
An Experimental Set-up For Multi-Robot
Applications ?

Andaç T. Samiloglu1,4, Ömer Çayırpunar2,3, Veysel Gazi2, and A. Buğra
Koku4

1 Baskent University, Mechanical Engineering Department, Bağlıca Kampüsü
Eskişehir Yolu 20. km, Bağlıca, 06810 Ankara, TURKEY.

2 TOBB University of Economics and Technology, Department of Electrical and
Electronics Engineering, Söğütözü Cad., No: 43, Söğütözü, 06560 Ankara, TURKEY.

3 TOBB University of Economics and Technology, Department of Computer
Engineering, Söğütözü Cad., No: 43, Söğütözü, 06560 Ankara, TURKEY.

4 Middle East Technical University, Mechanical Engineering Department, İnönü
Bulvarı, Çankaya, Ankara, TURKEY.

Abstract. The objective of this study is to develop an experimental set-
up for researchers working on multi-robot systems and for educational
purposes in control and robotics courses. The set-up (SwarmCam) con-
sists of mobile robots travelling on a bounded arena, an overhead camera,
a PC for processing the images obtained from the camera to determine
and if necessary, feedback the global positions and orientations of the
robots. We also discuss an experimental application of one of our previ-
ous studies on cyclic pursuit of robots.

1 Introduction

In this study we are motivated by the needs on realistic applications of designed
and simulated swarm behaviors. There are many studies on swarm robotics that
are simulation based and/or performed analytically. However, additional realis-
tic experiments would contribute new insights to these works. Therefore, we de-
signed an experimental set-up to observe the realistic behaviors of robot swarms.
This set-up would also be useful for undergraduate and postgraduate educational
studies on control systems and robotics.

Many robotic swarm applications typically reject any dependency on a global
system such as global positioning. However, if available the global positions
and orientations of the robots can be used for development, debugging, and
monitoring of swarm robot applications. On the other hand, the local information
that a robot may get by its own sensors can be simulated in this set-up, i.e.
the relative positions and orientations of robots in a neighborhood of a robot
can be derived from the global information and sent to the robots. Therefore,
? This work was supported by the Scientific and Technological Research Council of

Turkey (TÜBİTAK) under grant No: 104E170 and by the Turkish Academy of Sci-
ences (TÜBA).

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



the swarm applications utilizing only local information of robots can also be
studied experimentally by just deriving the local information from the global
information. Furthermore, the collective robotic studies which may require global
information can utilize this set-up for experimental validations. Even further, the
information of the positions and orientations of robots can be recorded for later
analysis of the swarm/collective behaviors. One common method of gathering
this information is using the odometer of the robots if it is present (in most of
the relatively simple mobile robots there is no odometer). However, odometry
itself is not a reliable method and odometry errors tend to accumulate over time.
Our system which utilizes an overhead camera to determine the positions and
orientations of the robots, provides a fast development environment of swarm
coordination and control algorithms since it relieves the designer from dealing
with low-level odometric estimation and correction. Since we should deal with
more than one robot, we also had to develop identification methods to find out
which position and orientation belongs to which robot.

There are some studies on the observation of the arena of the swarm by
an overhead camera for behavior analysis [1–4]. However, these studies use over-
head cameras or marker technology for only observing, visualizing, identification,
and/or recording of the behavior/activity of the system. They do not feedback
information to the robots.

On the other hand, there are some studies that utilize the overhead camera
for position feedback to the members of swarm. Hayes and Dormiani-Tabatabaei
used an overhead camera tracking system, combined with a radio LAN among
the robots and an external workstation in [5]. They logged position data during
the trials, reposition the robots between trials, and emulated the range and
bearing sensor signals. Another experimental set-up for robot swarm applications
is described in [6]. The authors develop a middleware solution called DISCWorld
and describe a prototype system where the precise location information of the
robots are extracted by using an overhead camera.

The objective of this study is to build a low cost set-up that can track multi-
ple robots at the same time. In order to allow near-real-time operation, we setup
the system such that position and orientation estimation process time is kept as
short as possible. The built setup is independent of robots used, hence enabling
researchers using different robots may adopt this framework. We also employed
an easy to use software environment (Matlab) to facilitate the use of the pro-
posed setup by various researchers with a rapid learning curve. Matlab is a tool
that engineering students already learn in other courses and it has specialized
functions for image processing and controller development. Therefore, the set-up
is easy to use in senior undergraduate and graduate courses as well.

SwarmCam is a single system consisting of 120x180 cm experimental area,
6 E-puck robots with bluetooth interface, logitech USB camera and Matlab as
the main image processing (and possibly control) development platform. The
positions and orientations of the robots are determined by a labelling system
consisting of three small colored dots on the robots. In addition their ID’s are
determined by a binary coding system consisting of black colored small dots

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



placed on the top of the robots. The system constitutes a very useful platform
for hardware in the loop simulations.

2 The Set-Up Structure

The multi-robot experimental set-up is composed of 6 mobile robots (although
higher number is also possible), a high quality USB webcam, a high speed com-
puter and an arena (see Figure 1).

Fig. 1. Experimental setup consisting of an arena, robots, PC and overhead camera.

The mobile robots in this set-up should be small enough such that high num-
ber of robots may be utilized simultaneously in the experiments. They must have
wireless communication modules like bluetooth, wifi, or zigbee for information
exchange with the computer and each other. The existence of proximity sensors
(IR, US etc.) is preferred for more realistic experiments. In some of our exper-
iments we utilized the E-puck Robot [7]. The E-puck robot is a small (7.0 cm
diameter) mobile robot that has powerful microcontroller dsPIC30 (Microchip,
PIC microcontroller), 2 stepper motors for differential drive, 8 infrared proximity
sensors, bluetooth communication module, and some other sensory units. The
robots are programmed such that they set their motor speeds according to the
commands supplied by the computer via the bluetooth interface. Another option
is to program the robots so that they receive their global position (and/or pos-
sibly the relative positions of the neighboring or all the other robots) and have
their own internal decision making and control. In addition the abject avoidance

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



logic may be integrated on the robots. If the robots have enough proximity sen-
sors (like ultrasonic, infrared sensors) around their body they may utilize the
proximity information of objects (other robots or walls etc.) to avoid collisions.

The overhead camera placed 156 cm above the arena is directly connected
to the computer via USB. An image resolution of 640 × 480 is sufficient for
this set-up considering the arena and the robot sizes. The frames grabbed per
second (fps) is not a main criteria in the selection of the camera since the image
processing unit cannot process more than 3-4 frames per second (the actual robot
detection time is 340 ms for the time being). Therefore, 15 or 30 fps of a camera
is suitable for this set-up. The optical distortions on the vertices effect the system
considerably. Therefore, a camera with high quality lens is essential. We used
the webcam QuickCam Pro9000 (Logitech Europe S.A., European Headquarters
Moulin du Choc CH - 1122 Romanel-sur-Morges) for grabbing the images of the
arena.

The mobile robots move in a bounded arena of size 120×180 cm. The aspect
ratio of the arena is designed to be appropriate with the aspect ratio of the
camera images which is 4:3. The color of the arena is selected as light gray to be
able to distinguish the robot hats from the arena easily. The arena size should be
increased with the same aspect ratio for bigger robots or larger area applications.

The image processing, agent behavior algorithms and communication are all
performed by Matlab (Mathworks Inc., Natick, MA, USA). Matlab is preferred
due to its build in image acquisition and processing toolboxes. Moreover, Matlab
is a very common, easy to use, rapid prototyping environment for engineering
applications and many scientists and students are familiar with Matlab. How-
ever, it is computationally inefficient and might be inappropriate for applications
requiring higher fps rates. Therefore, we are also considering developing a soft-
ware interface with other tools like C#, C++ to have a faster version of the
set-up.

The software of the set-up consists of two main parts, robot tracker and robot
controller. In the robot tracker part the frames of the arena are grabbed and
processed to determine the position, orientation, and identification of the robots.
This information set is supplied to the robot controller part that runs functions
of behavior of robots. The robot controller part transmits the control signals
of the angular and translational speeds to the robots. The resulting angular
and translational speeds of the agents are transferred to the agents via wireless
communication modules (bluetooth for E-puck robots, around 10ms is consumed
per robot to pass the information). The set-up is designed such that one may
utilize only the robot tracker part to obtain and analyze the robot behaviors in
the case of the robot controllers are embedded on the robots.

The main delay in the system occurs due to image processing (around 340ms
per detection of robot pose, orientation, and identification). Therefore, a com-
puter with enough memory to store the images of the arena and high speed
central processing unit would result in better system performances (A double
core 64bit CPU at 2.4 GHz with 2GB RAM is utilized in our experiments). As
mentioned above another option could be to pass the position and orientation

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



information to the robots and let their internal algorithm to calculate the values
of the control inputs. That would better model more decentralized and realistic
applications.

3 Image Processing Setup/Methods

Depending on the application the image processing system can be used to deter-
mine the robot ID’s, the global or relative positions, and/or absolute or relative
orientations of the robots. Determining the positions of the robots from the over-
head images is very simple. However, the problem is to determine which location
belongs to which robot. Therefore, additional methods need to be applied to dis-
tinguish the robots. In our setup robot hats are designed to find the location,
orientations and identification of robots simultaneously. A sample hat is shown
in Figure 2(a). The hat has a diameter of 75mm which is slightly larger than the
diameter of the E-puck robots. Three circles all having the same color (bright
orange) (one placed at the front and the other two placed symmetrically at the
rear) are used to find the locations and orientations of robots and the black
circles are utilized for the identification of robots.

(a) (b)

Fig. 2. (a)A sample robot hat used to find the position, orientation and identity of
robot. (Dimensions are in mm). (b) Three robots in the arena. The colored dots and
the boundaries that other robots should stay out of are shown.

3.1 Determining Robot Locations

First the colored circles are detected in the bitmap images gathered from the
camera. Note that most of the cameras supply compressed form of the images
(i.e. jpg). However, Matlab reads/converts the images in bitmap format which

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



includes all three color information (8 bits) of the images in three dimensional
matrices. A sample configuration of three robots are shown in Figure 2(b).

For distinguishing the colored circles from the rest of the objects in the
image we simply use intervals of the color values. In some applications, we also
utilize the corresponding HSV (Hue-Saturation-Value) images to find the colored
circles. For example, bright purple, bright yellow, and bright green are easy to
distinguish colors in HSV format. We get a bitwise matrix (image) by logical
operations which outputs 1 for the pixel values in the intervals we set for the
Hue, Saturation, and Value (or RGB) of the colors we utilized on the hats and 0
for the other color specifications. In equation (1) the logical operation is shown

A = (H < Im(:, :, 1) < H)&(S < Im(:, :, 2) < S)&(V < Im(:, :, 3) < V ) (1)

where Im is the HSV image of the arena, Im(:,:,i) corresponds to the ith index
of the HSV image matrix (i = 1 is for Hue, i = 2 is for Saturation, and i = 3
is for Value) for all columns and rows (”:” stands for all of pixel indexes). H
and H, S and S, V and V , are the minimum and maximum values of the HSV
values of colored circles, respectively. A is the output bitwise matrix that has
several objects (let us call the clusters of true valued pixels as objects) on it. Note
that there are 8 different logical operations (6 comparison, 2 AND operations)
performed on the matrix Im, however in most of the cases we just need three or
even two of these operations which needs lower computational efforts that are
usually very important in image processing applications. The objects are labelled
according to the 8th neighborhood rule with the build in function of Matlab.
To eliminate the noise in the binary images some post-processing methods like
erosion and dilation may be utilized on the images. The next step is to find the
centers of these objects. A simple center of geometry algorithm is run and the
positions of these center of geometries is kept in memory. Now, the problem is to
find which three points belong to the same robot. For this purpose the distances
between the points are utilized. Simply the closest three ones are said to belong to
the same robot. This approach is simple and fast but, has one drawback which
is when there are robots too close to each other some of the points on these
robots may get mixed up and show nonexisting robots. In Figure 2b, some of
the bounding circles of robots in which other robots should not travel are shown.
It might be also possible to develop a robot identification method which utilizes
the previous positions of the robots to overcome this problem; however, so far
we have not considered such an approach. Moreover, not allowing the robots to
get too close to each other is also good for collision avoidance. This should be
guaranteed by the control algorithm. Following the identification process, the
positions of the three colored circles of each robot are determined. After that,
the positions of the robots are found simply by averaging these three points of
each robot.

3.2 Determining the Robot Orientations

Note that the colored circles are placed such that they form an isosceles triangle.
The vertex on the intersection of the equal edges is called P3 and the remaining

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



two points on the other ends of the equal edges are called P1 and P2 (see Figure
3(a)). The hat is placed such that the vector from the midpoint of the line
connecting the points P1 and P2 to the point P3 is the heading of the robot. The
problem here is to determine which point is P3 (which is also called the heading
point). To determine the identification of points we again utilize the distances
between the points. The geometry (isosceles triangle) allows us to state that the
farthermost point of these three points is the heading point. The remaining two
points P1 and P2 are identified depending on whether they are on the left or right
of the robot. Finding the heading point is sufficient to compute the orientation
of the robot. There is no need to determine whether remaining two points are
on the left or right hand side of the robot. The average of the points P1 and P2

gives the starting point of the orientation vector and P3 is the end point of this
vector. Lastly we compute the unit orientation vector of each robot and store in
the memory.

(a) (b)

Fig. 3. (a) The colored dots that are used to find the position and orientation of a
robot. (b)Speeds of a differential drive robot.

3.3 Determining Robot ID’s

As mentioned above for the position and orientation calculations there is no
need to find whether P1 (or P2) is on the left or right of the robot. However,
it is required for the identification of the robots. The regions on the left and
right of the robots are utilized to place the black dots in the regions and use an
algorithm that checks the number of black dots present in these regions in order
to identify the robots. In Figure 4a the black dot placements are shown for 6
different robot hats.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



(a) (b)

Fig. 4. (a) Robot Identities. (b) Vectors from P1 to P2 and P1 to P3 for two different
cases: P1 is on the left for the left figure and P1 is on the right for the right figure.

At most two black dots are used on the left and right sides of the robots.
Here note that we used two methods simultaneously for the identification: (i) the
location of the black dots (ii) and the number of black dots on these two regions.
It would be easier to identify the robots based only on the number of black dots
without dividing the area into regions (such as one dot = robot 1, six dots =
robot 6 etc). However, in that case one needs to use as many black dots as the
number of robots (i.e., 6 dots for 6 robots). This would result in some problem
due to the size of the robots and resolution of the camera when the number of
robots increases. By adding the method of dividing regions (left and right in our
case) allows us to use less number of black dots (at most 3 for 6 robots) and
larger black dots which will be represented with more/enough number of pixels
in the image. This approach is better when the number of robots is higher. For
example by using 3 dots on each left and right of the regions we can identify 16
(42 = 16) different robots or with 4 dots, 25 (52 = 25) different robots. On the
other hand, increasing the regions of interest (say top and bottom in addition to
left and right-in total 4 regions) will allow one to use less number of larger black
dots with enough spacing. Note that the larger the black dots and the larger the
spacing between them would give better images that one can process. The black
dots are determined in the image matrix similar to the colored ones mentioned
in Section 3.1. This time HSV value intervals are set for black. The only problem
left is to find the left and right regions of the robots.

For determining the regions on the left and right hand side of robots we need
to first find which of the points P1 and P2 are on the left (or right). For this
purpose we will simply utilize the cross products of the vectors from the point
P1 to P2 and P3. If this cross product is negative then P1 is on the right hand
side of the robot (so P2 is on the left) and if it is positive then P1 is on the left

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



hand side while P2 is on the right. The vectors and the global coordinate axes
are shown in Figure 4b. Mathematically speaking

P1 is on the left if sign(
−−−→
P1P2 ×−−−→P1P3) > 0 (2a)

P1 is on the right if sign(
−−−→
P1P2 ×−−−→P1P3) < 0 (2b)

In image processing applications similar to the one discussed here, there are
many factors effecting the performance of the system in achieving the goals.
One of the main disturbances is the non-unique light source. Some low quality
cameras may become very volatile in getting the colored images of the objects.
The color values of the objects may change tremendously such that the values
may not become stable between the pre-specified threshold values in getting the
binary matrices of objects. Therefore, we recommend cameras with auto focus,
adjusting luminance of images, and a qualified lens. Otherwise, one may have
to calibrate the system (the software) before each experiment. The resolution of
the images that we grab from the camera in our setup is 640× 480. One would
prefer to use higher resolutions which would result in better object detections
but with a longer processing time. Image processing time is an important crite-
ria affecting the response time of the system. In fact, the main cause of delays
is slow image processing in most of our applications. Therefore, a high capac-
ity/speed memory and processing units of computers and efficient coding (with
less memory usage, optimized image processing and appropriate variable types)
would result in higher speed.

4 Transmitting Position and Orientation Information

The position and orientation information gathered from the overhead images
of the arena can be used for determining the new translational and angular
speeds of the robots according to the behavioral algorithms/models investigated
in the particular application under consideration. The computing unit (i.e., PC,
Laptop) should pass these new speed setting information to each robot. The
bluetooth interface is utilized in this setup. Each robot is connected to the master
processing unit via bluetooth. However, the bluetooth interface can support at
most 7 slaves at the same time. Therefore, the set-up may work for at most 7
robots. For higher number of robots alternative communication units can be:
Zigbee and wifi.

The robots we utilized are differential drive robots. They have two stepper
motors which can be driven at different speeds. Therefore, speed information
of each motor are transmitted via bluetooth. The mathematical relationship
between the left and right motor speeds and the translational and angular speeds
of the robots can be obtained as

V =
Vright + Vleft

2
=

r

2
(ωR + ωL) ; ω =

Vright − Vleft

L
=

r

L
(ωR − ωL) (3)

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



where V and ω are the translational and rotational speeds of the robot, respec-
tively. Vleft and Vright are the left and right wheel speeds, respectively. L is the
distance between the left and right wheels. The speeds are shown in Figure 3(b).

5 Experimental Examples

Here we describe an experimental result obtained using the set-up described in
the preceding sections. The experiment is performed for testing and verification
of the results in [8] where we had studied analytically and via simulations the
problem of cyclic pursuit of a swarm of agents. In cyclic pursuit the agents are
ordered from 1 to n. Agent i pursues agent i + 1 modulo n. In other words,
the last (nth) agent pursues the first one. In [8] we assumed that the agent dy-
namics are arbitrated by a finite state machine (FSM) with a sequence of the
behaviors: Move towards the pursued agent; Wait for a predetermined time in-
terval; then sense the location of the next agent and move again towards that
agent. As a difference from the procedure in [8] in the experimental applica-
tion the agents were programmed so that they do not stop at the wait state,
they continue to travel at the last velocity and orientation. In [8] we assumed
that each agent has a low-level control which guarantees that the agent reaches
the computed way-point in a finite time. However, for the experimental appli-
cation in this article we had to implement such a low-level controller which will
guarantee that the robot moves between two subsequent way points and had
opportunity to observe low-level dynamics in the resulting behaviors as well. In
[8], the delays and asynchronism were also modelled. We introduced the vari-
ables τi+1(t) which satisfy 0 ≤ τi+1(t) ≤ t in order to represent the delay in
the position measurements. In other words, we assumed that at time t agent i
knows zi+1(τi+1(t)) instead of the actual zi+1(t) about the position of agent i+1
where zi(t) = [xi(t), yi(t)]T ∈ R2, i = 1, 2, ..., n. In other words, zi+1(τi+1(t)) is
the perceived position of agent i+1 by agent i at time t. The difference between
the current time t and the value of the variable τi+1(t) is the delay occurring
due to the sensory, computing and/or communication processes or other reasons.
Moreover, we introduced a set of time indices T i, i = 1, 2, ..., n, at which agent
i updates its way-point zi. The mathematical model of the asynchronous cyclic
pursuit is given by

zi(t + 1) = (1− p)zi(t) + p zi+1(τi+1(t)), t ∈ T i (4)
zi(t + 1) = zi(t), t /∈ T i

where p is the gain satisfying 0 < p < 1. We first studied the convergence
of the positions of a multi-agent system in a cyclic pursuit under synchronism
(τi+1(t) = t) and used these results in the proof of the convergence of the model
with asynchronism and time delays. Numerical simulations were also performed
to verify the theoretical results. In Figure 5a, the paths of 5 agents in cyclic
pursuit obtained in the simulation studies in [8] are shown.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

1

2

3

4

5

100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300

350

400

x [pixels]

y 
[p

ix
el

s]

Path of 5 robots in Cyclic Pursuit

(a) (b)

Fig. 5. (a) The result of simulations for cyclic pursuit rendezvous of 5 robots in our
previous study [8].(b) Path of 5 E-puck robots in cyclic pursuit obtained in the set-up.

In Figures 6 and 5b the results obtained for the cyclic pursuit of 5 E-puck
robots in our set-up are shown. Comparing the Figures 5a and 5b, we observe
that the analytical and simulation based results in [8] are also verified by the
experimental results. The frames at 1, 100, 150, and 195 time steps are shown
in Figure 6. The robots are spread away at the beginning of the simulation.
Each robot follows its leader and travels on spiral like path shown in Figure 6.
At the end they converge to each other. Note that in these video frames there
are additional virtual geometries drawn on and between the robots virtually.
The lines show the connection between the follower and the leader. The colored
dots on the robots show the left, right, and heading points of the robot hats as
mentioned in Section 3.

Fig. 6. Cyclic Pursuit of 5 robots.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550



6 Concluding Remarks

The objective of this study is to develop an experimental set-up for swarm robot
applications. The small sized relatively simple mobile robots called E-puck are
utilized in the set-up for the time being. However, it can be easily used with
other robot platforms as well. The arena is observed by a high quality USB
camera connected to a high speed PC. We perform the image processing works
in Matlab and feedback the positions and orientations of robots to the behavior
algorithms governing the swarm dynamics. The main delays are resulted from
the image processing computations. Further optimization of the algorithms for
faster response of the system is still possible.

We believe that this test bed is a very useful experimental facility which can
be used for testing swarm coordination and control algorithms as well as can be
used in both graduate and undergraduate courses.

References

1. N. Correll, G. Sempo, Y.L.d.M.J.H.J.L.D., Martinoli, A.: Swistrack: A tracking tool
for multi-unit robotic and biological research. Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS) (2006) 2185–2191

2. Lucas P. J. J. Noldus, Andrew J. Spink, R.A.J.T.: Computerised video tracking,
movement analysis and behaviour recognition in insects. Computers and Electronics
in Agriculture 35(2-3) (2002) 201–227

3. Trifa, V., Cianci, C.M., Guinard, D.: Dynamic control of a robotic swarm using
a service-oriented architecture. In: Proceedings of International Symposium on
Artificial Life and Robotics, Beppu, Japan (2008)

4. Fiala, M.: Artag, a fiducial marker system using digital techniques. Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference
on 2 (2005) 590–596 vol. 2

5. Hayes, A., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-
line optimization and demonstration with real robots. Robotics and Automation,
2002. Proceedings. ICRA ’02. IEEE International Conference on 4 (2002) 3900–3905
vol.4

6. Hawick, K.A., James, H.A.: Middleware for context sensitive mobile applications. In:
ACSW Frontiers ’03: Proceedings of the Australasian information security workshop
conference on ACSW frontiers 2003, Darlinghurst, Australia, Australia, Australian
Computer Society, Inc. (2003) 133–141

7. E-puck Robots: E-puck robot specifications. Available from http://www.e-puck.org
(2008)

8. Şamiloglu, A.T., Gazi, V., Koku, A.B.: Asynchronous cyclic pursuit. In et al., S.N.,
ed.: Proc. of 9’th Conference on Simulation of Adaptive Behavior (SAB06). Lecture
Notes in Artificial Intelligence (LNAI) 4095. Springer Verlag, Berlin Heidelberg
(2006) 667–678

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 539-550


