Robotics, Computer Science curriculaand
Interdisciplinary activities

J. Arlegut , E. Menegatfi M. Mord?, A. Pind,

1 Public University of Navarra, Dept. of Psycholagyd Pedagogy & Math and Computer
Engineering
31006 Pamplona, Spain,

{arleguip,pina@unavarra.es
2 Univ. of Padova, Dept. of information Engineering
35131 Padova, Italy

{emg, miké@dei.unipd.it

Abstract. In this paper, we present four examples of howde robotics to
foster student learning of complex Computer Sciermeepts. We propose to
use Robotics not as a subject on its own, but amlaféor teaching/learning
purposes. Following the examples presented inghjser, we discuss several
ideas about Computer Science curricula, inter-gisgry activities and
teaching-learning methodologies.

Keywords: Robotics, Constructivism, Computer and InformationieSoe
Education, NXT.

1 Introduction

The 2005 ACM Computing curricula report [6] preseatreasoned guide to the
topics in the different kinds of computer scienegre programs they are proposing.
Among the computing and non-computing topics, wel fihat learning these topics
could be reinforced by the use of Robotics as mieg tool (especially for Computer
Architecture and Organization, Software design &velepment, Mathematical
foundations and Interpersonal communication). lis thork, we are focusing on
Robotics not as the field of study, but as a todietach other subjects in a computer
science curricula (or more in general, in scientifurricula). From the point of view
of innovation in the computer Science CurriculanbBieag and McGettrick point out
that “The first challenge is to embed the foundaigoractices of innovation into the
curriculum, so that students learn innovation byinda...The intention is that
innovation should become an essential aspect af dtitude of mind...."[7]. The
curricula in computer science (an other discipljnebould innovate, using for
example “learning by doing” formula and should hék the Theory-Practice
equilibrium during the 3/4/5 years study of a degfand maybe offer topics like
Robotics in the first year, with a “Learning by Dgl approach). To carry out this
kind of curricula innovation, we need to deeplyisevmethodological issues [8][9].
From our didactical experience, we see that anwatecqeducational use of robots in

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

computer science can promote a proactive learmidgaacooperating work by groups
(defining the right group problems to be solved deaving the groups to evolve
themselves); and this has to deal with methodofdgssues. Even if these aspects are
not discussed in this paper, the authors are wgrkimder a theoretical
constructivism/connectionism background and witlquéry based or group project
based approaches. This is the approach followetidnTERECOP project (Teacher
Education on Robotics-Enhanced Constructivist Pegiagl Methods,
http://www.terecop.eu/). The main goal of the pebjis to develop a framework for
secondary-level teacher education courses in dodenable teachers to implement a
robotics-enhanced constructivist learning in scholalssrooms [1][2][10]. At the
same time, the authors of this work at the Univgref Padua have a long-term
experience in RoboCup, one of the most importanbotios competitions
[http://www.robocup.org/]. The University of Padsimce 1997 has a RoboCup team
composed of master students and organizes coropstilike the Seventh RoboCup
International Competitions and Symposium in 2008d{l, Italy [3]). The activity of
coordinating and guiding several teams of studentaiilding and programming the
autonomous soccer robots gave us the possibilityriderstand how a practical
realization of a robot can contribute to stimultiie students’ interest and skills in
ICT related technologies (and other non computibgit@s). Two examples of
robotic projects not related to soccer but realibgdstudents previously involved in
our RoboCup team can be found in [4] and [5]. s gaper we present four examples
of possible implementations of interdisciplinarytiaities for Computer Science
curricula using robotics as a tool.

The paper organization is as follows. In Sec. 2describe the robotic platform we
selected for implementing the proposed didactigpkeences. In Sec. 3, 4,5 & 6 we
present examples in the typical computer sciengld fithread synchronization and
multitasking. analytical vs numerical approachegliag to the robot self-location

problems, sorting problems, and a simple implentemtaf the Turing machine). At

the end some conclusions and reflections are eatlin

2 Needed/Wanted featuresfor therobotic platform

We considered different robotic platforms that cofullfill some requirements like to
allow programming with different paradigms & level® offer many degrees of
complexity (to be able to be used in pre-universiyels) or to remain simple but
with significant possibilities of expansion . Oundl choice was the NXT LEGO
technology, because it fullfills the previous raguients and moreover it is possible
to start working with it almost immediately (no eiecal or other hardware or
software arrangements are necessary). Anotherntapy@ of the NXT LEGO
technology we are interested in is the differenbgpamming languages and
programming environments available. For instandé) the NXT LEGO is possible
to use the original LEGO graphical programmingiemment NXT-G, or the C-like
NXC or the Java based LeJOS-NXJ. Moreover, onghlmpossibility to use several
operating systems and/or platforms (URBI, UnivelRahl-time Behavior Interface,

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

for Windows, Mac OS X, Linux or NXT-Symbian runnirgn Symbian 6.0 Java-
enabled mobile phones).

3 An example in Synchronization & Multitasking (Operating
Systems topic)

3.1 Objectives

Multitasking and Synchronization are fundamentahcapts in courses like:
Operating Systems, Advanced/Concurrent Programnitieg)-time Programming. A
deep comprehension of the reasons of introducingjtesking can be achieved only
running simulated or real examples of simultanetasks, particularly when they
show interferences and synchroniza-tion/commurdoatieeds. Robotics can provide
a real environment where the need of multitaskinggisily shown by means of simple
multi-behavioral examples.

3.2 Carrying out the experience

The NXT robot is constructed as a basic “tribot”cat with two independent
driven wheels and a caster wheel on the rear. €hables to turn left or right
applying different powers to the two motors. A thimotor moves up and down an
arm: this action is independent from the turningiom Three sensors are connected:
one light sensor directed to the ground, one saewbkor, and one touch sensor
enabling the user to provide an asynchronous signal

Three robot behaviors are programmed into the robiod first behavior is the so
called line follower: the robot follows the edgeathick black line by swinging left
to right and vice-versa depending on the readinthefbrightness sensor. (figure 1).
The robot follows clockwise the internal edge of fine by turning left when the
brightness is over a certain threshold, and byirigrto the right when the reading is
under the threshold. For this first behavior, tbhatolling program is a infinite loop
with a switch, based on the light sensor, betweles two described motion
commands.

The second behavior is to lower the robot arm faerain number of seconds
when a loud sound (e.g. a beat of hands) is dete&kso this behavior can be
implemented with an infinite loop. The code of thesvo loops on their own is
straightforward and not particularly significanhetefore we do not present it in
detail. However, if one wants to activate both hédra at the same time, a simple
solution could be to insert the body of the twogs@bove in sequence as the body of
a single loop.

LoopUntil(FOREVER) { // “Sequential” solution
if (LightSensor(IN_PORT_3) > THRESHOLDLIGHT)
{“turn left” } else { “turn right” }

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

if (SoundSensor(IN_PORT_2) > THRESHOLDSOUND)
{“arm down” “wait” “arm up” }}

ET g —— " . - [o/x]

Figure 1 & 2. Scenario for the first example & adfig 3 threads in NXT-G

Running the program, the robot shows very effettivithe non controlled
interaction between the two behaviors that arifethe “wait” before the “arm up”
command is of several seconds the robot will not teft when crossing the black
line (because the processing of the brightnessosessdelayed) and the robot will
exit from the circuit stripe, failing its main behar of line following.

This negative interference can be avoided alloviimg different tasks to control
separately the two behaviors, provided that somm fof time sliced scheduling is
implemented in the run time environment, as indage of NXT. Next code allows to
verify a correct multitasking behavior for the rolfthe scheduler actually maintains
active both tasks).

/I “Multitasking” solution
Task followLine() {
LoopUntil(FOREVER) {
“Follow line code”

}
Task Arm() {
LoopUntil(FOREVER) {
“arm down up code”

1}
Now, think to add a third behavior to stop the molbden the touch sensor is
pressed. This lead to the need of a synchronizkdi®o where the two controlling
loops are exited in specific points as soon asiplesafter the touch sensor has been
pressed (using common synchronization variablescede & figure 2).
Task followLine() {// with synchronization
LoopUntil(LOGIC, Var(toExit, READ), FALSE){}
/I wait initial synchronization
LoopUntil(LOGIC, Var(toExit, READ), TRUE)
{“Follow line code"}
/I main loop exited when the variable is true
Move (OUT_PORT_BC, STOP, BRAKE);
/I stop definitely
Var(exitl, WRITE, TRUE); // ended signal

}
Task Arm() {
LoopUntil(LOGIC, Var(toExit, READ), FALSE){}
/I wait initial synchronization
LoopUntil(LOGIC, Var(toExit, READ), TRUE)

Workshop Proceedings of SIMPAR, 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

{*arm down up code”}
/I main loop exited when the variable is true
Var(exit2, WRITE, TRUE); // ended signal

}
Task StopRobot() {
Var(exitl, WRITE, FALSE); // init variables
Var(exit2, WRITE, FALSE);
Var(toExit, WRITE, FALSE);
WaitUntil(TOUCHSENSOR, IN_PORT_1, PRESSED);
/I wait for touch sensor pressed
LoopUntil(LOGIC,
And(Var(exitl, READ), Var(exit2, READ)), TRUE){}
/l wait for two tasks completion
Move (OUT_PORT_A, FORWARD, 30, DEG, 50, BRAKE);
Move (OUT_PORT_A, BACK, 30, DEG, 50, BRAKE);
/I a final event, the arm moves up/down for 50 degr ees}

3.3 Analysing the results

The usefulness of both multitasking and synchrditinais made evident with
simple robotic experiments that manifest concuryepmblems, when present, in
quite natural manner. We used these examples d@ridgyear Computer Science
Engineering degree in Operating Systems topic.

4 Analytical vs Numerical solution of a self-positionning problem

4.1 Objectives

A common problem in robotics is to permit the roltotcalculate its current
position with respect to a given 2D Cartesian eiee using its sensors’ data.
Powerful robots can perform this calculation withffigient precision thanks to
complex sensors like cameras, lasers or sonars@nd landmarks. In NXT the only
basic sensor giving a sufficient degree of preaisgothe sonar sensor able to return
its distance from an obstacle within a reasonabl@ge (less than 2.5 m) with a
precision of +/- 3 cm.

If the robot knows its distance, namely d1 and fd2n two obstacles, it can be
easily shown that the position of the robot is giby one of the two the intersection
of the two circumferences centered in each onbefwo obstacles and with radius r1
and r2 respectively equal to d1 and d2. This aiallysolution may be problematic in
case of NXT because its run-time allows only integ@culation. This suggests to
examine a different approach that calculate theitipas through subsequent
approximations.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

4.2 Carrying out the experience

The setup of the experiment includes a tribot \lia sonar sensor mounted on the
third motor making possible an horizontal explaratitwo narrow obstacles put on
known positions in front of the robot and a targeint (figure 3). Assuming that all
other objects (or walls) within the angle of obsgion are more distant than a
minimum, the obstacles are identifiable when thesee gives distances significantly
less than that minimum or simply they are the dbs#bjects in the surrounding

world.

L
i

X) |
x1 Xs x2

Figure 3 & 4. Scenario for the second example &gesometric” solution

Given (%, Y1), (X2, ¥2) and (X%, Y,) respectively the coordinates of the two obstacles
and the unknown coordinates of the robot, andnd s the two distances returned
from the sonar sensor, the analytical solutiorivergby:

(x - X1)2 +(y - Y1)2 - r12 =0
(x - X2)2 +(y - Y2)2_ r22 =0

To simplify the calculation, one of the two equasocan be substituted by their
difference:
Ax+By +C=0
A=-2x +2X,
B=-2y, +2y,
(-\’:)(12 _X22 +y12 _yg _r12 +r22
which is the equation of the so called radical attie set of all points equidistant
from the two obstacles. We must then calculatestetions:

B? BC B
yz(ﬁ"‘l) + Y(ZF"'ZXlK‘Zyl) +
2
+%+2X1%+X12 + 3/12 _r12 =0

Knowing a priori that Y; is less than mingy y»), this allows to choose the correct
solution between the two ones calculated from thevipus equation Xis then
obtained from Yand the axis equation.

The second method starts with a first approximatibtine solution given by:

Workshop Proceedings of SIMPAR, 2008

Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

_ X1+ x2
2
ve = Min (y,y,)
2

The area of interest is divided into four convexe@reas denoted in the figure
with the letters L (left), O (over), R (right), B€low) that recall the relative position
of the approximation (later on called AP) with respto the final solution (the
intersection of the two circles, later on calledL$Orhe following rules are applied
(say d=d(AP, Q) and d=d(AP, Q) the distance of AP from respectively obstacles 1
and 2):
o APisinL if d<r; and g>r, = increase X
o AP isin R if d>r; and d<r,= decrease X
o APisin O if d<r, and d<r, = decrease ¥
o AP isinBif d>r; and d>r, = increase Y
o AP=SOL if di=rixe; and d=ryte,

Xs

When the calculated distance of AP from the twotadles coincides to the
corresponding radius, apart from a small resolutioprecision (given by, ande,),
AP represents the final solution (implemented inQ\ Kitp://bricxcc.sour cefor ge.net/nbc).

The first part of the program must detect the twstacles and to measure their
distance from the robot exploring the space withgbnar head.

Got the two distances in the rl and r2 variables,dalculation of the analytical
solution is straightforward even it presents soniificdlties (no floating point
computations, no sqrt function available, etc...)r Bwese reasons the terminating
condition is evaluated on the square odiald 1 previously calculated and avoiding the
square root calculation. In fact it results (a samielation stands also fog dnd b):

d1=rli-£1 = d12=r12+€121'2r181:> dlz-r12=812i2r181

Considering the limitation of the sonar sensoralue of 1 as the minimum fay
(ands,) is reasonable: when such a value is approacledolytain: |¢f-r,%|=|12r,|

The ‘numerical’ solution appears a bit simpler amate understandable:

/I calculate the square of the distances

rl=rl*rl;

r2=r2*r2;

/I first approximation

xr=(x1+x2)/2;

if (y1<y2) yr=y1/2;

else yr=y2/2;

/I loop to converge to the solution

do {

/I square of the approximated distances

/l from the two obstacles
d1=(x2-xr)*(X1-xr)+(y1-yr)*(y1l-yr);
d2=(x2-xr)*(x2-xr)+(y2-yr)*(y2-yr);

/I update the approximation on the basis of

I the area of proximity (see explanation above)
if ((d1<rl) && (d2<r2)) yr=yr-1;

else if ((d1>rl) && (d2>r2)) yr=yr+1;

else if ((d1<=rl) && (d2>=r2)) xr=xr+1;

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

else if ((d1>=rl) && (d2<=r2)) xr=xr-1;
/I evaluate the approximation
if (d1>=r1)

confl=1+2*r1,;
else

confl=2*r1-1;
if (d2>=r2)

conf2=1+2*r2;
else

conf2=2*r2-1,;
dl=abs(d1-rl);
d2=abs(d2-r2);

\}Nhile ((d1>confl) || (d2>conf2));

Given the calculated position in,>and Y, the code to reach a target position
requires to know the ratio between the angle pevéar by the motors connected to
the wheels and the linear movement of the robot st of the code presumes this
knowledge and, apart this important detail, ittrightforward and not presented in
detail. An implementation in NXT-G has been alsm@l@ven though it gives a very
large and not so easily understandable program.

4.3 Analysing theresults

NXT is enough powerful to support a rather diffictdsk like self-positioning,
even with evident limitations. The analytical sautrequires a knowledge about 2D
analytical geometry which is common for an engirstadent. The proposed solution

shows the differences between the two approacltesnaikes the students appreciate
the suitability of the numerical approach.

5 Sorting

5.1 Objectives

Apart from their practical applications, sortinggalithms are a wide class of

Figures 5 & 6. The special “tribot” used for selentsort & sorting 4 items

Workshop Proceedings of SIMPAR, 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

We chose two of them, selection and heap sortepiesentative respectively of
the O(n2) and O(n log n) subclasses, because oaif tredatively simple
implementations with NXT. The detailed theory oédk algorithms are out of the
scope of this presentation and it can found in bagk on fundamentals of data
structures and algorithms (for instance in [11])orkbver the heap sort NXT
implementation is still under development, so weitliourselves to the description of
the selection sort implementation.

5.2 Carrying out the experience

For this example the robot is the usual tribot wilo motorized wheels, plus a
motorized rotating arm used to shift items latgréfig. 5). Limiting ourselves to the
standard sensors included in a kit, we decidedtbabjects on their brightness, so
we used a light sensor to measure the reflectdd tff gray colored paper labels
glued on the items to be sorted.

One of the initial decisions was to select a plaisiharacteristic we could use to
provide values to be compared during the sortingniting ourselves to the standard
sensors included in a kit, we decided to use a kgimsor to measure the reflected
light of gray colored paper labels glued on thengeto be sorted. The robot moves
back and forth along one of the side of a blaclp sin which n items with different
gray labels on the top are initially put on prededl positions along a straight line but
in a random order. When the robot moves the ligiiser, mounted on the robot on
the same side of the rotating arm, can read the lgkel of each label (fig. 6, with 4
items). The robot makes n passages: during eacagast reads all the n positions
looking for the item with the lightest label. Whsmund, it (possibly) comes back to it
and activates the rotating arm to shift the iteims taction corresponds to the
‘selection’. Even if it is not shown, you can imagithat the shifted item drops down
on a slide so that, one by one, the sorted item®aqueued in the decreasing order.
The black strip has the lowest gray level and tloeeethe absence of an item
previously shifted is recognizable.

5.3 Analysing the results

The more meaningful result of this experiment s 1ive’ quadratic behaviour of
the robot which makes actually n2 light readingsdoonplete the task. This can be
easily put in relation with the two nested cycleshie code.

inti, j, count, n, found, max, read;

task main()

SetSensorLight(IN_1);
n=4;
for (i = 1; i <= n; i++) { // external cycle
max = 0;
found = 0;
for (j=1; j <= n; j++) { // internal cycle
RotateMotor (OUT_BC, 40, 360); // go forth
read = Sensor(IN_1);
if (read > max) {

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

/I new max
found = j;
max = read;

/I back to max

RotateMotor (OUT_BC, 40, ((found-n)*360));
RotateMotor (OUT_A, 40, 360); // select item
/I back to start

RotateMotor (OUT_BC, 40, -(found*360));

B

6 A Turing machine

6.1 Objectives

A Turing machine (TM) is a well known computer thegonodel to study function
computability [12]. Formally is a model of compudat controlled by a finite state
machine equipped with a read/write head on a untedisequential tape: depending
on the current state and the symbol read on thes tap machine can change its state,
write a new symbol onto the tape, and move the hedte left or right. When for
each couple (state, symbol) the specified actionumque, the machine is
deterministic (DTM), non-deterministic (NTM) otheisg; due to the theoretical proof
of equivalence between a DTM and a NTM, in thedfelhg we talk simply to TM
referring to DTM. In the proposed experiment, welemented a didactical TM (with
one-direction tape, an alphabet of 2 symbols apds&ible states) performing integer
additions with operands encoded with short bitastre. In our case the necessary
limitations are represented by a binary alphabdtamape with a limited number of
slots.

6.2 Carrying out the experience

The read/write head of the simulated TM is a cde &t shift LEGO blocks: some
blocks are put on predefined positions that remtetbe limited number of slots of the
simulated tape. Each block can be shifted on one@fpositions which represent the
binary value assigned to the slot; the currenttfwosis ‘read’ using the sonar sensor
(fig. 7 and 8).

g = Fa{EPEE LR

Figure 7 & 8. Te Turing car & the car moving anditing”

The problem to solve in this experiment with the ©&Mo perform an add function
on integer values. A value i is represented bycuaece of i bit 1, whereas a sum

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

expression of two values is the concatenation®fwo coded value separated by one
0. For instance: 111=3, 11111=5, 111011=3+2.

The rules the TM must apply are summarized in tiwing table; the initial
state is 0 and the slots contain the expressioneseg to be evaluated. The number
of necessary slots can be estimated in reasoneofnut expression and the sum
value, padding to the right with zeros, at lease derminating zero, the initial
sequence if shorter than such a number.

Current state Input read symbol Next state Symbol to be written Tape (i.e. car) direction

0 0 0 0 >
0 1 1 1 >
1 0 2 1 >
1 1 1 1 >
2 0 3 0 <
2 1 2 1 >
3 0 ERR -- --
3 1 4 0 >
4 0 END

4 1 END

With 7 slots, an input 1110110 is elaborated aevied (underlined the slot under
reading, in square brackets the state):

[0] 1110110 — [1] 1110110 — [1] 1110110 - [1] 11101~ [2] 1111110 — [2]
1111110 -[2] 1111110 -[3] 1111110 - [4] 1111100

6.3 Analysing the results

TM is a very general computation model over whigdhacher can deal with a large
variety of interesting problems. Its simple defmit and elegant power can be
appreciated when you see the TM car simulatinQut. implementation can be easily
modified to study and implement different resolvalgorithms.

7 Conclusions

Using different approaches for programming the tpib@ possible to introduce in an

easy way advanced programming skills and motivaée students to examine and
exploit complex models and programming paradigms.

Topics and experiences presented in this paper weémted to computer science at
university levels, but robots as “learning toolghde exploited by also teachers from
different disciplines and from previous educatiewdls, as demonstrated by other
examples developed in the TERECOP project framew@tkding examples must be

used as suggestions to teachers to prepare thaiegperiences taking into account
their specific didactical objectives, the initiabrapetence of their classrooms, the

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

operative environment. In any case, it is importanise adequate methodologies, to
coordinate/integrate the activities within the @uta and with the other colleagues.
In the next months we have to deal with the prataénd organization issues to apply
these issues at high school and university levels.

Acknowledgments. This paper was partly based on work done in taen& of the
project “Teacher Educations on Robotics-Enhanceds@octivist Pedagogical
methods” (TERECOP) funded by The European programme
Socrates/Comenius/Action 2.1, Agreement N° 1289B91€2006-GR-COMENIUS-
C21 2006-2518/001-001 S0O2.

References

1. Alimisis D. et al, 2007. Robotics & ConstructivismEducation: the TERECOoP project. In
Proceedings of the 11th European Logo Conferendp:/{aww.eurologo2007.org/, 19 -
24 August, Bratislava, Slovakia)

2. Arlegui J. et al, 2007. Los entornos LEGO y LO&®robdtica educativa. In Proceedings
of EDUTEC 2007 (Latin American conference on Edugati& Tecnology,
http://www.utn.edu.ar/edutec200), October 2007, Bsehires (in Spanish)

3. Enrico Pagello, Emanuele Menegatti, Daniel Fipl@msgar Bredenfel, Paulo Costa,
Thomas Christaller, Adam Jacoff, Martin Riedmilletegsandro Saffiotti, Elizabeth Sklar,
Takashi Tomoichi RoboCup-2003: New Scientific anahirécal Advances Al Magazine,
American Association for Artificial Intelligence @Al) Volume 25, Num. 2, Summer
2004, pp. 81-98

4. E. Menegatti, A. Pretto, A. Scarpa, A. Tellat®, Tonello, A. Lastra, A. Guatti An
interactive robotic sculpture EUROBOT 2006 WorksloopEducational Robotics, Acireale
(ITALY), June 2006

5. A. Lastra, P. Alberti, E. Menegatti Experimeitas on advanced robotics for academic
education EUROBOT 2006 Workshop on Educational Rosoficireale (ITALY), June
2006

6. Computing Curricula: 2005 Overview Report (The tlolask Force for Computing
Curricula 2005, http://www.acm.org/education/curviols/CC2005-MarchO6Final.pdf),
ACM, AIS & IEEE-CS.

7. Peter J. Denning and Andrew McGettrick. Recemge@omputer Science. Communications
of the ACM, November 2005/Vol. 48, No. 11.

8. Harel, I. and Papert S., Constructionism, Leayry Design, and Project-based Learning,
2001. In M. Orey (Ed.), Emerging perspectives oarieng, teaching, and technology.
Available Website: http://www.coe.uga.edu/epltt/treagbyDesign.htm

9. Loidl S. et a : Preparatory Knowledge: Propa#@dén Informatics, in Proceeding of ISSEP
2005: pp. 104-115, Klagenfurt, Austria.

10. Alimisis P.: Designing Robotics-Enhanced Consivist Training for Science and
Technology Teachers: the TERECoP Project, ProcesdafgE D-MEDIA 2008-World
Conference on Educational Multimedia, Hypermedia &e€ommunications, p. 288-293,
Vienna, Austria.

11. Goodrich M. T., Tamassia R., Data StructuresAdgdrithms in Java, 4th edition, Wiley
& Sons, 2006.

12. J.E. Hopcroft, R. Motwani, J.D. Ullman, Introtion to Automata Theory, Languages and
Computation, 3d Ed., Addison-Wesley, 2007.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp. 10-21

