
Association Analysis

Part 1

1

Market-basket model

• A large set of items: e.g., products sold in a supermarket
• A large set of baskets: e.g., each basket represents what a

customer bought in one visit to the supermarket
• GOAL Analyze data to extract:

• Frequent itemsets: subsets of items
that occur together in a
(surprisingly) high number of
baskets

• Association rules: correlations
between subsets of items.

Popular example of association rule: customers
who buy diapers and milk are likely to also buy
beer

2

Rigorous formulation of the problem

Dataset T = {t1, t2, . . . , tN} of N transactions (i.e., baskets) over
a set I of d items, with ti ⊆ I , for 1 ≤ i ≤ N.

Definition (Itemset)

An itemset is a subset X ⊆ I and its support w.r.t. T , denoted by
SuppT (X), is defined as the fraction of transactions of T that
contain X .

Definition (Association rule)

An association rule is a rule r : X → Y , with X ,Y ⊂ I ,
X ,Y 6= ∅, and X ∩ Y = ∅. Its support and confidence w.r.t. T ,
denoted by SuppT (r) and ConfT (r), respectively, are defined as

SuppT (r) = SuppT (X ∪ Y)

ConfT (r) = SuppT (X ∪ Y)/SuppT (X)

3

Rigorous formulation of the problem (cont’d)

Given the dataset T of N transcations over I , and given a support
threshold minsup ∈ (0, 1], and a confidence threshold minconf
∈ (0, 1], The following two objectives can be pursued:

1 Compute all frequent itemsets, that is, the set of (non empty)
itemsets X such that SuppT (X) ≥ minsup

2 Compute all (interesting) association rules r such that
SuppT (r) ≥ minsup and ConfT (r) ≥ minconf.

Example (minsup=minconf=0.5):

Dataset T
TID Items

1 ABC
2 AC
3 AD
4 BEF

Frequent Itemsets
Itemset Support

A 3/4
B 1/2
C 1/2

AC 1/2

Association Rules
Rule Support Confidence

A → C 1/2 2/3
C → A 1/2 1

N.B. For simplicity, the subscript T will be omitted if clear from the context

4

Observations

• Support and confidence measure the interestingness of a
pattern (itemset or rule). In particular, the thresholds minsup
and minconf define which patterns must be regarded as
interesting.

• (Hypothesis testing setting) Ideally, we would like that the
support and confidence (for rules) of the returned patterns be
unlikely to be seen in a random dataset. However, what is a
random dataset?

• The choice of minsup and minconf is crucial since it directly
influences

• The output size: low thresholds may yield too many patterns
(possibly exponential in the input size) which become hard to
exploit effectively.

• The number of false positive/negatives: low thresholds may
yield a lot of uninteresting patterns (false positives), while high
thresholds may miss some interesting patterns (false
negatives).

5

Applications
Association analysis is one of the most prominent data mining tasks

1 Analysis of true market baskets. Chain stores keep TBs of data
about what customers buy. Frequent itemsets and association rules
can help the store lay out products so to “tempt” potential buyers,
or decide marketing campaigns.

2 Detection of plagiarism. Consider documents (items) and sentences
(transactions). For a given transaction t, its constituent items are
those documents where sentence t occurs. A frequent pair of items
represent two documents that share a lot of sentences (⇒ possible
plagiarism)

3 Analysis of biomarkers. Consider transactions associated with
patients, where each transaction contains, as items, biomarkers and
diseases. Association rules can help associate a particular disease to
specific biomarkers.

The mining of frequent itemsets can be generalized to search for: motifs

in (biological) sequences or networks; sequential patterns; etc.

Techniques devloped for itemsets can be exploited also in these contexts.

6

Potential output explosion

Let I be a set of d items.

Theorem

The number of distinct non-empty itemsets over I is 2d − 1, while
the number of distinct association rules is 3d − 2d+1 + 1.

• Strategies that enumerate of all itemsets/rules in order to find
the interesting ones are out of question even for ground sets I
of small size (say d > 40)

• As a first approximation, we consider efficient strategies those
that require time/space polynomial in both the input and the
output sizes. (Polynomiality only w.r.t. input may not be
feasible if output is large!)

7

Potential output explosion (cont’d)

Proof of theorem.

The count of itemsets is trivial. As for the association rules, we
count separately those whose LHS has k items, for 1 ≤ k < d .
There are

(d
k

)
possible itemsets of size k, and each of these, say X ,

can form a rule with 2d−k − 1 distinct non-empty itemsets, disjoint
from X . Thus, the total number of rules is:

d−1∑
k=1

(
d

k

)
(2d−k − 1) =

d−1∑
k=0

(
d

k

)
(2d−k − 1)− (2d − 1)

=

(
d∑

k=0

(
d

k

)
2d−k

)
−

(
d∑

k=0

(
d

k

))
− (2d − 1)

= 3d − 2d − 2d + 1 = 3d − 2d+1 + 1

Use the fact
∑d

k=0

(
d
k

)
2d−k =

∑d
k=0

(
d
k

)
1k2d−k .

8

Lattice of Itemsets

• The family of itemsets under ⊆ forms a lattice, namely a
poset where for each to elements X ,Y there exists a unique
least upper bound (X ∪ Y) and a unique greatest lower bound
(X ∩ Y).

• The lattice can be represented through the Hasse diagram

9

Anti-monotonicity of Support

The support function for itemsets exhibits the following property,
referred to as anti-monotonicity. For every X ,Y ⊆ I

X ⊆ Y ⇒ Supp(X) ≥ Supp(Y).

Immediate consequence. For a given support threshold, we have

1 X is frequent ⇒ ∀W ⊆ X , W is frequent (downward closure)
2 X is not frequent ⇒ ∀W ⊇ X , W is not frequent

This implies that, in the lattice, frequent itemsets form a sublattice
closed downwards

10

Efficient mining of F.I. and A.R.

Key objectives:

• Careful exploration of the lattice of itemsets exploiting
anti-monotonicity of support

• Time/space complexities polynomial in the input and output
size.

Two phases: (typical of most algorithms)

Phase 1: Compute the set F of all frequent itemsets w.r.t.
minsup

Phase 2: For each itemset Z ∈ F , compute all rules
r : X → Y , with X ∪Y = Z and confidence at least minconf.

Observation. Phase 1 is, usually, the most demanding,
computationally.

11

Efficient mining of F.I. and A.R. (cont’d)

Two main approaches

Breadth First Depth First

12

F.I. mining: A-Priori algorithm

• A-Priori is a popular, paradigmatic data mining algorithm
devised by Agrawal and Srikant in 1994 at IBM Almaden
(presented at 20th Very Large Data Base Conf., 1994).

• Uses the breadth-first approach

• Executes kmax + 1 passes over the dataset, where kmax is the
length of the longest frequent itemset

13

F.I. mining: A-Priori algorithm (cont’d)

For every itemset X ⊆ I , define its absolute support (with respect
to a dataset T of N transactions)

σ(X) = Supp(X) · N

main algorithm

Input Dataset T of N transactions over I , minsup

Output {(X ,Supp(X)) : X ⊆ I ∧ Supp(X) ≥ minsup}

14

F.I. mining: A-Priori algorithm (cont’d)

k ← 1
Compute F1 = {i ∈ I ; Supp({i}) ≥ minsup};
Compute O1 = {(X , Supp(X)) ; X ∈ F1}
repeat

k ← k + 1
Ck ← apriori-gen(Fk−1) /* Candidates */

for each c ∈ Ck do σ(c)← 0
for each t ∈ T do

Ck,t ← {c ∈ Ck : c ⊆ t}
for each c ∈ Ck,t do σ(c)← σ(c) + 1

Fk ← {c ∈ Ck : σ(c) ≥ N · minsup};
Ok ← {(X , σ(X)/N) ; X ∈ Fk}

until Fk = ∅
return

⋃
k≥1Ok

15

F.I. mining: A-Priori algorithm (cont’d)

apriori-gen(F)

Let `− 1 be the size of each itemset in F
Φ← ∅
/* Candidate Generation */

for each X ,Y ∈ F s.t. X 6= Y ∧ X [1 . . . `− 2] = Y [1 . . . `− 2] do
add X ∪ Y to Φ

/* Candidate Pruning */

for each Z ∈ Φ do
for each Y ⊂ Z s.t. |Y | = `− 1 do

if (Y 6∈ F) then {remove Z from Φ; break}
return Φ

Observation: no itemset is generated twice

16

Example

DATASET T

TID ITEMS

1 ACD

2 BEF

3 ABCEF

4 ABF

Set F1

ITEMSET SUPPORT

A 3/4

B 3/4

C 1/2

E 1/2

F 3/4

17

Example (cont’d)

Set C2 Set F2

ITEMSET SUPPORT
After Generation After Pruning

AB AB 1/2 ∗
AC AC 1/2 ∗
AE AE 1/4

AF AF 1/2 ∗
BC BC 1/4

BE BE 1/2 ∗
BF BF 3/4 ∗
CE CE 1/4

CF CF 1/4

EF EF 1/2 ∗

18

Example (cont’d)

Set C3 Set F3

ITEMSET SUPPORT
After Generation After Pruning

ABC

ABF ABF 1/2 ∗
ACF

BEF BEF 1/2 ∗

19

Correctness of A-Priori

Assume existence of a total ordering of the items, and consider
transactions/itemsets as sorted vectors.

Theorem (Correctness)

The A-Priori algorithm for mining frequent itemsets is correct

Proof

By induction on k ≥ 1, we show that the set Fk computed by the
algorithm consists of all frequent itemsets of size k .

• Basis k = 1: trivial

• Induction step. Fix k > 1 and assume (inductive hypothesis)
the property holds up to index k − 1. It is sufficient to prove
that for an arbitrary frequent itemset X of size k , X is surely
included in the set Ck returned by apriori-gen(Fk−1).

20

Correctness of A-Priori (cont’d)

Proof (cont’d).

Let X = x1x2 · · · xk and define

X (1) = x1x2 · · · xk−2xk−1
X (2) = x1x2 · · · xk−2xk .

Clearly, X = X (1) ∪ X (2). Also, both X (1) and X (2) have
length k − 1 and are frequent, by anti-monotonicity of
support. Thus, X (1),X (2) ∈ Fk−1, hence X is added to the
pool of candidates in the generation phase and cannot be
eliminated in the pruning phase, since, being frequent, all of
its subsets are also frequent.

21

Complexity of A-Priori

The most delicate step is the support computation for all
candidates returned by apriori-gen: in particular, the instruction

Ck,t ← {c ∈ Ck : c ⊆ t}

for a given transaction t.

Let nk be the number of candidates in Ck and nt the length of t.
Assume that Ck is stored in a suitable data structure such as a trie
(see next slide)

• If
(nt
k

)
≤ nk then for generate all subsets of t of size k and

add to Ck,t those that belong to Ck .

• If
(nt
k

)
> nk then scan all candidates in Ck and add to Ck,t

those that are subsets of t.

In any case, the support computation for all candidates can be
accomplished in O

(
nk
∑

t∈T nt
)

22

TRIE
A TRIE (word derives from RETRIEVAL), also called prefix tree, is
a kind of search tree used to store a (dynamic) set of strings.
Edges are labelled with characters, and the strings are associated
with the leaves, where for each leaf v the associated string is given
by the characters encountered in the path from the root to v .

Example:

23

Complexity of A-Priori (cont’d)

Consider a dataset T of N transactions over a set I of d items,
and a support threshold minsup. Define

• Win: sum of transactions lengths (input size)

• Wout: sum of lengths of frequent itemsets (output size)

• kmax: length of longest frequent itemset

Theorem

The A-Priori algorithm for mining frequent itemsets runs in time
polynomial in Win and Wout.

Proof

Let us determine the contribution of the main steps of the
algorithm to the complexity.

• Computation of F1 and O1: time O (d ·Win). Since d ≤Win,
the time is O

(
W 2

in

)
.

24

Complexity of A-Priori (cont’d)

Proof (cont’d)

• apriori-gen(Fk−1), for 2 ≤ k ≤ kmax + 1:
• Candidate generation: time O

(
k |Fk−1|2

)
, where |Fk−1|

denotes the numebr of frequent itemsets of size k − 1.
• Candidate pruning: time O

(
k2|Fk−1|2

)
, assuming Fk−1 stored

in a trie.

Overall, all executions of apriori-gen require time

O
(∑kmax+1

k=2 (k2|Fk−1|2)
)

, hence, time O
(
W 2

out

)
.

• Support counting for Ck , for 2 ≤ k ≤ kmax + 1: time
O (nkWin), where nk denotes the number of candidates of
size k . Since nk < |Fk−1|2, we have that, overall, all support

countings require time O
(∑kmax+1

k=2 (|Fk−1|2Win)
)

, hence,

time O
(
WinW

2
out

)
.

25

Optimizations of A-Priori: frequent pairs

• The support counting for the candidates in Ck , for k ≥ 2, is
typically the most time-consuming step because: (a) requires
a pass over the entire dataset; (b) may use much space
(number of candidates can be quadratic in the actual number
of frequent itemsets)

• In practice, the issue of space (point (b) above) may become
critical for C2, which contains all pairs of frequent items. As k
grows larger, the cardinality of Fk−1, hence of Ck , drops.

• Park, Chen and Yu [SIGMOD’95] devised a strategy to filter
out some candidates from C2 based on statistics gathered
while computing F1. This strategy is outlined in the next slide.

26

Optimizations of A-Priori: frequent pairs (cont’d)

GOAL: Compute F1 efficiently and, at the same time, gather
statistics for filtering out infrequent pairs. Consider an instance
with N transactions, d items, and threshold minsup

• Let h be a hash function that maps pairs of items to integers
in [0,K − 1], for a suitable value K

• Use d + K counters: one counter γi for each i ∈ I , and a
counter δj , for every 0 ≤ j < K . Counters are initialized to 0.

• For every transaction t do
• For each each item i ∈ t, increment γi
• For each pair of items i1, i2 ∈ t, increment δh(i1,i2).

• Key remark: only pairs of items i1, i2 such that
δh(i1,i2) ≥ N ·minsup have a chance to be frequent.

27

Optimizations of A-Priori: frequent pairs (cont’d)

• Compute F1 = {i ∈ I : γi ≥ N ·minsup}
• Compute C2 as the set of pairs i1, i2 such that:

(i1, i2 ∈ F1) AND (δh(i1,i2) ≥ N ·minsup)

Observations:

• The first condition yields the same set of candidates as
apriori-gen, while the second condition aims at filtering out
some of these candidates.

• If K is chosen sufficiently large (based on the available
memory), hence many pair counters are used, then filtering
out of infrequent pairs become quite effective.

28

Other optimizations

A large body of literature has investigated several additional
strategies to optimize the mining of frequent itemsets. E.g.:

• A data structure trie-like (Hash tree) was defined by the
original developers of A-Priori, to be used for storing the set
of candidates Ck so to speed up their support counting. In
essence, for each transaction, the hash tree quickly provides a
subset of the candidates (smaller than Ck) to be checked for
inclusion.

• Several implementations of depth-first mining strategies have
been devised and tested (one of the fastest ones to date,
patriciamine, come from Padova!). Their goal is to avoid
several passes over the entire dataset of transactions, which
may be huge, and to confine the support counting of longer
itemsets to suitable projections of the dataset, typically much
smaller than the original one.

29

Mining association rules

• Once the frequent itemsets and their supports have been
computed (set

⋃
k≥1Ok returned by A-Priori) all association

rules which are based on these itemsets and satisfy the given
confidence requirement can be determined.

• Let minconf be the given confidence threshold. For each
frequent itemset Z , we must determine the set:

{r : Z − Y → Y s.t. ∅ 6= Y ⊂ Z ∧ Conf(r) ≥ minconf}

• Note that each rule in the above set has the same support as
Z , hence it automatically satisfies the support constraint since
Z is frequent. Conversely, rules derived from itemsets which
are not frequent need not to be checked, since they would not
satisfy the support constraint .

30

Mining association rules (cont’d)

• Checking all non-empty subsets Y ⊆ Z as RHS of possible
rules with confidence at least minconf may be too costly. We
exploit a sort of anti-monotonicity property for rules, as we
did for frequent itemsets.

• Anti-monotonicity property for rules. For ∅ 6= Y ′ ⊂ Y ⊂ Z ,
we have:

Supp(Z)

Supp(Z − Y)
≤ Supp(Z)

Supp(Z − Y ′)

• Immediate consequence.

Conf(Z − Y ′ → Y ′) < minconf⇒ Conf(Z − Y → Y) < minconf.

Thus, for each frequent itemset Z it is convenient to check rules

with RHS of progressively increasing size.

31

Algorithm for mining association rules

Let O = set of frequent itemset and their supports

association rule algorithm

Input O, minconf
Output {(r , Supp(r), Conf(r)) : Supp(r) ≥ minsup ∧ Conf(r) ≥ minconf}

R ← ∅
for each Z s.t. |Z | > 1 ∧ (Z , support(Z)) ∈ O do

R ← R ∪ ap-genrules(Z)
return R

32

Algorithm for mining association rules (cont’d)

ap-genrules(Z)

m← 1
HZ ,1 ← {Y ⊂ Z : |Y | = 1 ∧ Supp(Z)/Supp(Z − Y) ≥ minconf}
RZ ,1 ← {(r , Supp(r), Conf(r)) : r : Z − Y → Y , with Y ∈ HZ ,1}
repeat

if (m + 1 = |Z |) then break
m← m + 1
HZ ,m ← apriori-gen(HZ ,m−1)
RZ ,m ← ∅
for each Y ∈ HZ ,m do

if (Supp(Z)/Supp(Z − Y) ≥ minconf)
then add (r : Z − Y → Y , Supp(r), Conf(r)) to RZ ,m

else remove Y from HZ ,m

until HZ ,m = ∅
return

⋃
m≥1 RZ ,m

33

Example

Set O

ITEMSET SUPPORT

A 1/2
B 3/4
C 3/4
E 3/4

AC 1/2
BC 1/2
BE 3/4
CE 1/2

BCE 1/2

Consider ap-genrules(Z), with
Z = BCE and minconf = 3/4. We
have

HZ ,1 = {E ,B}
RZ ,1 = {(BC → E , 1/2, 1),

= (CE → B, 1/2, 1)}

Note that C 6∈ HZ ,1 since
Conf(BE → C) = 2/3 < minconf.

In the first iteration of the repeat, the algorithm computes HZ ,2 = {BE}
thorugh apriori-gen, but then it removes BE from HZ ,2 since
Conf(C → BE) = 2/3 < minconf. Thus, both HZ ,2 and RZ ,2 are empty
at the end of the iteration, and the rules BC → E and CE → B are
returned (with their supports and confidences).

34

Correctness of A.R. algorithm

Theorem (Correctness)

The algorithm for mining association rules is correct

Proof

Let Z be a frequent itemset of size k > 1. By induction on m ≥ 1
we show that the set HZ ,m computed in each iteration of
ap-genrules (first initialized by apriori-gen(HZ ,m−1) and then
suitably pruned in the for-each loop) coincides with the set of
consequents Y ⊂ Z of size m such that Conf(Z − Y → Y) ≥
minconf.

35

Correctness of A.R. algorithm (cont’d)

Proof (cont’d).

• Basis m = 1: trivial

• Induction step. Let us fix m > 1 and assume (inductive
hypothesis) that the property holds up to index m − 1. In
particular, we assume inductively, that HZ ,m−1 coincides with
the set of consequents Y ⊂ Z of size m− 1 such that the rule
r : Z −Y → Y has confidence at least minconf. It is sufficient
to prove that given an arbitrary subset Y ⊂ Z of size m such
that the rule r : Z − Y → Y has confidence at least minconf,
Y is included in the output of apriori-gen(HZ ,m−1). The
argument is similar to the one used to prove correctness of the
frequent itemsets mining algorithm and is left as an exercise.

36

Observations

1 The algorithm for extracting association rules from the
frequent itemsets does not require access to the dataset T
but only to the frequent itemsets and their supports. If the
frequent itemsets are not too many, as one would hope when
the support threshold is properly chosen, avoiding the access
to T may yield substantial performance gains.

2 Let Uin denote the sum of the lengths of the frequent
itemsets, and Uout the sum of the lengths of the returned
association rules (i.e., the length of the union of LHS and
RHS), arguments similar to the one developed for the analysis
of A-Priori can show that the time required by the algorithm
for extracting association rules from the frequent itemsets is
polynomial in Uin and Uout.

37

Exercises

Exercise 1

Argue rigorously that given a family F of itemsets of the same
length, represented as sorted arrays of items, function
apriori-gen(F) does not generate the same itemset twice.

Exercise 2

Consider a dataset T of transactions over a set I of d items and
suppose that there exist M frequent itemsets w.r.t. some support
threshold minsup. Show that A-Priori explicitly computes the
support of at most d + min{M2, dM} itemsets.

Exercise 3

Consider two association rules r1 : A→ B, and r2 : B → C , and
suppose that both satisfy support and confidence requirements. Is
it true that also r3 : A→ C satisfies the requirements? If so,
prove it, otherwise show a counterexample.

38

Exercises

Exercise 4

Let
c1 = Conf(A→ B)

c2 = Conf(A→ BC)

c3 = Conf(AC → B)

What relationships do exist among the c ′i s?

Exercise 5

For a given itemset X = {x1, x2, . . . , xk}, define the measure:

ζ(X) = min{Conf(xi → X − {xi}) : 1 ≤ i ≤ k}.

Say whether ζ is monotone, anti-monotone or neither one. Justify
your answer.

39

Exercises

Exercise 6

Consider the following alternative implementation of procedure
apriori-gen(Fk−1) (regard an itemset X ∈ Fk−1 as an array of
items X [1],X [2], . . . ,X [k − 1] in increasing order):

Ck ← ∅;
for each X ∈ Fk−1 do

for each (i ∈ F1) do
if (i > X [k − 1]) then add X ∪ {i} to Ck

remove from Ck every itemset containing at least

one subset of length k − 1 not in Fk−1
return Ck

Show that the set Ck returned by the above procedure contains all
frequent itemsets of length k .

40

References

LRU14 J.Leskovec, A.Rajaraman and J.Ullman. Mining Massive
Datasets. Cambridge University Press, 2014. Chapter 6.

TSK06 P.N.Tan, M.Steinbach, V.Kumar. Introduction to Data
Mining. Addison Wesley, 2006. Chapter 6.

41

