
An Introduction to Robot Component Model for
OPRoS(Open Platform for Robotic Services)

Byoungyoul Song, Seungwoog Jung, Choulsoo Jang, Sunghoon Kim

u-Robot Reserch Division,
Electronics and Telecommunications Research Institute

138 Gajeongno, Yuseong-gu, Daejeon, KOREA
{sby, swjung, jangcs, saint}@etri.re.kr

Abstract. The OPRoS(Open Platform for Robotic Service) is a platform for
network based intelligent robots supported by the IT R&D program of Ministry
of Knowledge Economy of KOREA. The OPRoS technology aims at
establishing a component based standard software platform for the robot which
enables complicated functions to be developed easily by using the standardized
COTS components. The OPRoS provides a software component model for
supporting reusability and compatibility of the robot software component in the
heterogeneous communication network. In this paper, we will introduce the
OPRoS component model and its background.

Keywords: OPRoS, robot component, robot component model, composite
component, port

1 Introduction

The intelligent service robot has gained much attention recently for overcoming the
saturation of the industrial robot market [1]. Most of industrial robots repeat
continuously their jobs in a fixed and static environment. But, intelligent service
robots interact continuously with humans in uncertain and dynamic environment and
they have to perform appropriate tasks for various and many requests from their users
[2]. The past stand-alone robots lacked expandability, compatibility and reusability
because the interfaces between robot software units were not standardized and robot
software modules were too dependent on their hardware devices. For that reason,
developing a new robot has been started from the scratch. While interacting with
humans, the intelligent service robot can provide various services such as
housekeeping, education, entertainment, public services based on the information
technology, the artificial intelligence and the network technology. The intelligent
service robot decides and performs appropriate services for users based on sensor data
from the changing surroundings and the information obtained from the network.
Wherever the intelligent service robots are connected to the network, the user can
control the robot over the network.

In order to be successfully commercialized, the intelligent service robot should
have low manufacturing costs and must be able to provide various intelligent

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

functions such as user recognition and autonomous navigation. But, it is actually hard
that one robot company develops all the complicated functions of the robot from
device driver to recognition software. If there are enough COTS (commercial off-the
shelf) for various functions, it should be easy that a company develops a new robot
product with various and complicated functions.

The OPRoS(Open Platform for Robotic Service) is a platform for network based
intelligent robots supported by the IT R&D program of Ministry of Knowledge
Economy of KOREA. The OPRoS technology aims at establishing a component
based standard robot software platform which enables complicated functions to be
developed easily by using the standardized COTS components. To acheive that goal,
we analyzed the features of robot system as follows.

 Distributed system: There are many computational nodes in a robot system
 Parallel processes: Multi processes on many nodes may execute concurrently.
 Real-time system: Reactiveness of a robot is guaranteed by real-time system
 Event driven system: Publish/subscribe model is used.
 Limited resource: Efficient sharing of limited resources between processes
 Periodic data transfer: Classical control loop - most sensors and actuators

transfer data periodically
 Remote procedure call: High level control is accomplished with the remote

procedure call
Also we defined the key requirements for the OPRoS as follows.

 Easy to use: OPRoS should provide convenience to robot developers. OPRoS
based programming should not be a burden on robot program.

 Robot S/W architecture independent: OPRoS component should not incline
to any specific robot S/W architecture such as SPA (Send-Plan-Action),
subsumption, hybrid and so on. But, it should be possible to implement various
robot S/W architecture using OPRoS components.

 Distributed, but middleware independent: OPRoS should be used in
distributed environments but independent on the using middleware(CORBA,
RPC, PLANET, etc)

 Data Driven Control and Remote Procedure Call: OPRoS should support
data exchange model for the classical control loop and method invocation of
remote component for the high level control.

 Simple, but Expandable: The OPRoS component has to be a single component
form. The larger component should be made by composing components

 Execution Semantics: OPRoS should support various execution semantics such
as Periodic, Dedicated, FSM based stimulus-response and so on.

 Robustness: Fault detection and recovery capability are necessary
 Realtime & QoS: Realtime and QoS supporting are also necessary
Based on these features and requirements, we defined a robot software component

model for the OPRoS.
In this paper, we introduce the OPRoS component model and its features. . First,

the existing research trend about the robot component model will be presented. Next,
we will explain the OPRoS component model in the chapter 3. Finally, a conclusion is
presented in the chapter 4.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

2 Related works

Recently, researches on the component-based robot software development are being
in active progress. This section describes existing researches on robot software
component model.

2.1 RTC

RTC (Robot Technology Component) [3] is the OMG robot software component
standard submitted by AIST of the Japan and RTI of U.S. in the Robotics DTF of
OMG in September 2006. The RTC is composed of execution semantics,
introspection and lightweight RTC. The lightweight RTC is a simple model
containing definitions of concepts such as component, port, and the like. The
execution semantics is extensions to the lightweight RTC to directly support critical
design patterns used in robotics applications such as periodic sampled data processing,
discrete event/stimulus response processing, modes of operation, etc. The
introspection is an API allowing for the examination of components, ports,
connections, etc. at runtime [3].

2.2 OROCOS

The OROCOS (Open Robot Control Software) [4] is initiated with the open source
project for the robot control software development at December 2000. The most of
real-time control applications have been developed on the specific operating system
and was not able to provide the systematic structure for the feed-back control. Of
course, the control system design toolkit like the Simulink [5] exists. However,
because of being applied to the large-scale distributed surroundings and the various
hardware platforms, it has limits of distributed event processing and
synchronous/asynchronous task programming. The OROCOS provides the real-time
toolkit (RTT) in order to develop the various real-time control applications. The
Orocos RTT provides a C++ framework, targeting the implementation of (realtime
and non-realtime) control systems. The Real-Time Toolkit library allows application
designers to build highly configurable and interactive component-based real-time
control applications.

2.3 MIRO

Miro which was developed at Ulm university of Germany is a distributed object
oriented framework for mobile robot control, based on CORBA (Common Object
Request Broker Architecture) technology [6]. MIRO use TAO(The ACE ORB),
which is developed under the aid of ACE, as their ORB. MIRO consists of 3 layers
such as Miro Device layer, Miro Service layer, and Miro Class Framework. Miro
Device layer provides classes, by which low-level control board connected through
the serial link such as CAN bus can be accessed, to upper layers. Miro Service layer
defines service interface for accessing sensors and actuators of robot by using
CORBA IDL, and provides those services as CORBA objects. Miro Service layer is

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

independent of underlying platform while Miro Device layer is dependent. Miro Class
Framework provides functional modules for control of robot such as mapping,
localization, behavior engine, path planning and so on.

3 OPRoS Component Model

The robot components, which can be accessed through their interface, are reusable
and replaceable software modules. The component user uses only the interface which
a component provides, so he doesn't care about the detail implementation of the
component. That is, the component is considered as a black box which anything but
its exposed interfaces need not be known of. Accordingly, the internal embodiment
can be changed freely while its external interfaces remain unchanged.

The robot application is a kind of the combination of the components. And the
component profile which describes the information including characteristics and
external interfaces of a component, and etc. is offered together for the combination.

The OPRoS component has two types. One is the atomic component and the other
is the composite component. The composite component is regarded as an atomic
component with collection of connected components. The atomic component has
several features to support RPC, data flow mechanism and event driven mechanism.
In this chapter, we describe about the OPRoS component, its features and its
development process.

3.1 Atomic Component

In this section, we describe features of the atomic component. The atomic component
should be designed to support development patterns frequently used during the robot
application development in order to provide the usability of the robot component.

When developing a robot, there are two kinds of development pattern. The first
pattern is to invoke the methods or read/write the attributes of a component. The
second is to send and receive data or events each other while performing its own task.

The OPRoS component model supports these two patterns for the developing of
robot components. In the OPRoS component, the method invocation or data / event
exchange is performed through the port between components. There are three types of
ports in OPRoS, which are method port, data port, and event port. The component is
able to have several ports of each when necessary.

Figure 1 depicts the model of the atomic component of OPRoS. Through a method
port, a component invokes the methods and accesses attributes which the other
component provides. On the other hand, data or event can be delivered through a data
port and an event port. Because method invocation and data/event delivery are carried
out through ports, ports of target component should be known in order to interact.
Component container sets up the relations between the ports of components according
to component profiles which describe the required ports and the provided ports of a
component while initiating the component.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

Fig. 1. Atomic component model

OPRoS component model supports the client/server mechanism for control flow
and the publisher/subscriber mechanism for data/event flow. The client/server
mechanism is used in method ports, and the publisher/subscribe mechanism is used in
data/event ports. In the client/server mechanism, a client calls a method of a
component and receives the result of invocation. On the other hand, multiple
publishers can deliver data or event to multiple subscribers in the publisher/subscriber
mechanism.

Lifecycle of a component such as initialization, start, stop, destroy is managed by
the component container. When managing the lifecycle of a component, the
component container notifies the event so that component can allocate or release
resources which component uses. Interfaces between component and component
container are required for this contraction. Besides these interfaces, there are various
interfaces between them such as lifecycle interfaces, port management interface,
property interface, method invocation interface, attribute access interface, data
delivery interface, event management interface.

As the calling component might reside in the different node, the interfaces which
are called by other components should be invoked remotely. The lifecycle of a
component is managed by the lifecycle manager of component container.
Corresponding to each lifecycle API, there are callback methods which are called
when the state of a component is changed such as onInit(), OnStart(), onExecute(),
and so on.

A component has a component profile describing its characteristic. And a
component is comprised of one or more port. A component which is called as a

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

composite component can include the other component inside. The user component to
be developed inherits the base classes of OPRoS component model, and has to be
realized by adding user codes. Figure 2 shows a conceptual class diagram of the
OPRoS component model.

Provided Ports
Input Ports

Required Ports
Output Ports

*

*

*

• getPort, setPort
• getProperty, setProperty
• execute

• onInit/onDestroy
• onStart/onStop
• onSuspend/onResume
• onError/onRecover
• onExecute

1 Component
Profile
(XML)

• init/destroy
• start/stop
• suspend/resume
• error/recover
• execute

Fig. 2. Conceptual class diagram of the OPRoS component model

Each component has method ports for the life cycle management and monitoring as
mandatory. Lifecycle APIs such as init, start, stop, suspend, resume can be called
using the lifecycle method port. And, through the monitoring method port, the state of
a component can be monitored.

3.2 Method Port

The method port is organized by a set of methods which a component provides. A
component user can invoke the method which the method port provides. The required
method port and the provided method port have to be organized by the same method
profile. That is, in Figure 3, the method port A1 of the component A and method port
C1 of the component C have to be comprised of the same method profile.

As to method port, multiple required ports can connect to one provided port. And,
method port uses client/server model in which client invokes the methods provided by
server through the port.

Method port can support two modes: blocking call mode and non-blocking call
mode. In blocking call mode, the component calling a method waits until the result is
returned. But, in non-blocking call mode, the component calling a method of a port
doesn’t wait return value and goes to next operation immediately. This is possible
only when the method has no return value.

The method port is described in the method profile which is a XML file. And the
component development tool analyzes the method profile and automatically produces

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

proxy code for the required port and skeleton code for the provided port. Proxy
performs the role of transmitting a request to the provided port. Skeleton code
receives the request and delegates it to the implementation of the requested method.

- Required Ports : A1, A2, B1, C3
- Provided Ports : C1, C2, D1

Method Port A1

Method Port A2

Method Port B1

Method Port C1

Method Port C2

Method Port C3 Method Port D1

Method profile

Fig. 3. Connections between method ports

Figure 4 depicts an example of producing phase of a provided port. According to
the method profile, many codes such as code for registering each method to the
component, code for interface dispatching, and template code for user-defined
implementation are generated. After user-defined code is completed, every codes and
profiles are compiled and linked to the component package.

Fig. 4. The producing process of a provided port

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

It is supposed that the required port is connected to the corresponding provided
port at runtime. It is possible that corresponding provided ports are those of local
component or remote component. Direct method invocation takes away the control
privilege of component container. Thus, it is treated like a remote one, even if local
component.

3.3 Data Port

The data port is a port for exchanging data. The output data port is used for sending
data, whereas the input data port is used for receiving. The output data ports of a
component can send data to the input data ports with the same data type of other
components. The data port supports the publisher/subscriber model which supports
n:m data transmission. A data port can be a publisher or a subscriber. A publisher
sends data to all registered subscribers. A subscriber can receive data from all
connected publishers. A data port has a queue to store transmitted data whose size is
described in the component profile. Only non-blocking call is possible for sending
data through the data port.

3.4 Event Port

The event port is a port for transmitting events. The received events are processed by
the component container by allocating a thread. The received events are used to
process the FSM(Finite State Machine) associated to the target component.

Whereas the data sent to a component through a data port is queued and processed
later by the component thread, the received events are processed immediately by the
thread allocated by the component container.

The events sent to a component are used only for processing the FSM associated
to the component. When an event is received to a component, the component
container tries to transit the current state to the next state of the FSM based on the
receive event. The states and transition rules of the FSM are described in the
component profile. The component container processes the FSM based on the
description of the component profile. Each state has several transition rules. The FSM
developer should implement the entry action, the exit action and state action of each
state. The entry action is executed when entering the state while the exit action is
executed when exiting the state. The state action is executed during staying the state.

3.5 Composite Component

The composition of components is what assembles several components and makes a
new component. The component including several components in the inside is called
as composite component. The composite component provides the function of
abstracting several components as one component. And, from outside of a composite
component, the interface of each component which is sub-component of the
composite component cannot be accessed, but the interface which the composite
component allows can only be accessed. If the interface of the composite component
is called, the composite component calls the interface of sub-components and returns

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

the result. That is, the composite component abstracts the complicated interfaces of
interior components and provides the simple interfaces to outside.

There are some ways of composing component; the first is a connection-oriented
composition, the second is hierarchical composition, and the last is hybrid
composition combining former two ways. Figure 5 shows the hybrid combination
mixing the hierarchic composition and the connection-based composition. The
OPRoS component model supports the hybrid combination. The top level
composition is connected based on the connection-based configuration, and top-level
component can be a composite component or an atomic component.

a composite componean atomic component

Fig. 5. Hybrid composition

3.6 State transition of a component

A component has a state which is managed by the component container. Figure 6
shows the state transition diagram of a component.

Instance creation

CREATED

instance deletion

STOPPED

stop

SUSPENDED

suspend

stop

resume
stop

RUNNING

start

error

recover

ERROR

READY

init

execute

Fig. 6. State transition diagram of an OPRoS component

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

A component becomes CREATED state after the instance of a component is
created. In the CREATED state, if the init() method of a component successes, the
state changes to READY in which the execution of a component is ready. In the
READY state, if the start() function is called, the state changes to the RUNNING
state where the execution of a component is possible. In the RUNNING state, if the
suspend() function is called, it goes to the SUSPENDED state where the execution of
a component is suspended for some time. If the resume() method is called out from
the SUSPENDED state, it is transmitted to the RUNNING state again. In the
RUNNING state, if an error occurs and the error() function is called out, the
component state transits with the ERROR state. And if the recover() function is called
from the ERROR state when the error is recovered, the state becomes READY state.
In RUNNING, SUSPENED, and the ERROR state, it goes to the STOPPED state if
the stop() function is invoked. And the component instance can be removed from the
STOPPED state.

3.7 OPRoS component classes structure

Figure 7 shows the UML class diagram of OPRoS component. It shows relations of
component base class (IComponent) and other classes (IDataPort, IMethodPort, etc)

Fig. 7. OPRoS component classes’ diagram

The OPRoS component consists of IComponent which is a component itself,

IDataPort which supports data flow, IMethodPort which enables RPC call and
IDataConnection which provides protocol-independent communications. All user
components inherit component base class IComponent and register their method ports
which inherit IMethodPort and data ports which inherit IDataPort. The component
container makes some data connections between components in runtime.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

3.8 OPRoS component development process

Figure 8 shows the component development process under the OPRoS environment.
The OPRoS component environment is consist of a component editor, a robot
simulator, a component composer and a component container.

Fig. 8. OPRoS component development process

The component editor helps a developer make an atomic component. If a developer

makes a profile for his component, the component editor generates base sources of the
component with the profile. The component composer helps a developer make a
composite component by exploring the component repository.

The robot simulator helps a developer combine a virtual robot and test the robot in
virtual environment. Through this simulation function, the component editor and
component composer can debug their components.

When components are made completely, the component editor or the component
composer deploys those components to the component container installed in a robot.

The component container loads and executes components deployed and the robot
operates tasks or gives services based on deployed components.

4 Conclusion

In this paper, we described the OPRoS component model which provides the
component based robot software development model for interoperable, portable and
reusable robot applications in distributed, heterogeneous environments. The OPRoS

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

component supports the method port for RPC model, the data port for dataflow model
and the event port for event-driven model.

We are developing a component container and a component IDE including a
component composing tool and a simulation tool for the OPRoS component.

We expect the OPRoS component model can contribute to cost reduction and rapid
prototyping of robot development. In the future work, we will develop fault detection
and recovery technology, real-time QoS supporting technology, remote debugging
and monitoring technology.

Acknowledgments. This work was supported by the IT R&D program of MKE/IITA.
[2008-S-030-01, Development of RUPI-Client Technology].

References

1. Seung-Ik, Lee. , Choul-Soo, Jang., Sung-Hoon, Kim. , Myung-Chan, Roh., Beom-Su, Seo.:
Issues and Implementation of a URC Home Service Robot. 16th IEEE International
Conference on Robot & Human Interactive Communication, KOREA (2007)

2. Seung-Ik, Lee., Sung-Hoon, Kim., Woo-Young, Kwon., Joong-Bae, Kim.: uFlow: A
Service-Oriented Task Modeling Architecture for Home Service Robots. The 12th IASTED
International Conference on Robotics and Applications, Hawaii, USA (2006)

3. The Robotic Technology Component Specification. OMG Adopted Specification, ptc/06-11-
07 (2006)

4. OROCOS, http://www.orocos.org/
5. Simulink, http://www.mathworks.com/
6. Miro Manual, Version 0.9.4, Jan 10 (2006)
7. Blum S, A.: From a corba-based software framework to a component based system

architecture for controlling a mobile robot. Lecture notes in computer science. vol. 2626, pp.
333--344 (2003)

8. Cabrera-Gamez, J., Dominguez-Brito, A., Hernandez-Sosa, D.: Coolbot: A component-
oriented programming framework for robotics. Lecture notes in computer science. vol. 2238,
pp. 282--304 (2000)

9. Sukhatme G, S., Matarik M, J.: Robots: intelligence, versatility, adaptivity. Communications
of the ACM. vol. 45, issue 3, pp. 30--32 (2002)

10. Seung-Woog, Jung., Seung-Ik, Lee., Sung-Hoon, Kim.: The study on the RUPI client
integrated software platform. vol. 25, issue 4, pp. 22--29 (2008)

11. Seung-Woog, Jung., Seung-Ik, Lee., Sung-Hoon, Kim.: The study on the robot software
platform for network robots. vol. 26, issue 4, pp.382-47 (2008)

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 592-603

