
Robotics, Computer Science curricula and
Interdisciplinary activities

J. Arlegui1 , E. Menegatti2, M. Moro2, A. Pina1,

1 Public University of Navarra, Dept. of Psychology and Pedagogy & Math and Computer

Engineering
31006 Pamplona, Spain,

{arleguip,pina}@unavarra.es
2 Univ. of Padova, Dept. of information Engineering

35131 Padova, Italy
{emg, mike}@dei.unipd.it

Abstract. In this paper, we present four examples of how to use robotics to
foster student learning of complex Computer Science concepts. We propose to
use Robotics not as a subject on its own, but as a tool for teaching/learning
purposes. Following the examples presented in this paper, we discuss several
ideas about Computer Science curricula, inter-disciplinary activities and
teaching-learning methodologies.

Keywords: Robotics, Constructivism, Computer and Information Science
Education, NXT.

1 Introduction

The 2005 ACM Computing curricula report [6] presents a reasoned guide to the
topics in the different kinds of computer science degree programs they are proposing.
Among the computing and non-computing topics, we find that learning these topics
could be reinforced by the use of Robotics as a learning tool (especially for Computer
Architecture and Organization, Software design & development, Mathematical
foundations and Interpersonal communication). In this work, we are focusing on
Robotics not as the field of study, but as a tool to teach other subjects in a computer
science curricula (or more in general, in scientific curricula). From the point of view
of innovation in the computer Science Curricula, Denning and McGettrick point out
that “The first challenge is to embed the foundational practices of innovation into the
curriculum, so that students learn innovation by doing…..The intention is that
innovation should become an essential aspect of their attitude of mind….”[7]. The
curricula in computer science (an other disciplines) should innovate, using for
example “learning by doing” formula and should re-think the Theory-Practice
equilibrium during the 3/4/5 years study of a degree (and maybe offer topics like
Robotics in the first year, with a “Learning by Doing” approach). To carry out this
kind of curricula innovation, we need to deeply revise methodological issues [8][9].
From our didactical experience, we see that an adequate educational use of robots in

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

computer science can promote a proactive learning and a cooperating work by groups
(defining the right group problems to be solved and leaving the groups to evolve
themselves); and this has to deal with methodological issues. Even if these aspects are
not discussed in this paper, the authors are working under a theoretical
constructivism/connectionism background and with enquiry based or group project
based approaches. This is the approach followed in the TERECoP project (Teacher
Education on Robotics-Enhanced Constructivist Pedagogical Methods,
http://www.terecop.eu/). The main goal of the project is to develop a framework for
secondary-level teacher education courses in order to enable teachers to implement a
robotics-enhanced constructivist learning in school classrooms [1][2][10]. At the
same time, the authors of this work at the University of Padua have a long-term
experience in RoboCup, one of the most important robotics competitions
[http://www.robocup.org/]. The University of Padua since 1997 has a RoboCup team
composed of master students and organizes competitions like the Seventh RoboCup
International Competitions and Symposium in 2003 (Padua, Italy [3]). The activity of
coordinating and guiding several teams of students in building and programming the
autonomous soccer robots gave us the possibility to understand how a practical
realization of a robot can contribute to stimulate the students’ interest and skills in
ICT related technologies (and other non computing abilities). Two examples of
robotic projects not related to soccer but realized by students previously involved in
our RoboCup team can be found in [4] and [5]. In this paper we present four examples
of possible implementations of interdisciplinary activities for Computer Science
curricula using robotics as a tool.

The paper organization is as follows. In Sec. 2 we describe the robotic platform we
selected for implementing the proposed didactical experiences. In Sec. 3, 4, 5 & 6 we
present examples in the typical computer science field (thread synchronization and
multitasking. analytical vs numerical approaches applied to the robot self-location
problems, sorting problems, and a simple implementation of the Turing machine). At
the end some conclusions and reflections are outlined.

2 Needed/Wanted features for the robotic platform

We considered different robotic platforms that could fulfill some requirements like to
allow programming with different paradigms & levels, to offer many degrees of
complexity (to be able to be used in pre-university levels) or to remain simple but
with significant possibilities of expansion . Our final choice was the NXT LEGO
technology, because it fullfills the previous requirements and moreover it is possible
to start working with it almost immediately (no electrical or other hardware or
software arrangements are necessary). Another advantage of the NXT LEGO
technology we are interested in is the different programming languages and
programming environments available. For instance, with the NXT LEGO is possible
to use the original LEGO graphical programming environment NXT-G, or the C-like
NXC or the Java based LeJOS-NXJ. Moreover, one has the possibility to use several
operating systems and/or platforms (URBI, Universal Real-time Behavior Interface,

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

for Windows, Mac OS X, Linux or NXT-Symbian running on Symbian 6.0 Java-
enabled mobile phones).

3 An example in Synchronization & Multitasking (Operating
Systems topic)

3.1 Objectives

Multitasking and Synchronization are fundamental concepts in courses like:
Operating Systems, Advanced/Concurrent Programming, Real-time Programming. A
deep comprehension of the reasons of introducing multitasking can be achieved only
running simulated or real examples of simultaneous tasks, particularly when they
show interferences and synchroniza-tion/communication needs. Robotics can provide
a real environment where the need of multitasking is easily shown by means of simple
multi-behavioral examples.

3.2 Carrying out the experience

The NXT robot is constructed as a basic “tribot”, a cart with two independent
driven wheels and a caster wheel on the rear. This enables to turn left or right
applying different powers to the two motors. A third motor moves up and down an
arm: this action is independent from the turning motion. Three sensors are connected:
one light sensor directed to the ground, one sound sensor, and one touch sensor
enabling the user to provide an asynchronous signal.

Three robot behaviors are programmed into the robot. The first behavior is the so
called line follower: the robot follows the edge of a thick black line by swinging left
to right and vice-versa depending on the reading of the brightness sensor. (figure 1).
The robot follows clockwise the internal edge of the line by turning left when the
brightness is over a certain threshold, and by turning to the right when the reading is
under the threshold. For this first behavior, the controlling program is a infinite loop
with a switch, based on the light sensor, between the two described motion
commands.

The second behavior is to lower the robot arm for a certain number of seconds
when a loud sound (e.g. a beat of hands) is detected. Also this behavior can be
implemented with an infinite loop. The code of these two loops on their own is
straightforward and not particularly significant, therefore we do not present it in
detail. However, if one wants to activate both behaviors at the same time, a simple
solution could be to insert the body of the two loops above in sequence as the body of
a single loop.

LoopUntil(FOREVER) { // “Sequential” solution
 if (LightSensor(IN_PORT_3) > THRESHOLDLIGHT)
 { “turn left” } else { “turn right” }

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

 if (SoundSensor(IN_PORT_2) > THRESHOLDSOUND)
 { “arm down” “wait” “arm up” }}

Figure 1 & 2. Scenario for the first example & defining 3 threads in NXT-G

Running the program, the robot shows very effectively the non controlled

interaction between the two behaviors that arises. If the “wait” before the “arm up”
command is of several seconds the robot will not turn left when crossing the black
line (because the processing of the brightness sensor is delayed) and the robot will
exit from the circuit stripe, failing its main behavior of line following.

This negative interference can be avoided allowing two different tasks to control
separately the two behaviors, provided that some form of time sliced scheduling is
implemented in the run time environment, as in the case of NXT. Next code allows to
verify a correct multitasking behavior for the robot (the scheduler actually maintains
active both tasks).

// “Multitasking” solution
Task followLine() {
 LoopUntil(FOREVER) {
 “Follow line code”
 }
Task Arm() {
 LoopUntil(FOREVER) {
 “arm down up code”
 } }

Now, think to add a third behavior to stop the robot when the touch sensor is
pressed. This lead to the need of a synchronized solution where the two controlling
loops are exited in specific points as soon as possible after the touch sensor has been
pressed (using common synchronization variables, see code & figure 2).

Task followLine() {// with synchronization
 LoopUntil(LOGIC, Var(toExit, READ), FALSE){}
 // wait initial synchronization
 LoopUntil(LOGIC, Var(toExit, READ), TRUE)
 {“Follow line code”}
 // main loop exited when the variable is true
 Move (OUT_PORT_BC, STOP, BRAKE);
 // stop definitely
 Var(exit1, WRITE, TRUE); // ended signal
}
Task Arm() {
 LoopUntil(LOGIC, Var(toExit, READ), FALSE){}
 // wait initial synchronization
 LoopUntil(LOGIC, Var(toExit, READ), TRUE)

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

 {“arm down up code”}
 // main loop exited when the variable is true
 Var(exit2, WRITE, TRUE); // ended signal
}
Task StopRobot() {
 Var(exit1, WRITE, FALSE); // init variables
 Var(exit2, WRITE, FALSE);
 Var(toExit, WRITE, FALSE);
 WaitUntil(TOUCHSENSOR, IN_PORT_1, PRESSED);
 // wait for touch sensor pressed
 LoopUntil(LOGIC,
 And(Var(exit1, READ), Var(exit2, READ)), TRUE){}
 // wait for two tasks completion
 Move (OUT_PORT_A, FORWARD, 30, DEG, 50, BRAKE);
 Move (OUT_PORT_A, BACK, 30, DEG, 50, BRAKE);
// a final event, the arm moves up/down for 50 degr ees}

3.3 Analysing the results

The usefulness of both multitasking and synchronization is made evident with
simple robotic experiments that manifest concurrency problems, when present, in
quite natural manner. We used these examples during 3rd year Computer Science
Engineering degree in Operating Systems topic.

4 Analytical vs Numerical solution of a self-positionning problem

4.1 Objectives

A common problem in robotics is to permit the robot to calculate its current
position with respect to a given 2D Cartesian reference using its sensors’ data.
Powerful robots can perform this calculation with sufficient precision thanks to
complex sensors like cameras, lasers or sonars and some landmarks. In NXT the only
basic sensor giving a sufficient degree of precision is the sonar sensor able to return
its distance from an obstacle within a reasonable range (less than 2.5 m) with a
precision of +/- 3 cm.

If the robot knows its distance, namely d1 and d2, from two obstacles, it can be
easily shown that the position of the robot is given by one of the two the intersection
of the two circumferences centered in each one of the two obstacles and with radius r1
and r2 respectively equal to d1 and d2. This analytical solution may be problematic in
case of NXT because its run-time allows only integer calculation. This suggests to
examine a different approach that calculate the position through subsequent
approximations.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

4.2 Carrying out the experience

The setup of the experiment includes a tribot with the sonar sensor mounted on the
third motor making possible an horizontal exploration, two narrow obstacles put on
known positions in front of the robot and a target point (figure 3). Assuming that all
other objects (or walls) within the angle of observation are more distant than a
minimum, the obstacles are identifiable when the sensor gives distances significantly
less than that minimum or simply they are the closest objects in the surrounding
world.

Figure 3 & 4. Scenario for the second example & its “geometric” solution

Given (x1, y1), (x2, y2) and (Xr, Yr) respectively the coordinates of the two obstacles

and the unknown coordinates of the robot, and r1 and r2 the two distances returned
from the sonar sensor, the analytical solution is given by:







=−−+−

=−−+−

0)()(

0)()(
2

2
2

2
2

2

2
1

2
1

2
1

ryyxx

ryyxx

To simplify the calculation, one of the two equations can be substituted by their
difference:

0=++ CByAx









+−−+−=

+−=
+−=

2
2

2
1

2
2

2
1

2
2

2
1

21

21

22

22

rryyxxC

yyB

xxA

which is the equation of the so called radical axis, the set of all points equidistant
from the two obstacles. We must then calculate the solutions:

02

)222()1(

2
1

2
1

2
112

2

1122

2
2

=−++++

+−+++

ryx
A

C
x

A

C

y
A

B
x

A

BC
y

A

B
y

Knowing a priori that Yr is less than min(y1, y2), this allows to choose the correct
solution between the two ones calculated from the previous equation Xr is then
obtained from Yr and the axis equation.

The second method starts with a first approximation of the solution given by:

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21










=

+=

2

),(min
2

21

21 yy
Ys

xx
Xs

The area of interest is divided into four convergence areas denoted in the figure
with the letters L (left), O (over), R (right), B (below) that recall the relative position
of the approximation (later on called AP) with respect to the final solution (the
intersection of the two circles, later on called SOL). The following rules are applied
(say d1=d(AP, O1) and d2=d(AP, O2) the distance of AP from respectively obstacles 1
and 2):
o AP is in L if d1<r1 and d2>r2 ⇒ increase Xs

o AP is in R if d1>r1 and d2<r2 ⇒ decrease Xs

o AP is in O if d1<r1 and d2<r2 ⇒ decrease Ys

o AP is in B if d1>r1 and d2>r2 ⇒ increase Ys

o AP≡SOL if d1=r1±ε1 and d2=r2±ε2

When the calculated distance of AP from the two obstacles coincides to the

corresponding radius, apart from a small resolution imprecision (given by ε1 and ε2),
AP represents the final solution (implemented in NXC, http://bricxcc.sourceforge.net/nbc).

The first part of the program must detect the two obstacles and to measure their
distance from the robot exploring the space with the sonar head.

Got the two distances in the r1 and r2 variables, the calculation of the analytical
solution is straightforward even it presents some difficulties (no floating point
computations, no sqrt function available, etc…). For these reasons the terminating
condition is evaluated on the square of di and ri previously calculated and avoiding the
square root calculation. In fact it results (a similar relation stands also for d2 and r2):

d1=r1±ε1 ⇒ d1
2=r1

2+ε1
2±2r1ε1 ⇒ d1

2-r1
2=ε1

2±2r1ε1

Considering the limitation of the sonar sensor, a value of 1 as the minimum for ε1
(and ε2) is reasonable: when such a value is approached, you obtain: |d1

2-r1
2|=|1±2r1|

The ‘numerical’ solution appears a bit simpler and more understandable:
// calculate the square of the distances
r1=r1*r1;
r2=r2*r2;
// first approximation
xr=(x1+x2)/2;
if (y1<y2) yr=y1/2;
else yr=y2/2;
// loop to converge to the solution
do {
 // square of the approximated distances
 // from the two obstacles
 d1=(x1-xr)*(x1-xr)+(y1-yr)*(y1-yr);
 d2=(x2-xr)*(x2-xr)+(y2-yr)*(y2-yr);
 // update the approximation on the basis of
 // the area of proximity (see explanation above)
 if ((d1<r1) && (d2<r2)) yr=yr-1;
 else if ((d1>r1) && (d2>r2)) yr=yr+1;
 else if ((d1<=r1) && (d2>=r2)) xr=xr+1;

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

 else if ((d1>=r1) && (d2<=r2)) xr=xr-1;
 // evaluate the approximation
 if (d1>=r1)
 conf1=1+2*r1;
 else
 conf1=2*r1-1;
 if (d2>=r2)
 conf2=1+2*r2;
 else
 conf2=2*r2-1;
 d1=abs(d1-r1);
 d2=abs(d2-r2);
}
while ((d1>conf1) || (d2>conf2));

Given the calculated position in Xr and Yr, the code to reach a target position
requires to know the ratio between the angle performed by the motors connected to
the wheels and the linear movement of the robot. The rest of the code presumes this
knowledge and, apart this important detail, it is straightforward and not presented in
detail. An implementation in NXT-G has been also done even though it gives a very
large and not so easily understandable program.

4.3 Analysing the results

NXT is enough powerful to support a rather difficult task like self-positioning,
even with evident limitations. The analytical solution requires a knowledge about 2D
analytical geometry which is common for an engineer student. The proposed solution
shows the differences between the two approaches and makes the students appreciate
the suitability of the numerical approach.

5 Sorting

5.1 Objectives

Apart from their practical applications, sorting algorithms are a wide class of
interesting examples for studying complexity.

Figures 5 & 6. The special “tribot” used for selection sort & sorting 4 items

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

We chose two of them, selection and heap sort, as representative respectively of
the O(n2) and O(n log n) subclasses, because of their relatively simple
implementations with NXT. The detailed theory of these algorithms are out of the
scope of this presentation and it can found in any book on fundamentals of data
structures and algorithms (for instance in [11]). Moreover the heap sort NXT
implementation is still under development, so we limit ourselves to the description of
the selection sort implementation.

5.2 Carrying out the experience

For this example the robot is the usual tribot with two motorized wheels, plus a
motorized rotating arm used to shift items laterally (fig. 5). Limiting ourselves to the
standard sensors included in a kit, we decided to sort objects on their brightness, so
we used a light sensor to measure the reflected light of gray colored paper labels
glued on the items to be sorted.

One of the initial decisions was to select a physical characteristic we could use to
provide values to be compared during the sorting. Limiting ourselves to the standard
sensors included in a kit, we decided to use a light sensor to measure the reflected
light of gray colored paper labels glued on the items to be sorted. The robot moves
back and forth along one of the side of a black strip on which n items with different
gray labels on the top are initially put on predefined positions along a straight line but
in a random order. When the robot moves the light sensor, mounted on the robot on
the same side of the rotating arm, can read the grey level of each label (fig. 6, with 4
items). The robot makes n passages: during each passage it reads all the n positions
looking for the item with the lightest label. When found, it (possibly) comes back to it
and activates the rotating arm to shift the item: this action corresponds to the
‘selection’. Even if it is not shown, you can imagine that the shifted item drops down
on a slide so that, one by one, the sorted items are enqueued in the decreasing order.
The black strip has the lowest gray level and therefore the absence of an item
previously shifted is recognizable.

5.3 Analysing the results

The more meaningful result of this experiment is the ‘live’ quadratic behaviour of
the robot which makes actually n2 light readings to complete the task. This can be
easily put in relation with the two nested cycles in the code.

int i, j, count, n, found, max, read;
task main()
{
 SetSensorLight(IN_1);
 n = 4;
 for (i = 1; i <= n; i++) { // external cycle
 max = 0;
 found = 0;
 for (j=1; j <= n; j++) { // internal cycle
 RotateMotor (OUT_BC, 40, 360); // go forth
 read = Sensor(IN_1);
 if (read > max) {

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

 // new max
 found = j;
 max = read;
 }}
 // back to max
 RotateMotor (OUT_BC, 40, ((found-n)*360));
 RotateMotor (OUT_A, 40, 360); // select item
 // back to start
 RotateMotor (OUT_BC, 40, -(found*360));
 }}

6 A Turing machine

6.1 Objectives

A Turing machine (TM) is a well known computer theory model to study function
computability [12]. Formally is a model of computation controlled by a finite state
machine equipped with a read/write head on a unbounded sequential tape: depending
on the current state and the symbol read on the tape, the machine can change its state,
write a new symbol onto the tape, and move the head to the left or right. When for
each couple (state, symbol) the specified action is unique, the machine is
deterministic (DTM), non-deterministic (NTM) otherwise; due to the theoretical proof
of equivalence between a DTM and a NTM, in the following we talk simply to TM
referring to DTM. In the proposed experiment, we implemented a didactical TM (with
one-direction tape, an alphabet of 2 symbols and 2 possible states) performing integer
additions with operands encoded with short bit streams. In our case the necessary
limitations are represented by a binary alphabet and a tape with a limited number of
slots.

6.2 Carrying out the experience

The read/write head of the simulated TM is a car able to shift LEGO blocks: some
blocks are put on predefined positions that represent the limited number of slots of the
simulated tape. Each block can be shifted on one of two positions which represent the
binary value assigned to the slot; the current position is ‘read’ using the sonar sensor
(fig. 7 and 8).

Figure 7 & 8. The Turing car & the car moving and “writing”

The problem to solve in this experiment with the TM is to perform an add function
on integer values. A value i is represented by a sequence of i bit 1, whereas a sum

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

expression of two values is the concatenation of the two coded value separated by one
0. For instance: 111=3, 11111=5, 111011=3+2.

The rules the TM must apply are summarized in the following table; the initial
state is 0 and the slots contain the expression sequence to be evaluated. The number
of necessary slots can be estimated in reason of the input expression and the sum
value, padding to the right with zeros, at least one terminating zero, the initial
sequence if shorter than such a number.

Current state Input read symbol Next state Symbol to be written Tape (i.e. car) direction

0 0 0 0 >

0 1 1 1 >

1 0 2 1 >

1 1 1 1 >

2 0 3 0 <

2 1 2 1 >

3 0 ERR -- --

3 1 4 0 >

4 0 END -- --

4 1 END -- --

With 7 slots, an input 1110110 is elaborated as follows (underlined the slot under

reading, in square brackets the state):
[0] 1110110 – [1] 1110110 – [1] 1110110 – [1] 1110110 – [2] 1111110 – [2]

1111110 – [2] 1111110 – [3] 1111110 – [4] 1111100

6.3 Analysing the results

TM is a very general computation model over which a teacher can deal with a large
variety of interesting problems. Its simple definition and elegant power can be
appreciated when you see the TM car simulating it. Our implementation can be easily
modified to study and implement different resolving algorithms.

7 Conclusions

Using different approaches for programming the robot, it is possible to introduce in an
easy way advanced programming skills and motivate the students to examine and
exploit complex models and programming paradigms.
Topics and experiences presented in this paper were related to computer science at
university levels, but robots as “learning tools" can be exploited by also teachers from
different disciplines and from previous education levels, as demonstrated by other
examples developed in the TERECoP project framework. Guiding examples must be
used as suggestions to teachers to prepare their own experiences taking into account
their specific didactical objectives, the initial competence of their classrooms, the

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

operative environment. In any case, it is important to use adequate methodologies, to
coordinate/integrate the activities within the curricula and with the other colleagues.
In the next months we have to deal with the practical and organization issues to apply
these issues at high school and university levels.

Acknowledgments. This paper was partly based on work done in the frame of the
project “Teacher Educations on Robotics-Enhanced Constructivist Pedagogical
methods” (TERECoP) funded by The European programme
Socrates/Comenius/Action 2.1, Agreement Nº 128959-CP-1-2006-GR-COMENIUS-
C21 2006-2518/001-001 S02.

References

1. Alimisis D. et al, 2007. Robotics & Constructivism in Education: the TERECoP project. In
Proceedings of the 11th European Logo Conference (http://www.eurologo2007.org/, 19 -
24 August, Bratislava, Slovakia)

2. Arlegui J. et al, 2007. Los entornos LEGO y LOGO en robótica educativa. In Proceedings
of EDUTEC 2007 (Latin American conference on Education & Tecnology,
http://www.utn.edu.ar/edutec200), October 2007, Buenos Aires (in Spanish)

3. Enrico Pagello, Emanuele Menegatti, Daniel Polani, Ansgar Bredenfel, Paulo Costa,
Thomas Christaller, Adam Jacoff, Martin Riedmiller, Alessandro Saffiotti, Elizabeth Sklar,
Takashi Tomoichi RoboCup-2003: New Scientific and Technical Advances AI Magazine,
American Association for Artificial Intelligence (AAAI) Volume 25, Num. 2, Summer
2004, pp. 81-98

4. E. Menegatti, A. Pretto, A. Scarpa, A. Tellatin, S. Tonello, A. Lastra, A. Guatti An
interactive robotic sculpture EUROBOT 2006 Workshop on Educational Robotics, Acireale
(ITALY), June 2006

5. A. Lastra, P. Alberti, E. Menegatti Experimentations on advanced robotics for academic
education EUROBOT 2006 Workshop on Educational Robotics, Acireale (ITALY), June
2006

6. Computing Curricula: 2005 Overview Report (The Joint Task Force for Computing
Curricula 2005, http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf),
ACM, AIS & IEEE-CS.

7. Peter J. Denning and Andrew McGettrick. Recentering Computer Science. Communications
of the ACM, November 2005/Vol. 48, No. 11.

8. Harel, I. and Papert S., Constructionism, Learning by Design, and Project-based Learning,
2001. In M. Orey (Ed.), Emerging perspectives on learning, teaching, and technology.
Available Website: http://www.coe.uga.edu/epltt/LearningbyDesign.htm

9. Loidl S. et a : Preparatory Knowledge: Propaedeutic in Informatics, in Proceeding of ISSEP
2005: pp. 104-115, Klagenfurt, Austria.

10. Alimisis P.: Designing Robotics-Enhanced Constructivist Training for Science and
Technology Teachers: the TERECoP Project, Proceedings of ED-MEDIA 2008-World
Conference on Educational Multimedia, Hypermedia & Telecommunications, p. 288-293,
Vienna, Austria.

11. Goodrich M. T., Tamassia R., Data Structures and Algorithms in Java, 4th edition, Wiley
& Sons, 2006.

12. J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages and
Computation, 3d Ed., Addison-Wesley, 2007.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 10-21

