
Algorithm, Pseudo-Code and Lego Mindstorms
Programming

Anthi Karatrantou1, Chris Panagiotakopoulos2

1 ASPAITE Patras, Greece, a.karatrantou@eap.gr

2 University of Patras, Greece, Dept of Primary Education, cpanag@upatras.gr

Abstract. This paper presents a pilot study which investigated the way
prospective primary school teachers handled the process of converting an
algorithm - pseudo-code to a program while working with the programming
environment of the Robolab programming tool of Lego Mindstorms.
Participants had to program the behavior of a Lego robotic construction, using
appropriate worksheets, analyzing the problem given, designing algorithms
composing pseudo-codes and constructing programs in the Robolab
environment. Observation of the participants’ work showed that they handled
all of the aforementioned processes productively and without any difficulties.
They composed the algorithms easily in every step, they used the natural
language to make the pseudo-codes and they converted them to a program in a
simple manner. Participants found the activities very interesting from a
pedagogical perspective.

Keywords: Lego Mindstorms, algorithm, pseudo-code, constructivism, ICT in
education.

1 Introduction

Research from the past decade has shown that Lego Mindstorms is a powerful
educational kit, suitable for teaching introductory science concepts, technology, and
programming [1], [2], [3]. Especially for Robolab the programming environment, it
has been suggested that this is better for children first attempt at learning to program
rather than for serious programmers who want to program robots using high-level
languages [1]. The use of the Lego Mindstorms also allows students to learn and have
fun at the same time while working within a motivational environment [4].

The exploitation of the Lego Mindstorms in education falls in step with the concept
of constructivist learning [5], [6] and the constructionist educational philosophy [7]
[8]. Papert has mentioned that constructionism is built on the assumption that children
will do best by finding for themselves the specific knowledge they need; organized or
informal education can help most by making sure they are supported morally,
psychologically, materially, and intellectually in their efforts [8]. These theories argue
that children are much more motivated for learning when they can explore the world
that surrounds them in a natural way [9]. In a constructionist environment, students

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

act like “real-world” scientists, inventors and engineers. So, as a result, students are in
much closer contact with the truly important ideas of science and engineering. They
do not simply learn facts, equations, and techniques. They learn a way of thinking
critically and systematically about problems, and especially in view of the fact that
they learn about the problem-solving process itself [8]. In contrast with the traditional
learning environments, the constructivist approach provides tools, which allow
children to build their own knowledge. In constructivism, children are explorers of
knowledge rather than simple receivers of knowledge. Such a tool is the Lego
Mindstorms educational kit, too [10].

On the other hand, computational thinking is a fundamental skill for everyone, not
just for computer scientists [11]. However, computer programming is a difficult
process [12]. Beyond knowing the syntax of a programming language, this cognitive
process requires several skills [13].

In this work small groups of prospective primary school teachers utilized Lego
Mindstorms and were asked to complete a number of successive activities using
appropriate working sheets. They had basic knowledge on the use of Microsoft
Windows but no programming knowledge. Each group was asked to solve a specific
problem, working in a constructivist environment, composing the pseudo-code
expressing the algorithm for the solution of the problem and finally programming
Lego brick, verifying every time their program until the solution of the problem was
completed. Their responses were observed and recorded every time during the
process, in order to study:

(a) The way they converted the algorithm/pseudo-code to a serious program into
the Robolab environment.

(b) The way they worked with the environment of Lego Mindstorms.

2 Pseudo-code and Algorithm

An algorithm is a set of precise rules that specify how to solve a problem or perform a
task. The study of algorithms is at the core of computer science. Algorithms are
essential to the way computers process information, because a computer program is
basically just an algorithm that tells computers what specific steps to perform, and in
what sequence, in order to carry out a specified task [14] [18].

Definitions of the term “algorithm” often require that the problem be solved in a
finite number of steps. However, algorithms include procedures and it may be
difficult to determine whether the algorithm successfully completed its task.
Algorithms can be expressed in a variety of ways. Very simple algorithms can be
stated using ordinary sentences in any human language. These and more complex
algorithms can be shown schematically with flow charts. Programming languages and
“pseudo-code” can be used to express complex algorithms [17].

A review of the literature easily confirms that there are a lot of definitions for the
meaning of “pseudo-code”. It is difficult to define what pseudo-code is exactly [14],
but from all definitions it can be concluded that pseudo-code is an outline of a
program, written in a form of spoken language using common words that can easily
be converted into real programming statements. It is a technique for describing a

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

computer program by using more general wording rather than the specific syntax and
keywords of a programming language [18]. Pseudo-code cannot be compiled nor
executed, and there is no real formatting or syntax rules. In other words, pseudo-code
aims to fill the gap between the informal (spoken or written) description of the
programming task and the final program (code) that can be executed or at least
automatically converted into an executable form [15]. Pseudo-code has some
advantages over ordinary human language in specifying algorithms with precision in
their structure and generality. It derives its name from the fact that it resembles the
source code of widely used programming languages [17].

In general, students are faced with difficulties when they work with basic
algorithmic structures, as well as with the variables in programming [16] [13] [18].
The students’ ability to construct or to understand an algorithm depends on their
ability to construct a system of representation. One of these systems is pseudo-code.
In general, since students can express their thoughts in various representing systems
they can make connections between concrete, intuitional and symbolic knowledge
[19]. So, the ability of every one to compose a pseudo-code (expressing an algorithm)
for an activity is important, even for everyday life activities.

3 Lego Mindstorms and Robolab

The Lego kit includes hundreds of lego pieces, wheels, lamps, input sensors of
various kinds, the programmable RCX (Remote Command System) brick, an infrared
transmitter that establishes a wireless link between the computer and the RCX and a
visual programming environment. All these permit the construction of programmable
robots with remarkably sophisticated behavior [1].

Robolab is the visual programming environment (built upon the graphical
programming language of LabVIEW) that enables the user to create programs using
icons representing all the basic programming structures, commands and data types
composing flow charts. One of the basic advantages of such programming languages
is that the syntax details that students have to use, are limited, resulting in a teaching
approach of the programming that is oriented to the algorithm development as well as
to the development of students' critical thinking.

4 Methodology

The sample consisted of 9 fourth-year, female students, prospective primary school
teachers, who worked in three separate groups with three students per group. Their
average chronological age was 22 years (st.d. = 0.7 years). The participating students
had already completed the course requirements for their degree and were waiting to
graduate from the Dept of Primary Education of University of Patras, in Greece. The
research took place in the beginning of June 2008, at the Computers and Educational
Technology Laboratory (CETL) of the Department of Primary Education of the
University of Patras (Greece).

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

The sample was able to work with a computer using Microsoft Windows and the
Microsoft Office suite of programs. They also were experienced in using the
computer as a teaching tool for searching information and as a platform for
educational software aimed at the primary school level. They had no programming
knowledge. Lego Mindstorms had been exhibited, in the framework of a course
entitled “Computers and Education” one year earlier (during their 3rd year of studies),
without the active involvement of the students.

Every group worked together with two experimenters for two sequential sessions
of two hours each. Starting with the first session, about thirty minutes was spent in
order to discuss with each group about Lego Mindstorms and the way they operated.
The experimenters asked subjects to touch and inspect for a while one Lego RCX
brick, with two motors (an assembled car).

After this, their work was supported by 6 worksheets, corresponding to 6 discrete
steps. The two experimenters were watching carefully the subjects’ work, keeping
notes without intervening unless they were asked to help or until the experimenters
decided it was necessary. So, the subjects in each group worked in collaboration in
order to accomplish their mission. Their mission each time was based on the
programming of the car’s behaviour, since they had composed the algorithm/pseudo-
code for this. The six steps with the corresponding problems for solution and the
questions made were as follows:
1. Can you describe a sequence of steps in order to move the car forward for a

specific time interval and then to stop it? Can you describe a sequence of steps in
order to move the car forward for a specific time interval, to stop it for a specific
time interval, to move again backward for a specific time interval and then to
stop it?

2. Can you describe a sequence of steps in order to move the car forward for a
random time interval (between 0 - x seconds) and then to stop it? Can you
describe a sequence of steps in order to move the car forward for a random time
interval (between 0 - x seconds), to stop it for a specific time interval, to move it
backward for a random time interval and then to stop it?

3. Can you describe a sequence of steps in order to turn the car around (in the same
direction) for a specific time interval and then to stop it? Can you describe a
sequence of steps in order to turn the car around (in the same direction) for a
random time interval (between 0 – x seconds) and then to stop it? Can you
describe a sequence of steps in order to turn the car around (in the same
direction) for a random time interval (between 0 – x seconds), after this to turn it
round again but to the opposite direction for a random time and then to stop it?

4. Mount a light sensor on the car. Place the car on different locations in the Lab.
Keep writing the different values of the light sensor. Keep writing again the
different values of the light sensor when a white or a black paperboard is been
placed about 15-25 centimetres in front of the car. Keep writing the value of the
light sensor without any paperboard in front of the car.

5. The car is stopped. Can you describe a sequence of steps in order to move the car
forward when a black paperboard is been placed in front of the sensor and not
responding when a white paperboard is been placed in front of the sensor ?

6. The car is stopped in the middle of a “circle” of white and black paperboards,
each one 20 centimetres width (Figure 1). On the car a light sensor and a green

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

lamp are mounted. Can you describe a sequence of steps in order to turn the car
around for a random time (between 0 – x seconds), then to stop it and if a black
paperboard is placed in front of the car then the green lamp should turn on,
otherwise if a white paperboard is placed in front of the car then nothing should
happen?

Fig. 1. The “circle” of white and black paperboards.

For each one of the six steps, subjects had to:
(a) Make the appropriate algorithm - think and write on a paper sheet the sequence

of actions in their natural language (a pseudo-code) in order to describe the
algorithm.

(b) Convert the pseudo-code to a program using RoboLab, in order to verify the
algorithm made and to program the car.

Every time, the subjects could see the result of their program and could make it
again and again, if necessary, trying to find out the correct solution.

When the educational activity was finished, a discussion took place based on a set
of questions (semi-structured group interview), in order to evaluate the whole
procedure and explore subjects’ attitudes with regards to:

(a) The use of pseudo-code in programming.
(b) The programming in Lego Mindstorms environment.
(c) The conversion of a pseudo-code into a program in the environment of Lego

Mindstorms and Robolab.
(d) The use of Lego Mindstorms in the classroom (advantages and disadvantages).
All discussions between the participants and between participants and

experimenters during the experimentation process were recorded, in order to analyse
it afterwards.

5 Findings - The way participants worked

While observing the subjects’ work, during the implementation of the activities, as
well as during the analysis of the audio recordings, the students' continuously
increasing interest for the activities and dedication to their work was demonstrated.
They were discussing, arguing, testing solutions and deciding in every step of the
procedure.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

At the beginning, a familiarization phase took place, during which the
experimenters just presented the Lego tool kit to the participants and let them touch
and inspect the elements included. During this phase, the participants were in contact
with the tool, their interest was triggered off and the basic idea of their work put
down.

After inspecting and examining the constructed car that they would use during the
whole activity, they started to work on the six worksheets. Working on the 1st one,
questions like ‘how will the car start moving?’, ‘the wheels must turn on’, ‘yes, but
how we can move it forward?’, ‘the two wheels must rotate in the same direction”,
‘the car has to move for a specific time interval, how?’ arose and a brainstorming of
solutions took place. They had been encouraged by the experimenters to write down
in physical language the sequence of actions (a pseudo-code) that they thought could
move the car. A characteristic solution is: ‘rotate the two wheels in positions B and C
(meaning the ports B and C) simultaneously for 2s and then stop’. Experimenters
helped them to convert their pseudo-code to a program in the Robolab environment,
explaining the philosophy of the software to them. The program development offered
them the opportunity to test and watch the result of their designs each time, to find the
correct answers to their questions and to solve practical problems concerning the
move of the car.

All three groups worked successfully on the second part of the worksheet ‘rotate
the two wheels in positions B and C simultaneously for 2s then stop for 1s then rotate
the wheels in the opposite direction for 2s and then stop’.

It was not difficult for them to work with the 2nd worksheet but the meaning of
‘random’ time interval as well as its implementation in the car’s move was under
question. After the experimenters’ explanations of ‘random’, the participants
completed their mission with success ‘rotate the two wheels in positions B and C
simultaneously for a random time interval between 0 and 3s then stop for 1s then
rotate the wheels in the opposite direction for a random time interval between 0 and
3s and then stop’.

The 3rd worksheet put a great question to them: How can they make the car turn
around for a time interval? Some characteristic dialogues between them were:
‘should the wheels rotate? Of course yes, but how?’, ‘if we put the one wheel to rotate
and not the other? (solution 1), ‘should the car move forward in the same time?’, ‘lets
try to turn round the car using our hands…. look it turns round and watch the one
wheels rotate forward and the other one in the opposite direction …yes! That’s it!!!’
(solution 2). Two of the groups implemented the 1st solution and one group the 2nd
‘rotate the wheel in position B for 3s forward and at the same time rotate the wheel in
position C in the opposite direction for 3s and then stop’. All of them were sure that
they could complete their mission with the 3rd worksheet ‘Its very easy…’, ‘rotate the
wheel in position B forward for a random time interval between 0 and 3s and at the
same time rotate the wheel in position C in the opposite direction for a random time
interval between 0 and 4s and then stop for 1s. Then rotate the wheel in position C
forward for a random time interval between 0 and 3s and at the same time rotate the
wheel in position B in the opposite direction for a random time interval between 0
and 4s and then stop’.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

As the participants were working it was obvious that their confidence was
increasing and their pseudo-codes became more and more accurate with discrete
sentences, as well as more and more complex.

The 4th worksheet gave the experimenters the opportunity to explain the use of the
light sensor and its function to the subjects of the study. The participants tested the
function of the light sensor, measure the light intensity under different conditions and
wrote down the measurements in the environment, in front of a white paperboard or in
front of a black paperboard.

 The 5th worksheet put a more difficult task to the participants. The car should be
able to start moving forward if a black paperboard was in front of it and stay stopped
if a white paperboard was in front of it. After this, for the participants the car could
‘see’ the white and the black paperboard but how it could react in a different way in
each case? Characteristic parts of their dialogs are: ‘we say if… Is there any IF
command? Can we use something for IF? How?’, ‘yes, lets think what to do with
IF…’, ‘well, if you see (the car) a black paperboard move forward if you see the white
one... Do nothing?’, ‘how can the car see the black and white…’, ‘the light sensor can
measure the light intensity… yes, that’s it…’ ‘...watch in front of the black
paperboard it can measure the values lower than 45….’, ‘… and in front of the white
paperboard higher than 45...’, ‘so, we found it!’. One solution they found was: ‘If in
front of you (referring to the car) there is a black paperboard then start moving
forward. If in front of you there is a black paperboard then it stays stopped. Black
means light < 45 and white means light > 45’. The experimenters explained to them
how to use the icon corresponding to the “IF” structure in the Robolab environment
and they developed their program correctly after a few trials ‘If the light sensor
measures a value < 45 then moves forward (rotate both the wheels forward) - if the
light sensor measures a value > 45 then does nothing’.

The 6th worksheet was a complex one and they had to solve a more completed
problem ‘...here we have to use all we used before!’. All the groups had discussions in
order to decide what the car should do and how to organize its behaviour ‘the car
must turn round for a random time interval and then has to stop’, ‘why?...’.
‘...because it has to stop in order to have the time to see what paperboard is in front
of it…’, ‘ok... if it see a black paperboard then the green lamp turns on... How long?’
‘Should we set the time interval?’ ‘Yes because if not the lamp will be on forever….’,
‘ok… and with a white paperboard then it should do nothing…’. After a few trials
they found appropriate solutions. They faced problems with the light intensity values
that the light sensor was measuring because now the car was in the middle of the
“circle” paper-wall and the light of the sensor read was less than before. So, they had
to ‘calibrate’ again the sensor in order to ‘see’ black and white correctly. All the three
groups solved the problem and a characteristic pseudo-code was: ‘rotate the wheel in
position B forward, in the same time the wheel in position C backward for a random
time interval between 0 and 4s and then stop. If the light intensity is < 40 then turn on
the green lamp for 4s. If the light’s intensity is > 40 then does nothing.’

It must be noticed here that during the procedure of trying to compose the pseudo-
codes, participants realized that they should be extremely accurate in their statements
as well as in the sequence of the actions to be completed, because in problem solving
and in programming everything must be accurately organized and designed.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

One of the groups was satisfied with just this work but the other two would like to
add something more. The experimenters let them think about extensions of the
program concerning the behaviour of the car. Both groups would like to command the
car to start, to turn around again and again for several times. While discussing the
problem they found the need of a repeat structure and asked for help. The
experimenters explained about the use of the JUMP and LAND icons, as a structure
of repeat of a part of a program for several times (infinite). Both groups managed to
moderate their pseudo-code and program correctly in that direction and both thought
to put a red lamp on the back place of the car in order to turn on in the case of the
white paperboard. Difficulties arose because of the limitation, concerning the
available I/O ports on the RCX Brick. The red lamp should be put on the same port of
a wheel, that means both lamp and wheel start together their work. The one group
could not find a solution and the experimenters helped them. In their trial and error
attempts, the 3rd group found the solution: they put together the two motors (wheels),
wired in different directions and alone the lamp in a different port. In this way, one of
the wheels rotated forward and the other backward. Their pseudo-code where: ‘the
car is stopped in the middle of a paper-wall with black and white pieces of
paperboard. The car starts to rotate the wheels in position B for a random time
interval between 0 and 4s and then stop. If the intensity of the light is less than 40,
then turn on the green lamp for 4s and then turn off. If the intensity of the light is
higher or equal than 40 then the red lamp turns on for 4s and then turns off. The car
repeats the procedure again and again until we press the off button’.

Fig. 2. Characteristic programs in Robolab of the subjects’ work (from steps 3 and 6)

During the semi-structured group interview, after the end of the procedure, the

attitudes of the participants appeared more intensive. From this interview we took
interesting answers for the use of the algorithms, pseudo-codes and programming.
More or less, all participants stated that it is easy to make an algorithm, to express it
with a pseudo-code and to convert it to a program, if you are working in an
environment, in which you have the opportunity to test and validate every time your
action: ‘…Lego Mindstorms and Robolab gave us the opportunity to work testing our
actions… So whenever our actions were wrong we could reform them immediately...’.

In addition, they stated that Lego Mindstorms could help users pleasantly, giving
the motivation to compose an algorithm in order to give the desired behavior to their
construction. Robolab offers a simple way to convert the algorithm expressed in
natural language (pseudo-code) into a program in order to implement the desired
behavior of the construction. The icons, representing commands and structures could
help everyone, without previous programming knowledge to build a program. In other
words, they supported that using Robolab everyone can make a program without

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

using commands with difficult syntax and strictly rules. In relation with the
usefulness of the algorithms and pseudo-codes, participants argued that: ‘The use of
Lego Mindstorms helps you thinking reasonably and organizing the steps in order to
solve a problem. The pseudo-code, especially could help to this direction…’. ‘It is
important for the children to learn to make algorithms, because the algorithm is
necessary in every day life, in order to solve problems in a more accurate way…’. ‘It
is important for children to learn thinking structured…’.

Participants found the activities very interesting and very useful from a
pedagogical perspective: ‘it is very important to have the opportunity to see the result
of your program immediately on a ‘live’ construction that reacts in the way you have
designed it...’ ‘you can learn from the mistakes … with no problem…and when you do
a mistake it is the opportunity to discuss with the teacher for many things concerning
programming, physics, maths’, ‘…it a new way to learn playing!..’, ‘you learn how to
think in order to solve a problem’ .

All of them suggested that they should try to use the Lego Mindstorms with the
Robolab in the future with their students because: ‘it is very important for the teacher
to think and work with the students and this kit offers this opportunity… it is a new
way..’, ‘students have to think, to write down accurate sentences in order to solve the
problem and that helps them also into critical thinking and language development’,
‘they have to argue in order to explain and support why they design the program in
the way they did and that helps them to express themselves and support their ideas’.

On the other hand ‘the cost may be high for the teacher or the school to buy the
kits’, ‘it is time consuming for the teacher to organize the lesson’, ‘it is time
consuming during the lesson and maybe it is difficult to fit in the daily schedule’.

6 Conclusions

From the participants’ work during the experiments and the group’s interview we can
conclude that they handled the process of the conversion of the algorithm/pseudo-
code to a serious program effectively and without any difficulties. The Lego
Mindstorms environment helped and motivated them to compose the algorithm
expressing it with a pseudo-code in every step, and to convert it into a program in a
simple and easy way. They worked in a constructivist environment, trying every time
to find the specific knowledge needed to solve the problem. The visual environment
of the Robolab, allowed them programming without text based commands and strictly
rules, variables etc.

In addition, participants found the activities very interesting from a pedagogical
perspective. They considered that the role of the teacher is different when using the
Lego Mindstorms rather than the traditional one. From this point of view, they
supported that teachers may be more like experienced advisors and their instructions
are context-driven to supply what is needed.

All of them should try to use the Lego Mindstorms with the Robolab in the future
with their students, because they think that this is a very important learning tool, that
motivates students to think, to write down accurate sentences in order to solve
problems, helping them also into critical thinking and language development.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

References

1. Fagin B., Merkle, L., Eggers, T.: Teaching Computer Science With Robotics Using
Ada/Mindstorms 2.0, Proceedings of the 2001 annual ACM SIGAda International
Conference on Ada, pp. 73--78 (2001)

2. Niederer, H., Sander, F., Goldberg, F., Otero, V., Jorde, D., Slotta, J., Stromme, A., Fischer,
H., Lorenz, H., Tibergkien, A., Vince, J.: Research about the use of Information Technology
in science education, In Psillos D., Kariotoglou, P., Tselfes, V., Hatzikraniotis, E.
Fassoulopoulos, G., Kallery, M. (Eds), Science education research in the knowledge- based
society, pp. 309--322. The Netherlands: Kluwer (2003)

3. Karatrantou, A., Panagiotakopoulos, C., Pierri, E.: The influence of Lego Mindstorms
Robotics constructions in the understanding of Science meanings in Primary Education: A
case study. Proceedings of 5th Panhellenic Conference with International participation of
ETPE - ICTs in Education, pp. 310--317 (2006)

4. Garcia, M. and Patterson-McNeill, H.: Learn how to develop software using the toy Lego
Mindstorms. 32nd ASEE/IEEE Frontiers in Education Conference, Available online:
http://fie.engrng.pitt.edu/fie2002/papers/1644.pdf (2002)

5. Piaget, J.: The Principles of Genetic Epistemology. New York: Basic Books (1972)
6. Piaget, J.: To understand is to invent. New York: Basic Books (1974)
7. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas, New York: Basic Books

(1980)
8. Papert, S.: The Children's Machine. Rethinking School in the Age of the Computer. New

York: Basic Books (1993)
9. Noss, R., & Hoyles, C.: Windows on mathematical meanings: Learning Cultures and

Computers. Dordrecht: Kluwer Academic Publishers (1996)
10. Sipitakiat, A., Blikstein, P., Cavallo, D.: The GoGo Board: Moving towards highly available

computational tools in learning environments. Interactive Computer Aided Learning
International Workshop. Carinthia Technology Institute, Villach, Austria (2002)

11. Wing, J.M.: Computational Thinking. Communications of the ACM, 49, 3, pp. 33--35,
(2006)

12.Bravo C., Marcelino, M.J., Gomes, A., Esteves, M., Mendes A.J.: Integrating Educational
Tools for Collaborative Computer Programming Learning. Journal of Universal Computer
Science, 11, 9, pp. 1505--1517 (2005)

13. Milková, E., Turčáni, M.: Digital objects supporting development of algorithmic thinking.
In A. Méndez-Vilas, A. Solano Martín, J.A. Mesa González and J. Mesa González (Eds),
Current Developments in Technology-Assisted Education, 376--380, Badajoz, Spain:
Formatex (2006)

14. LINFO: Algorithms: A Very Brief Introduction (2007), http://www.linfo.org/algorithm.html
15. Roy, G.G.: Designing and explaining programs with a literate pseudocode. Journal on

Educational Resources in Computing, 6, 1, pp. 1--18 (2006)
16. Spohrer, J., & Soloway, E.: Novice Mistakes: Are the Folk Wisdoms Correct? In E.

Soloway & J. Spohrer (eds), Studying the Novice Programmer, pp.401--416. Hillsdale, NJ:
Lawrence Erlbaum Associates (1989)

17. Roark, K.R.: Pseudocode. Available online: http://www.profroark.com/Intro_Prog_
Lecture/Pseudocode.pdf (2008)

18.Garner S.: The Development, Use and Evaluation of a Program Design Tool in the Learning
and Teaching of Software Development. Issues in Informing Science and Information
Technology, 3, 2006, pp. 253--260 (2006)

19. Noss, R., Healy, L., & Hoyles, C.: The construction of Mathematical meanings: Connecting
the visual with the symbolic. Educational Studies in Mathematics, 33, pp. 203--233 (1997)

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 70-79

