of attacks increases only if their cost is extremely low.
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On the other hand, Fig. 6 considers an array of scenarios
where the relative attack cost ã is lower than the probability of
defense failure q. The figure shows that the number of attacks
X∗1 increases in their success probability p, but only if the
latter is relatively high. In other words, even cheap attacks
with low probability of contrast by the defender are performed
only if they have a high probability to break the system.

To sum up, all these plots show that NE corresponds to
an active adversary that launches multiple attacks only if their
success is sufficiently likely and their cost is sufficiently low –
notably, lower than the probability of successful defense, i.e.,
ã < q. All of this may hint at possible criteria for securing
the system from the perspective of the defender, aligning with
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relative attack cost ã and the relative defense cost b̃ = 0.9.

two major research directions. The former would correspond
to empower cyber-defense or detection techniques so as to
thwart the attack [26], but at the same time our results show
that an adversary driven by selfish utility is repelled by high
costs, which may intervene as an alternative countermeasure.

Next, we focus on comparing the 5th and 6th pure strategy
NEs, which differ in the defense strategy of player 2, i.e.,
d∗2 = 0 and d∗2 = 1, respectively. Since no self-defense is
chosen in the 5th NE, the defense cost b̃ and the probability
of self-defense failure q do not influence the resulting utility.
Conversely, we can see in Fig. 7 that the utility value u2
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linearly depends on both ã and b̃ (the trend is increasing in
ã and decreasing in b̃), and the coefficient of ã depends on
p and q so that, ultimately, the utility of prosumer 2 can be
positive or negative depending on all these parameters.

As a result, the utility of prosumer 2 in the 5th NE, shown in
Fig. 8, turns out to be non-zero only if the cost of an attack ã is
very high, and its success is unlikely, in which case prosumer
1 will not attack. A visually similar trend is visibile for the
6th NE in Fig. 9, which considers b̃ = 0.9 and q = 0.1, albeit
different values obtain similar trends. In this case, prosumer
2 chooses to defend, but it is an expensive action, and in turn
this gives a positive utility only if, once again, the attacks from
prosumer 1 are inconvenient (both expensive and not likely to
succeed). Also, while the trend is the same, the utility of player
2 is lower than in the 5th NE since defense is expensive.

Finally, Fig. 10 shows a phase diagram of the game, i.e.,
the areas for p and q in which the pure NEs exist. The green
area is associated with the third Nash equilibrium in Table II,
and both the third and the fifth are present when p lies on
one of the dashed vertical lines. The same can be said for the
fourth and sixth equilibria, which lie in the blue-shaded areas
and dashed segments. It can be seen that in many ranges of p
and q there is no pure strategy NE and that the two main ones
coexist only for a small sliver of the domain. Nevertheless,
such empty areas must include a mixed strategy NE.

VII. CONCLUSIONS

Community SG scenarios are important applications com-
bining information and communication technologies with en-
ergy provision in a shared fashion [22]. While pilot projects
of P2P energy sharing communities are developed around the
world, it is important to explore whether the combination of
energy and information exchanges is vulnerable to malicious
behavior by some participants [7].



To this end, we studied a case where prosumers contending
for the role of energy supplier of a consumer can attack each
other or enact defense mechanisms [16]. This is modeled as a
static game of complete information, for which we studied the
NEs and analyzed the implications, e.g., in terms of correlation
between network parameters and number, type, and associated
utilities of NEs. For example, we found that increasing the
cost of an attack does not always correspond to a lower
optimal number of attacks. Another important consequence
is the establishment of structural protections against inside
attacks, which are obtained whenever the cost parameters do
not support an advantageous attack strategy. This can be seen
as a preliminary effort to enact for a secure interaction in the
SG community [9].

The model can be generalized in various directions, such as
introducing more than one consumer, each with its own energy
requirement Eask

i , or assuming partial knowledge over power
parameters and probabilities p and q [41]. The topology of
the grid can also vary in time, either due to natural dynamics
or because of malicious interventions of some nodes [14],
[27], and the model may be developed considering various
rounds as well as player types by extending it to a multi-
stage Stackelberg game with strategic interactions [37], or a
Bayesian game with multiple player types [21]. All of these
are interesting developments to explore in future research.

APPENDIX A
PROOF OF LEMMA II.1

From the definition of expected utility for player 2 in (5)
and of cost in (2) we have

u2((X1, d1), (X2, d2)) = P[2∈S]Eask−a2X2−b2d2
< P[2 ∈ S]Eask−b2d2 = u2((X1, d1), (0, d2)).

(36)

APPENDIX B
PROOF OF LEMMA II.2

From Lemma II.1, we may assume X2 = 0. From player
1’s expected utility in (5) and cost in (2) we have

u1((X1, d1), (0, d2)) = P[1∈S]P[2/∈S]Eask−a1X1−b1d1
= P[2 /∈ S]Eask − a1X1 − b1d1
< P[2 /∈ S]Eask − a1X1 = u1((X1, 0), (0, d2)).

(37)

APPENDIX C
PROOF OF THEOREM III.1

The proof is split into two parts, considering different cases.
First, suppose p < 1. The other conditions for the third
equilibrium in Table II are satisfied, and we know that ln ã

p > 0
and therefore the value of x is negative. Thus the condition
on b̃ reduces to b̃ ≥ (1 − pq)0 − (1 − p)0 = 0, which is
always satisfied; the third equilibrium exists and has X∗1 = 0,
since dxe ≤ 0. Alternatively, let p = 1. Then the hypothesis
becomes 1 ≤ ã; in other words, all conditions for the first
equilibrium in Table II are satisfied. In both cases, we also
have that d∗2 = 0, which completes the proof.

APPENDIX D
PROOF OF THEOREM III.2

As for Theorem III.1, the proof is split into two cases.
Suppose p < 1. We know that the first and second equilibria
in Table II do not exist; it is enough to prove that neither all
the others but the third do. To that end, note that pq < p < ã
and therefore ln ã

pq > 0 as well; thus, if either the fourth or
the sixth equilibrium were to exist, they would have X∗1 = 0.
But then that would imply that b̃ ≤ (1−pq)0−(1−p)0, which
is impossible; neither equilibrium can then exist. Finally, the
condition x ∈ N for the fifth equilibrium cannot hold, for
ln ã

p > 0 and thus x < 0. In the remaining case, let p = 1.
Then the hypothesis becomes 1 ≤ ã: the second equilibrium
cannot exist. It is now sufficient to prove that neither can
the fourth or the sixth. To that end, suppose that there exists
an equilibrium for which the condition on b̃ is true, namely
b̃ ≤ (1 − q)dxe − [dxe = 0]. If dxe = 0 then this condition
cannot be satisfied as it reduces to b̃ ≤ 0. But on the other
hand, if dxe > 0 then it must be that ln ã

p < 0 and therefore
p > ã, which is false by hypothesis.

APPENDIX E
PROOF OF THEOREM IV.1

The case p < ã is already proven by Lemma III.2, from
now on we are considering that ã < 1 as assumption; let
therefore q < ã < p, taking into account that (13) for the case
d2 = 1 simplifies out into x = − ln(pq/ã)

ln(1−pq) and so analyzing
its sign we can affirm that ln(1− pq) < 0 and the numerator
is greater than 0, now considering the negative sign of the
equation x < 0. By definition of the number of attacks X∗1 =
max {dxe , 0}, and so in this specific case X∗1 = 0, meaning
that X∗1 6= 0 is strictly dominated. If q < ã and ã = p for
d2 = 0 the denominator of the inflection point x is 0, ln( p

ã ) =
ln(p

p ) = ln(1) = 0, and so x = 0 concluding that also in
this case strategy X∗1 = 0 is strictly dominant over X∗1 6= 0.
In case d2 = 1, the equation becomes x = − ln(q)

ln(1−pq) , the
denominator is always less than 0 and, recalling that 0 <
q < 1, we have ln(q) < 0, hence x < 0 reaching the same
conclusion of the previous case, that is, X∗1 = 0 is strictly
dominant. The case q < ã < p leads to the same outcomes in
cases as ã < q < p and ã < q with q = p under condition of
d2 = 0, in fact x = − ln(p/ã)

ln(1−p) in which − ln( p
ã ) < 0, therefore

concluding with x > 0 that X∗1 6= 0 is a non strictly dominated
strategy. The last two cases confirming the strict dominance
of X∗1 6= 0 over the other strategies are ã < q < p and ã < q
with q = p, considering d2 = 1 this time. For the first case,
the denominator of x becomes − ln qp

ã < 0, thus obtaining
x > 0. The latter case ã < q with q = p works under the
prior assumption that p2 > ã, thus for the denominator of
the inflection point x, we have − ln p2

ã < 0, which results in
x > 0 as stated before.



APPENDIX F
PROOF OF COROLLARY IV.1.1

From (13), we know that x =
ln
(
ã−1pqd

∗
2

)
ln(1−pqd

∗
2 )
−1 , which in turn

implies x =
ln(ã−1pq)
ln(1−pq)−1 . Following either ã < p < q or ã <

q < p, we end up into one of the cases listed in the previous
theorem, which implies that the border value X1 = 0 cannot be
the best choice, which is instead in a local maximum X∗1 6= 0
that represents a strictly dominant strategy.

REFERENCES

[1] M. Borgo, B. Principe, L. Spina, L. Crosara, E. Gindullina, and L. Badia,
“Attack strategies among prosumers in smart grids: A game-theoretic
approach,” in Proc. IEEE icSmartGrid, 2023, pp. 01–06.

[2] F. E. Abrahamsen, Y. Ai, and M. Cheffena, “Communication technolo-
gies for smart grid: A comprehensive survey,” Sensors, vol. 21, no. 23,
p. 8087, 2021.

[3] D. Brown, S. Hall, and M. E. Davis, “Prosumers in the post subsidy
era: an exploration of new prosumer business models in the UK,” En.
Policy, vol. 135, p. 110984, 2019.

[4] N. Patrizi, S. K. LaTouf, E. E. Tsiropoulou, and S. Papavassiliou,
“Prosumer-centric self-sustained smart grid systems,” IEEE Syst. J.,
vol. 16, no. 4, pp. 6042–6053, 2022.

[5] D. Roana, S. Boscolo, L. Crosara, L. Badia, and E. Gindullina, “Strategic
energy trading among prosumers in a smart grid,” in Proc. IEEE
icSmartGrid, 2023, pp. 01–06.

[6] A. Boumaiza, “Towards a blockchain-enabled transactive renewable
energy trading market,” in Proc. IEEE icSmartGrid, 2024, pp. 42–47.

[7] N. Bui, A. P. Castellani, P. Casari, and M. Zorzi, “The internet of energy:
a web-enabled smart grid system,” IEEE Network, vol. 26, no. 4, pp.
39–45, 2012.

[8] R. Bonetto, I. Sychev, and F. H. Fitzek, “Power to the future: Use cases
and challenges for mobile, self configuring, and distributed power grids,”
in Proc. IEEE SmartGridComm, 2018, pp. 1–6.

[9] V. Bonagura, S. Panzieri, F. Pascucci, and L. Badia, “A game of age of
incorrect information against an adversary injecting false data,” in Proc.
IEEE Int. Conf. Cyber Security Resilience (CSR), 2023, pp. 347–352.

[10] M. Esmalifalak, G. Shi, Z. Han, and L. Song, “Bad data injection attack
and defense in electricity market using game theory study,” vol. 4, no. 1,
pp. 160–169, 2013.

[11] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and
potential solutions,” Comp. Netw., vol. 169, p. 107094, 2020.

[12] G. Cisotto and L. Badia, “Cyber security of smart grids modeled through
epidemic models in cellular automata,” in Proc. IEEE WoWMoM, 2016,
pp. 1–6.

[13] X. G. Shan and J. Zhuang, “A game-theoretic approach to modeling
attacks and defenses of smart grids at three levels,” Reliability Eng.
Syst. Safety, vol. 195, p. 106683, 2020.

[14] A. Srivastava, T. Morris, T. Ernster, C. Vellaithurai, S. Pan, and U. Ad-
hikari, “Modeling cyber-physical vulnerability of the smart grid with
incomplete information,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp.
235–244, 2013.

[15] Q. Wang, W. Tai, Y. Tang, M. Ni, and S. You, “A two-layer game
theoretical attack-defense model for a false data injection attack against
power systems,” Int. J. Elec. Power En. Syst., vol. 104, pp. 169–177,
2019.

[16] A.-H. Mohsenian-Rad and A. Leon-Garcia, “Distributed Internet-based
load altering attacks against smart power grids,” IEEE Transactions on
Smart Grid, vol. 2, no. 4, pp. 667–674, 2011.

[17] A. Sanjab and W. Saad, “Data injection attacks on smart grids with
multiple adversaries: A game-theoretic perspective,” IEEE Trans. Smart
Grid, vol. 7, no. 4, pp. 2038–2049, 2016.

[18] Y. Li, D. Shi, and T. Chen, “False data injection attacks on networked
control systems: A stackelberg game analysis,” IEEE Trans. Autom.
Control, vol. 63, no. 10, pp. 3503–3509, 2018.

[19] Y. Xiang and L. Wang, “An improved defender–attacker–defender model
for transmission line defense considering offensive resource uncertain-
ties,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2534–2546, 2019.

[20] V. Vivek, R. B. Diddigi, and S. Bhatnagar, “Dynamic energy manage-
ment in competing microgrids using reinforcement learning,” in Proc.
IEEE ISGT, 2024, pp. 1–5.

[21] A. Tolio, D. Boem, T. Marchioro, and L. Badia, “A Bayesian game
framework for a semi-supervised allocation of the spreading factors in
LoRa networks,” in Proc. IEEE Ann. Ubiq. Comp. Elec. Mob. Commun.
Conf. (UEMCON), 2020, pp. 0434–0439.

[22] F. Alfaverh, M. Denai, and Y. Sun, “A dynamic peer-to-peer electricity
market model for a community microgrid with price-based demand
response,” IEEE Trans. Smart Grid, vol. 14, no. 5, pp. 3976–3991, 2023.

[23] L. Che, X. Liu, Z. Li, and Y. Wen, “False data injection attacks induced
sequential outages in power systems,” IEEE Trans. Plasma Sci., vol. 34,
no. 2, pp. 1513–1523, 2019.

[24] Y. Shang, “False positive and false negative effects on network attacks,”
J. Stat. Phys., vol. 170, no. 1, pp. 141–164, 2018.

[25] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Trans. Inform. Syst. Sec.
(TISSEC), vol. 14, no. 1, pp. 1–33, 2011.

[26] Y. Chen, S. Huang, F. Liu, Z. Wang, and X. Sun, “Evaluation of
reinforcement learning-based false data injection attack to automatic
voltage control,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2158–
2169, 2019.

[27] X. Liu and Z. Li, “Local topology attacks in smart grids,” IEEE Trans.
Smart Grid, vol. 8, no. 6, pp. 2617–2626, 2017.

[28] R. Deng and H. Liang, “False data injection attacks with limited
susceptance information and new countermeasures in smart grid,” IEEE
Trans. Ind. Informat., vol. 15, no. 3, pp. 1619–1628, 2019.

[29] Z. Li, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “Bilevel
model for analyzing coordinated cyber-physical attacks on power sys-
tems,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2260–2272, 2016.

[30] S. K. Singh, K. Khanna, R. Bose, B. K. Panigrahi, and A. Joshi, “Joint-
transformation-based detection of false data injection attacks in smart
grid,” IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 89–97, 2018.

[31] J. Zhao, G. Zhang, M. La Scala, Z. Y. Dong, C. Chen, and J. Wang,
“Short-term state forecasting-aided method for detection of smart grid
general false data injection attacks,” IEEE Trans. Smart Grid, vol. 8,
no. 4, pp. 1580–1590, 2017.

[32] Y. Zhang, J. Wang, and B. Chen, “Detecting false data injection attacks
in smart grids: A semi-supervised deep learning approach,” IEEE Trans.
Smart Grid, vol. 12, no. 1, pp. 623–634, 2021.

[33] M. N. Kurt, O. Ogundijo, C. Li, and X. Wang, “Online cyber-attack
detection in smart grid: A reinforcement learning approach,” IEEE Trans.
Smart Grid, vol. 10, no. 5, pp. 5174–5185, 2019.

[34] C. Y. T. Ma, D. K. Y. Yau, and N. S. V. Rao, “Scalable solutions
of markov games for smart-grid infrastructure protection,” IEEE Trans.
Smart Grid, vol. 4, no. 1, pp. 47–55, 2013.

[35] A. Mahi-al rashid, F. Hossain, A. Anwar, and S. Azam, “False data
injection attack detection in smart grid using energy consumption
forecasting,” Energies, vol. 15, no. 13, 2022.

[36] R. Huang, Y. Li, and X. Wang, “Attention-aware deep reinforcement
learning for detecting false data injection attacks in smart grids,” Int. J.
Elec. Power En. Syst., vol. 147, p. 108815, 2023.

[37] L. Canzian, L. Badia, and M. Zorzi, “Promoting cooperation in wireless
relay networks through Stackelberg dynamic scheduling,” IEEE Trans.
Commun., vol. 61, no. 2, pp. 700–711, 2013.

[38] M. Tian, Z. Dong, and X. Wang, “Analysis of false data injection attacks
in power systems: A dynamic Bayesian game-theoretic approach,” ISA
Trans., vol. 115, pp. 108–123, 2021.

[39] C. Cappello, D. Zonta, and B. Glišić, “Expected utility theory for
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