
A Computational Model

for Parallel and Hierarchical Machines

Carlo Fantozzi

Typeset on October 28, 2003

Sommario

Il parallelismo è una metodologia molto diffusa per aumentare la potenza di cal-

colo disponibile e fronteggiare le richieste computazionali sempre crescenti delle

odierne applicazioni. Negli ultimi trent’anni, la soluzione offerta dal parallelismo

è stata ampiamente studiata ed applicata; nonostante i successi ottenuti, tuttavia,

la programmazione parallela rimane una attività laboriosa. Le difficoltà nella pro-

grammazione sono aggravate dalla persistente mancanza di un modello di calcolo

parallelo che riscuota unanime consenso: una spiegazione di questo fatto è che un

tale modello deve soddisfare requisiti parzialmente contrastanti.

In anni recenti, la comunità scientifica ha riconosciuto la necessità di un “modello

ponte” (bridging model), capace di contemperare tali contrastanti necessità. Nella

presente tesi si avanza la candidatura a bridging model del D-BSP, una estensione

del popolare modello BSP di Valiant pensata per catturare una porzione sostanziale

della struttura gerarchica presente nella rete di interconnessione dei calcolatori par-

alleli. La prima parte di questa tesi presenta esempi dell’utilità della gerarchia di

rete cos̀ı come modellata dal D-BSP. In particolare, nel Capitolo 2 si fornisce una

rassegna di risultati che mostrano come il D-BSP sia più efficace e flessibile del BSP

nel modellare sistemi paralleli reali senza significative ricadute sulla semplicità d’uso;

nel Capitolo 3, poi, si dimostra che la località di rete incorporata nel D-BSP può

essere sfruttata per implementare efficientemente una astrazione di memoria condi-

visa. Negli ultimi due capitoli della tesi (Capitoli 4 e 5) si affronta una ulteriore e

interessante applicazione del parallelismo strutturato fornito dal D-BSP, studiando

le interazioni tra località di rete e località negli accessi alla memoria. Attraverso

l’uso di simulazioni, si dimostra che tale parallelismo strutturato può essere comple-

tamente ed automaticamente trasformato in località di accesso. Come caso partico-

lare, le simulazioni forniscono algoritmi sequenziali efficienti per memoria gerarchica

a partire da algoritmi paralleli efficienti. Nei limiti della nostra conoscenza, questo

è il primo studio che istituisce una relazione tra località di rete in algoritmi paralleli

ed entrambe le forme di località di accesso (località spaziale e località temporale) in

algoritmi sequenziali.

Abstract

Parallelism is a well-established solution to provide available computing power for

the ever-increasing needs of current applications. In the last thirty years, the solution

offered by parallelism has been thoroughly studied and applied; however, despite its

success, parallel programming remains a hard task. Difficulties are worsened by the

persisting lack of a successful model of parallel computation: a justification for this

fact is that such a model must meet partly conflicting requirements.

In recent years, the scientific community has recognized the need of a bridging

model to reach a reasonable tradeoff among such conflicting needs. In this thesis,

we advance the candidacy as a bridging model of D-BSP, an extension of the pop-

ular BSP by Valiant aimed at capturing a substantial fraction of the hierarchical

structure in the interconnection network of parallel machines. The first part of this

thesis is devoted to providing examples of the usefulness of the network hierarchy

as provided by D-BSP. In particular, in Chapter 2 we survey some existing results

which show that D-BSP exhibits higher effectiveness and portability than BSP in

modeling actual parallel architectures, without significantly affecting the ease of use;

in Chapter 3, we demonstrate that the coarse network locality incorporated in the

D-BSP model can be exploited to implement a shared memory abstraction in an

efficient way. In the last two chapters of the thesis (Chapters 4 and 5) we address

another interesting application of structured parallelism, as exposed by D-BSP, by

studying the interplay between network locality and locality of reference. By resort-

ing to cross-simulations, we prove that such structured parallelism can be fully and

automatically translated into locality of reference. As an important special case,

our cross-simulations are employed to obtain efficient hierarchy-conscious sequential

algorithms from efficient parallel ones. To the best of our knowledge, ours is the first

work that establishes a relation between the network locality embodied in parallel

algorithms and both forms of locality of reference (namely, temporal and spatial

locality) in sequential algorithms for general hierarchies.

“If all sorts of heavy work of this kind could be easily and quickly, as well

as certainly, done, by merely selecting or punching a few Jacquard cards

and turning a handle, not only much saving of labour would result, but

much which is now out of human possibility would be brought within

easy reach.”

From the report of the committee appointed to consider the advisability

and to estimate the expense of constructing Mr. Babbage’s Analytical Machine

Acknowledgements

As I am writing this, the ACG Laboratory at the University of Padova is empty:

there is nobody but me, in front of my trusty iMac, typing into LATEX the last words

of my thesis. However, I was not alone during my doctoral studies. In the silence of

the lab, the faces come to my mind of all the people with which I shared three years

of my life. My first thought goes to my advisor, Geppino Pucci, who is much more

than a master to me, and, even on work matters, has always done more than duty

commanded him to. It is almost impossible to think of Geppino without thinking of

Andrea Pietracaprina as well. Working with Andrea and Geppino was an invaluable

experience, since with them I learned what “doing research” means: indeed, I have

never felt like a student while I was with them. I would also like to express my

gratitude to Gianfranco Bilardi: a few words from him were always enough to wide

my horizons. I wish to extend my grateful thought to Cinzia, Filippo, Mauro, and

all the friends and people in the Department of Information Engineering: as I am

going to leave the Department soon, I would like to say an affectionate goodbye to

all of them. As for my family, I will write something in Italian, so that mom and

dad can read it: grazie mamma, grazie babbo per avermi sempre sopportato in tutti

questi anni nonostante i miei errori. Dopo quello che è successo, voi siete l’unica

cosa che mi resta.

For my friends who have been with me in all these years, as well as for all the

people I unintentionally forgot to mention, I would simply like to say: thank you.

i

ii

Contents

1 Introduction 1

2 The D-BSP Model 9

2.1 Bandwidth-Latency Models . 10

2.2 The D-BSP Model . 13

2.3 D-BSP and Processor Networks . 16

2.4 Effectiveness of D-BSP: Examples . 19

3 Simulation of Shared Memory 25

3.1 Previous Work . 26

3.2 Original Contributions . 27

3.3 Memory Organization . 30

3.4 Access Protocol . 38

3.4.1 Copy Selection . 39

3.4.2 Access to the Selected Copies 43

3.5 Constructivity Issues . 45

3.6 An Optimal Randomized Scheme . 45

4 Parallelism and Temporal Locality 49

4.1 Previous Work . 50

4.2 Original Contributions . 52

4.3 Machine Models . 53

4.3.1 HMM . 53

4.3.2 D-BSP with Hierarchical Memory 54

4.4 The General Simulation Algorithm 55

iii

4.4.1 Simulation of D-BSP(v, µ, xα) on xα-HMM 56

4.4.2 General Simulation of D-BSP(v, µ, f(x)) on f(x)-HMM 60

4.4.3 Analogue of Brent’s Lemma 65

4.5 Application to Case Study Problems 66

5 Parallelism and Spatial Locality 71

5.1 Previous Work . 72

5.2 Original Contributions . 75

5.3 Machine Models . 75

5.3.1 BT . 75

5.3.2 D-BSP with Block Transfer 76

5.4 The Plain Simulation Scheme . 79

5.4.1 Simulation of D-BSPB (v, µ, f(x)) on f(x)-BT 79

5.4.2 Analogue of Brent’s Lemma 83

5.5 An Advanced Simulation Scheme . 84

5.5.1 Memory Organization . 85

5.5.2 The Simulation Algorithm . 88

5.5.3 Partial Loss of Parallelism . 97

5.6 Discussion and Applications . 98

6 Conclusions 111

iv

Chapter 1

Introduction

The advances in microelectronics and related fields have made us accustomed to

an exponential growth of resources available in computing machines, be such re-

sources measured in terms of raw computing power, memory size, storage space or

communication speed. Indeed, if we look some fifty years back, so much progress

has been made that the question arises of whether there is a real need for further

improvement. Not surprisingly, the answer is positive.

Problems exist which cannot be conquered with the amount of resources available

today. For instance, some projected experiments in Particle Physics (such as those

related to CERN’s Large Hadron Collider) rely on the storage and analysis of multi-

petabyte sets of data, which is a hardly feasible task with current technology. As

a further example, many polynomial-time problems in the realms of Cosmology,

Biochemistry and Climatology require an amount of computing power that is much

greater than the one of current supercomputers, so that, even taking exponential

growth into account, many decades will pass before reasonably-sized instances can

be solved. Moreover, there is a widespread awareness of an incoming decrease in the

growth rate experienced today for computing performance: a temporary slowdown

may be due to contingent limits of technology, but, ultimately, physical barriers will

be reached that cannot be overcome.

Rather than waiting for faster, future-generation machines, a solution that has

proven its effectiveness in providing vast amounts of computing power is that of

employing multiple copies of a resource in the form which is available today : the

1

2 CHAPTER 1. INTRODUCTION

application of this idea to the processing unit gave birth to parallel computing. In

the last thirty years, parallelism has been thoroughly studied from both a theoret-

ical and a practical point of view; a proof of its success is offered by the fact that

the most powerful supercomputers in the world are all massively parallel, featuring

thousands of processing units. Unfortunately, theory and practice have also shown

that parallelization is a hard task. There are many reasons for this fact, the most

straightforward being that a problem may not be parallelizable, but, even if this

is not the case, parallel programming is more difficult than sequential program-

ming because there are many more factors that must be taken into account. More

specifically, the difficulty resides in the need of coordinating the operations of the

different processing units: data must typically be exchanged between the units, and

asynchrony must be handled.

The increased number of degrees of freedom in parallel programming is made

more perilous by the lack of a computational model capable of encapsulating them

in a widely accepted framework. Indeed, despite extensive research activity in the

field, no model has proven capable of taking a unifying role similar to the one of the

Von Neumann/RAM machine [AHU74] in the realm of sequential computation. An

intuitive explanation for this phenomenon is that a parallel model must meet partly

conflicting requirements. Ideally, a computational model should provide [HL95,

SA+92] an abstract view of a class of machines while accurately reflecting costs

and resources for all the machines in the class. The model should be simple and

general enough to facilitate the design and analysis of algorithms; at the same time,

the results of the analysis performed on the model should give good predictions

of performance on the machines targeted by the model. This definition indicates

that a computational model must be simple, easy to use, accurate and portable on

different machines: clearly, it is difficult to meet all these requirements at once. For

example, the PRAM model [FW78] offers powerful yet easy-to-use primitives, such as

synchronous computation and a shared memory with unit-time access to every cell.

Unfortunately, the architecture of real-world machines is quite different from the one

that is implied by the model: as a consequence, PRAM gives inaccurate performance

predictions, and this is particularly severe in a field where the need for performance

3

is a primary requirement. For the same reasons connected to performance, even the

leading role of the sequential RAM model has been questioned, and models such as

the HMM [AACS87] have been proposed to account for the hierarchical structure

of memory in present computers.

In recent years, the need has been recognized of a bridging model [Val90a] which

is capable of mediating among the conflicting needs we have just described. Such a

model should be accurate enough to yield fair predictions, but it should be detached

from contingent hardware issues: attention must be focused on phenomena that are

intrinsic in a parallel computation, i.e. phenomena that will be still present in the

long term, when the advancement of technology will solve all but fundamental issues.

According to this observation, which subset of real-world features must be included

in the bridging model? We think that an issue that is present in current machines

and that also looks fundamental enough for inclusion is the problem of moving

information around. With “information” we indicate any item that is needed by

a computation to advance towards completion: this definition includes items such

as input data, partial results, synchronization or global clock signals. It must be

remarked that not all information exchanges are equally “difficult”: in fact, there

is both empirical and theoretical evidence that it is “cheaper” to move information

between “near” neighbors, or to move two pieces of information that are “near”

to one another. This phenomenon, which will be formally introduced later in the

thesis, goes under the name of locality.

In the interconnection network of parallel machines, locality cannot be ignored.

Consider, for example, that any device connected to such networks always has a

dedicated interconnection wire, hence the bandwidth “offered” by the network is

proportional to the number of devices: each device expects to send data at full wire

speed. As a matter of fact, the internal topology of the network is seldom capable of

keeping the promise. For instance, in the well-known mesh topology it is possible to

communicate with near neighbors at full speed, but global communication between

any two halves of the network is slowed down by the surface/volume ratio: we can say

that the network exhibits a hierarchy of levels with different speeds. A hierarchical

structure is also offered by the memory subsystem, which typically includes multiple

4 CHAPTER 1. INTRODUCTION

levels of caches, main memory and disks: the exploitation of locality is, once again,

crucial. For these reasons, we advocate that some form of locality must be included,

at least to a certain degree, in the bridging model.

In the first part of this thesis, we advance the candidacy as a bridging model of D-

BSP [dK96], a variant of the distributed-memory BSP model proposed by Valiant

[Val90a] in the early nineties. BSP and D-BSP adhere to the paradigm of bulk-

synchronous computation, which meets wide acceptance and popularity: a bulk-

synchronous program alternates computation and global synchronization phases,

and messages sent during a computation phase are available at their destinations

after the next synchronization phase. D-BSP extends BSP by allowing submachines

to synchronize and operate independently from one another; the cost of communi-

cation is proportional to the size of the submachines, hence D-BSP can capture a

substantial fraction of the hierarchical structure of the interconnection network in

parallel computers. The results we report in Chapter 2 provide quantitative evidence

that D-BSP exhibits higher effectiveness and portability than BSP in modeling ac-

tual parallel architectures, without significantly affecting ease of use. Moreover, we

show that D-BSP is able to amend some deficiencies of the standard BSP, avoiding

the resort to additional ad-hoc provisions that had motivated the definition of other

variants of the model.

A very desirable feature of a distributed-memory model is the ability to support a

shared memory abstraction efficiently; among the other benefits, this feature allows

to port the vast body of PRAM algorithms [JáJ92] on the model at the cost of a

small time penalty. The problem of shared memory implementation has been widely

studied in the literature, with the most efficient solutions resorting to randomiza-

tion to mitigate the impact of network congestion on performance. In Chapter 3, we

show how efficiency can also be attained by exploiting the coarse network locality

incorporated in the D-BSP model: to this aim, we present a general, deterministic

scheme to implement a shared memory space on any distributed-memory machine

which exhibits a clustered structure. More specifically, we develop a memory dis-

tribution strategy and an access protocol for D-BSP; the parameters of the model

are instantiated to reflect the characteristics of n-processor machines whose net-

5

work subsystem exhibits a recursive structure with bandwidth O (n1−α) and latency

O
(
nβ
)
. Our main result is summarized in the following theorem:

Theorem 1 For any value m upper bounded by a polynomial in n and for any k ≥ 0

there exists a scheme to access n memory cells out of a shared pool of size m in time

O

(
2kn

α+
α(1−α)

2k(2−α) + knβ

)
on a D-BSP with bandwidth O (n1−α), latency O

(
nβ
)

and O
(
3km

)
aggregate mem-

ory size.

Our scheme achieves provably optimal slowdown with constant memory redundancy

for those machines where delays due to latency dominate over those due to band-

width limitations; for machines where this is not the case, we are able to achieve

a slowdown which is a mere logarithmic factor away from the natural bandwidth-

based lower bound, at the expense of a polylogarithmic blow-up in the total memory

size. We remark that a randomized scheme can also take advantage of the network

proximity modeled by D-BSP: as a proof of this fact, we give a simple, random-

ized strategy for shared memory access that exhibits optimal slowdown with high

probability.

In the second half of the thesis, namely in Chapters 4 and 5, we address another

interesting application of structured parallelism as modeled in D-BSP, by studying

the interplay between network locality and locality in the access to memory. To

understand the objective of our investigation, recall that both the interconnection

network and the memory subsystem of modern supercomputers exhibit a hierarchi-

cal structure, hence they both reward the use of locality. Now, the network hierarchy

has been extensively investigated, and established techniques exist to efficiently deal

with it: a consequence of this research is a vast body of parallel algorithms that ex-

ploit network locality. Locality of reference (i.e., locality in the access to memory)

has only recently started to attract the interest of the scientific community; even

fewer studies have dealt with locality of reference and parallelism at once, although

it is quite natural to wonder whether the two phenomena are governed by the same

laws. Indeed, if this is the case, the aforementioned body of parallel techniques can

be turned to the development of memory-efficient algorithms. The few studies in this

6 CHAPTER 1. INTRODUCTION

direction which are available in the literature [DDH03, DDHM99, SK97] are promis-

ing, since they show how bulk-synchronous computations yield hierarchy-conscious

algorithms; however, the scope of such works is limited to a 2-level (disk/RAM)

hierarchy. In this thesis, we move a step forward by proving that the structured

parallelism modeled by D-BSP can be fully and automatically translated into local-

ity of reference on multi-level hierarchies: to do this, we present a uniform scheme to

simulate any computation designed for v processors on a v′-processor configuration

with v′ ≤ v and the same overall memory size. In Chapter 4, we first concentrate

on a limited framework, where, beyond network locality, only temporal locality is

included in the sequential processor-memory pair through the aforementioned HMM

model; technically, we describe accesses to memory and network through a single

cost function f(x). Under widely accepted and unrestrictive regularity conditions

on f(x) and on the parallel computation, we obtain the following result.

Theorem 2 A T -time program for a v-processor D-BSP whose nodes are HMM

machines can be simulated in time Θ (Tv/v′) on a v′-processor instance of the same

model, for any 1 ≤ v′ ≤ v.

Notice that this result can be regarded as an analogous of Brent’s lemma [Bre74]

for BSP-like parallel machines featuring a hierarchical structure for both memory

and interconnection network. The simulation exhibits optimal slowdown for a wide

class of computations. As an important special case (v′ = 1), our simulation can be

employed to obtain efficient hierarchy-conscious sequential algorithms from efficient

fine-grained ones; indeed, in Chapter 4 we use this technique to obtain algorithms

for matrix multiplication, DFT and sorting that are optimal on the sequential HMM

model.

In Chapter 5, we make an effort to gain insight on the further interplay between

parallelism and spatial locality of reference; recall that a computation is said to

exhibit spatial locality if consecutive data in memory are involved in consecutive

operations. In computational models, spatial locality is typically shaped in the form

of a block transfer facility that allows to move a set of consecutive data at a reduced

cost: for example, the sequential f(x)-BT model [ACS87] is an extension of HMM

where an access to cell x takes time f(x), but a block of l cells ending at address x can

7

be copied in time f(x) + l. Our most significant result for spatial locality concerns

fine-grained D-BSP programs, that is, programs where each processor features a

constant-size memory, and can be summarized as follows.

Theorem 3 A T -time, fine-grained program for D-BSP with logarithmic cost func-

tion can be simulated in time O (nT) on f(x)-BT, for any f(x) = O (xα), 0 ≤ α < 1.

The proof of this result provides an effective tool to automatically obtain efficient BT

algorithms from the large body of parallel algorithms available in the literature. Our

findings reveal that efficiency in the BT model can be achieved for an entire family

of cost functions, and starting from algorithms for a D-BSP machine that exhibits

a coarse level of submachine locality (i.e., the machine features a high-bandwidth

interconnection): this is in contrast with our simulation results on HMM, which, by

Theorem 2, required a strict matching between the cost functions of the parallel and

the sequential models. With a certain degree of approximation, we can state that

the availability of block transfer “flattens” the memory hierarchy, that is, it makes

an algorithm partly insensitive to the access cost function; however, some examples

provide evidence that a certain level of network locality must nonetheless be retained

in order to achieve efficient algorithms. To the best of our knowledge, ours is the first

work that establishes a relation between the network locality embodied in parallel

algorithms and the combined exploitation of both temporal and spatial locality of

reference in sequential algorithms for general hierarchies.

Portions of this thesis are based on joint works with Gianfranco Bilardi, Andrea

Pietracaprina, and Geppino Pucci; these works have been published in the open

literature. The work described in Chapter 2 appeared in [BFPP01]. The work

described in Chapter 3 appeared in [FPP01] as an extended abstract, and will be

published in full in [FPP03]. The work described in Chapter 4 appeared in [FPP02].

Finally, the results contained in Chapter 5 have been submitted for publication in

[FPP]. These research activities were supported in part by CNR and MIUR of

Italy under projects Algorithms for Large Data Sets: Science and Engineering and

Algorithmics for the Internet and the Web.

8 CHAPTER 1. INTRODUCTION

Chapter 2

The D-BSP Model

Widespread use of parallel computers requires the availability of a suitable model

of computation which simultaneously exhibits usability, regarded as ease of algo-

rithm design and analysis, effectiveness, so that efficiency of algorithms in the model

translates into efficiency of execution on some given platform, and portability, which

denotes the ability of achieving effectiveness with respect to a wide class of target

platforms. These properties appear, to some extent, conflicting. For instance, effec-

tiveness requires modeling a number of platform-specific aspects that affect perfor-

mance (e.g., interconnection topology), at the expense of portability and usability.

The formulation of a bridging model that balances among these clashing require-

ments has proved a difficult task, as demonstrated by the proliferation of models in

the literature over the years. The most successful bridging model is, unquestionably,

Valiant’s BSP [Val90a]. A number of BSP variants, such as D-BSP [dK96] and BSP∗

[BDMadH98], have been formulated over the years with the aim of improving the

effectiveness of the original model.

This chapter provides quantitative evidence of the higher effectiveness and porta-

bility exhibited by D-BSP with respect to BSP, and shows that the network locality

explicitly captured in the model is able to amend some deficiencies of BSP without

resorting to additional ad-hoc provisions. The results we present, which recently

appeared in [BFPP01, BPP99, FPP01], lead us to regard D-BSP as one of the

most promising candidates among BSP variants and, in general, among bandwidth-

latency models, to strike a fair balance among the conflicting features sought in a

9

10 CHAPTER 2. THE D-BSP MODEL

bridging model of parallel computation.

The rest of the chapter is structured as follows. Section 2.1 is a survey on

bandwidth-latency models, including BSP and its main variants. Section 2.2 for-

mally defines the restricted version of D-BSP that is adopted in this thesis; network

locality is modeled according to a regular recursive structure, which greatly improves

usability. In Section 2.3, we describe the methodology based on cross-simulations

proposed in [BPP99] to quantitatively assess the higher effectiveness of D-BSP with

respect to BSP, relatively to the wide class of processor networks. Then, in Sec-

tion 2.4 we show that, for certain relevant computations and prominent topologies,

D-BSP exhibits a much higher effectiveness than the one guaranteed by the general

result, so that the impact due to the loss of locality caused by ignoring the detailed

network topology in the model becomes negligible. In the same section, we pro-

vide evidence that D-BSP can be as effective as E-BSP in dealing with unbalanced

communication patterns.

2.1 Bandwidth-Latency Models

In the last decade, a number of bridging models have been proposed which abstract

a parallel platform as a set of processors and a set of either local or shared memory

banks (or both) communicating through some interconnection. In order to ensure

usability and portability over a large class of platforms, these models do not provide

detailed characteristics of the interconnection but, rather, summarize its communi-

cation capabilities by a few parameters that broadly capture bandwidth and latency

properties. The literature on the subject is overwhelming: in what follows, we fo-

cus our attention on models that are relevant to this thesis. For a broader view

on parallel models, the interested reader is referred to books [Lei92] and papers

[Goo93, HL95, MMT95, Vit91] which are available in the literature. (Experimental

studies have also been performed to establish which model [GLR+96, JW98] or cost

function [APM+00, BP00, PPA+98] is most effective, but it is difficult to compare

these studies since each of them adopts a different setting and a different evaluation

strategy.)

The most popular example of bandwidth-latency model is Valiant’s BSP [Val90a].

2.1. BANDWIDTH-LATENCY MODELS 11

A BSP (Bulk Synchronous Parallel) machine is a set of n processors with local mem-

ory, communicating through a router. Computations are sequences of supersteps :

in a superstep, each processor (i) reads the messages received in the previous su-

perstep; (ii) performs computation on locally available data; (iii) sends messages to

other processors; and (iv) takes part in a global barrier synchronization. A super-

step is charged a cost of w + gh + `, where w (resp., h) is the maximum number

of operations performed (resp., messages exchanged) by any processor in the super-

step, and g and ` are parameters respectively related to the router’s bandwidth and

latency.

Similar to BSP is the LogP model proposed by Culler et al. [CKP+96] which,

however, lacks bulk synchronization and imposes a more constrained message-passing

style aimed at keeping the load of the underlying communication network below a

specified capacity limit. A quantitative comparison between the two models has

been carried out in [BHPP00, BHP+96] showing a substantial equivalence between

LogP and BSP as computational models for algorithm design guided by asymptotic

analysis.

In recent years, a number of BSP variants have been formulated in the literature

by incorporating additional provisions aimed at improving the model’s effectiveness

relative to actual platforms without significantly affecting its usability and porta-

bility. Among these variants, the following ones are particularly relevant for this

thesis.

In Miller’s extension to BSP [Mil94], the time for sending a message is a nonlinear

function of the amount s of exchanged data. Specifically, the cost of sending a

message of size s is g(s)h + l, where g(x) = (n1/2/x + 1)g∞; the quantity g∞ is the

theoretical bandwidth of the interconnection network, as achieved with a message

of infinite size, and n1/2 is the message size for which the bandwidth is one half of

the theoretical peak.

The Deluxe BSP [BGMZ97], or (d, x)-BSP, is one of the first parallel models

that deals with the memory bottleneck, and it does so by increasing the number m

of memory modules over the number n of processors so as to hide latency. The n

memory banks which are directly connected to a processor can be accessed by their

12 CHAPTER 2. THE D-BSP MODEL

owner with constant slowdown, and by the other n−1 processors through a message

exchange; the (x−1)n banks which do not belong to a processor are directly attached

to the interconnection network, and are accessible by sending messages to them. To

quantify memory access time, two parameters are required: the minimum number

d of cycles that must intervene between accesses to the same memory bank (bank

contention), and the ratio x ≥ 1 between the number of memory banks and the

number of processors (expansion factor). The cost of a superstep is w + gs+ dr + `,

where s is the maximum number of remote memory requests made by a processor

and r is the maximum number of remote requests handled by a bank. Deluxe BSP

is proved to yield accurate predictions of performance on the Cray C90 and J90

systems.

In BSP∗ [BDMadH98], the cost of communication during a superstep is the

maximum, among all processors, of the quantity

max
{

l, g max
{ h′∑

i=1

dsi/Be,
h′′∑
i=1

ds′i/Be
}}

, (2.1)

where h′ is the maximum number of messages sent by the processor, h′′ is the

maximum number of messages received by the processor, si is the size in bytes of

the i-th sent message, s′i is the size of the i-th received message and, finally, B is

the critical block size. The parameter g is interpreted as “the ratio of the total

throughput of the whole system in terms of basic computational operations to the

throughput of the router in terms of messages of size B delivered”; more intuitively,

BSP∗ favors messages whose size is at least B, thus modeling the fact that block

transfers minimize start-up costs and improve the throughput of the communication

subsystem. Cost function (2.1) is quite impractical, since it depends on the size of

every single message that is sent in the superstep; as a consequence, in [BDP99]

the cost function has been simplified to g(s + hB) + `, where s is the maximum

aggregate size of the messages exchanged by a processor and h is defined as in the

standard BSP model. This function improves usability while retaining a good degree

of effectiveness: we will use it in Chapter 5.

The Extended BSP [JW96], or E-BSP, aims at predicting more accurately the

cost of supersteps with unbalanced communication patterns, i.e. patterns where the

2.2. THE D-BSP MODEL 13

average number have of messages exchanged by a processor is lower than the peak

number h. The cost function of this model depends on h, on the overall number m

of messages that are actually sent, and on the locality L, defined as the maximum

distance between source and destination of any message in a linear ordering of the

processors. Note that m may be significantly lower than the theoretical number

hn of messages involved in an h-relation (n is the number of processors); the ratio

hn/m is a measure of the imbalance in the communication pattern.

2.2 The D-BSP Model

The D-BSP (Decomposable BSP1) [dK96] is another extension of Valiant’s BSP

[Val90a] which aims at incorporating into the model some degree of network locality

through clustering. In its most general definition, D-BSP is regarded as a set of

n processor/memory pairs communicating through a router; the processors can be

aggregated according to a collection of clusters, where each cluster c is able to

independently perform its own sequence of supersteps and is characterized by its

own g and ` parameters, typically increasing with the size of the cluster. The key

advantage of the model is that communication patterns where messages are confined

within small clusters have small cost, like in realistic platforms and unlike in standard

BSP. In fact, we will show quantitatively that this advantage translates into higher

effectiveness and portability of D-BSP over BSP, at the expense of only a moderate

burden on the algorithm designer.

In the same paper [dK96] which introduces D-BSP, the model is extended by

proposing Y-BSP as a way to account for unbalanced communication patterns.

Within a cluster c of the Y-BSP, the cost of performing an h-relation followed

by a processor synchronization is hb(c) + (m/|c|)g(c) + `(c), where m is the overall

number of messages involved in the h-relation, g(c) and `(c) are the bandwidth and

latency parameters for the cluster, and b(c) is a start-up cost. In D-BSP, anyway,

clustering already enables routing of unbalanced communication patterns with a

good degree of efficiency, making it unnecessary to further extend the cost model in

1As acknowledged by the authors, the name Decomposable BSP was suggested by Rob Bisseling.

14 CHAPTER 2. THE D-BSP MODEL

the direction followed by Y-BSP and E-BSP. As a whole, we think that D-BSP is

an attractive candidate, among bandwidth-latency models, to strike a fair balance

among usability, effectiveness and portability.

It must be remarked that, according to the general definition of D-BSP, the

partition of processor into clusters can change dynamically: this feature makes it

possible to incorporate the fine details of point-to-point network interconnections,

but we think that it complicates the specification of the model without a good rea-

son. In fact, it can be shown [Lei85] that, within polylogarithmic factors, a binary

decomposition tree is already an optimal descriptor of any network topology occu-

pying a given volume of space. In accordance with the above observation, in this

thesis we focus our attention on a restricted version of the D-BSP model (referred to

as recursive D-BSP in [dK96]) where the collection of submachines has the following

regular structure. Let n be a power of two; for 0 ≤ i ≤ log n, the n processors2 are

partitioned into 2i fixed, disjoint i-clusters C
(i)
0 , C

(i)
1 , · · · , C(i)

2i−1
of n/2i processors

each, where the processors of a cluster are able to communicate among themselves

independently of the other clusters. The clusters form a hierarchical, binary decom-

position tree of the D-BSP machine: specifically, C log n
j contains only processor Pj,

for 0 ≤ j < n, and C
(i)
j = C

(i+1)
2j ∪ C

(i+1)
2j+1 , for 0 ≤ i < log n and 0 ≤ j < 2i.

A D-BSP computation consists of a sequence of labelled supersteps. In an i-

superstep, 0 ≤ i ≤ log n, each processor executes internal computation on locally

held data and sends messages exclusively to processors within its i-cluster. The

superstep is terminated by a barrier, which synchronizes processors within each i-

cluster independently. It is assumed that messages are of constant size, and that

messages sent in one superstep are available at the destinations only at the beginning

of the subsequent superstep. Let g = (g0, g1, . . . , glog n) and ` = (`0, `1, . . . , `log n). If

each processor performs at most w local operations, and the messages sent in the

superstep form an h-relation (i.e., each processor is source or destination of at most

h messages), then, the cost of the i-superstep is upper bounded by

w + hgi + `i, for 0 ≤ i ≤ log n.

In other words, an i-cluster in isolation behaves like a BSP of parameters gi and `i;

2In this thesis, with log(·) we denote the base 2 logarithm.

2.2. THE D-BSP MODEL 15

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

Figure 2.1: communication in a D-BSP(n, g, `) with n = 8 processors. The figure

represents available communication paths in a 2-superstep (left), in a 1-superstep

(middle) and in a 0-superstep (right).

the value of gi and `i is related to the bandwidth and latency guaranteed by the

router when communication occurs within i-clusters.

We refer to the model we have just described as a D-BSP(n, g, `). Figure 2.1

illustrates possible communications in a D-BSP(n, g, `) with 8 processors, and Fig-

ure 2.2 represents the execution on the same machine of a small program. Note that

the standard BSP(n, g, `) defined by Valiant can be regarded as a D-BSP(n, g, `)

with gi = g and `i = ` for every i, 0 ≤ i ≤ log n. In other words, D-BSP intro-

duces the notion of proximity in BSP through clustering, and groups h-relations

into specialized classes associated with different costs. This ensures full compat-

ibility between the two models, which allows programs written according to one

model to run on any machine supporting the other, the only difference being their

estimated performance.

In this chapter, and in the following one, we will often exemplify our consider-

ations by focusing on a class of D-BSP parameter values of particular significance.

Namely, let α and β be two arbitrary constants, with 0 < α, β < 1. We will consider

D-BSP(n, g(α), `(β)) machines with g
(α)
i = Θ ((n/2i)α) ,

`
(β)
i = Θ

(
(n/2i)β

)
,

for 0 ≤ i ≤ log n. (2.2)

As we will see, these parameters capture a wide family of machines whose clusters

are characterized by moderate bandwidth and moderate to high latency.

16 CHAPTER 2. THE D-BSP MODEL

t

P0

P1

P2

P3

P4

P5

P6

P7

Figure 2.2: execution of a small program on a D-BSP(n, g, `) with n = 8 proces-

sors. The program includes a 1-superstep followed by a 2-superstep, and a final

0-superstep. Light grey boxes indicate computation, and dark grey boxes represent

synchronization barriers.

2.3 D-BSP and Processor Networks

Intuitively, a computational model M , where designers develop and analyze algo-

rithms, is effective with respect to a platform M ′, on which algorithms are eventually

implemented and executed, if the algorithmic choices based on M turn out to be

the right choices in relation to algorithm performance on M ′. In other words, one

hopes that the relative performance of any two algorithms developed on M reflects

the relative performance of their implementations on M ′. In order to attain gener-

ality, a computational model abstracts specific architectural details (e.g., network

topology), while it incorporates powerful features that simplify its use but may not

be exhibited by certain platforms. Therefore, in order to evaluate the effectiveness

of a model M with respect to a platform M ′, we must establish the performance

loss incurred by running algorithms developed for M (which do not exploit platform-

specific characteristics) on M ′, and, on the other hand, we must assess how efficiently

2.3. D-BSP AND PROCESSOR NETWORKS 17

features offered by M to the algorithm designer, can be supported on M ′.

More precisely, let us regard M and M ′ as two different machines, and let Π and

Π′ be the sets of optimal programs on M and M ′, respectively. We also define a

translation function σ that associates a program P ∈ Π for a given computational

problem to its counterpart P ′ ∆
= σ(P) ∈ Π′; by definition, the programs are optimal

on the respective machines. In [BPP99] it is proposed to measure the effectiveness

of M with respect to M ′ through the quantity

η(M, M ′)
∆
= max

P1,P2∈Π

T (P1)

T (P2)
· T

′(σ(P2))

T ′(σ(P1))
,

where T (·) and T ′(·) denote the execution time of a program on M and M ′, respec-

tively. It is easy to see that η(M, M ′) ≥ 1. We remark that η is an inverse measure

of effectiveness: a value of η(M, M ′) close to 1 implies that algorithms for the same

problem exhibit similar running times on M and M ′ (a proof of high effectiveness),

while a large value of η(M, M ′) indicates that the performance on a program for M

may not be preserved on M ′.

An upper estimate of η(M, M ′) can be obtained based on the ability of M and

M ′ to simulate each other. Define S(M, M ′) (resp., S(M ′, M)) as the minimum

slowdown needed for simulating M on M ′ (resp., M ′ on M). In [BPP99] it is shown

that the product

δ(M, M ′)
∆
= S(M, M ′)S(M ′, M)

provides an upper bound to η(M, M ′): as a consequence, effectiveness increases

with decreasing δ(M, M ′) and is highest for δ(M, M ′) = 1. When maximized over

all platforms M ′ in a given class, this quantity provides an upper measure of the

portability of M with respect to the class.

This approach based on simulations can be used to evaluate the effectiveness

of D-BSP with respect to the class of processor networks. Let G be a connected

n-processor network, where in one step each processor executes a constant num-

ber of local operations and may send/receive one point-to-point message to/from

each neighboring processor (multi-port regimen). As is the case for all relevant net-

work topologies, we assume that G has a decomposition tree {G(i)
0 , G

(i)
1 , · · · , G(i)

2i−1
:

∀i, 0 ≤ i ≤ log n}, where each G
(i)
j is a connected subnet (i-subnet) with n/2i proces-

sors and G
(i)
j = G

(i+1)
2j ∪G

(i+1)
2j+1 . By combining the routing results of [LMR99, LR99]

18 CHAPTER 2. THE D-BSP MODEL

one can easily show that for every 0 ≤ i ≤ log n there exist suitable values gi

and `i related, respectively, to the bandwidth and diameter characteristics of the

i-subnets, such that an h-relation followed by a barrier synchronization within an

i-subnet can be implemented in O (hgi + `i) time. Let M be a D-BSP(n, g, `) with

these particular gi and `i values, for 0 ≤ i ≤ log n. Clearly, we have that

S(M, G) = O (1) . (2.3)

Vice versa, an upper bound to the slowdown incurred in simulating G on M is

provided by the following theorem proved in [BPP99, Theorem 3].

Theorem 2.3.1 Suppose that at most bi links connect every i-subnet to the rest

of the network, for 1 ≤ i ≤ log n. Then, one step of G can be simulated on D-

BSP(n, g, `) in time

S(G, M) = O

min
n′≤n

 n

n′
+

log n−1∑
i=log(n/n′)

(gi max{hi, hi+1}+ `i)

 , (2.4)

where hi = dbi−log(n/n′)/(n/2i)e, for 0 ≤ i ≤ log n.

Equations (2.3) and (2.4) can be applied to quantitatively estimate the effective-

ness of D-BSP with respect to specific network topologies. Consider, for instance,

the case of an n-node d-dimensional array. Fix gi = `i = (n/2i)1/d, for 0 ≤ i ≤ log n.

Such D-BSP(n, g, `) can be simulated on G with constant slowdown. Since G has

a decomposition tree with subnets G
(i)
j that have bi = O

(
(n/2i)(d−1)/d

)
, the D-BSP

simulation quoted in Theorem 2.3.1 yields a slowdown of S(G, M) = O
(
n1/(d+1)

)
per step. In conclusion, letting M be the D-BSP with the above choice of param-

eters, we have that δ(M, G) = O
(
n1/(d+1)

)
. The upper bound on S(G, M) can be

made exponentially smaller when each array processor has constant-size memory. In

this case, by employing a more sophisticated simulation strategy [BPP99, Theorem

4] it is possible to prove that S(G, M) = O
(
2Θ(

√
log n)

)
, thus significantly improving

D-BSP’s effectiveness.

It is important to remark that the clustered structure of D-BSP provides a crucial

contribution to the model’s effectiveness. Indeed, it can be shown that if M ′ is a

BSP(n, g, `) and G is a d-dimensional array, then δ(M ′, G) = Ω
(
n1/d

)
independently

2.4. EFFECTIVENESS OF D-BSP: EXAMPLES 19

of g, l and the size of the memory at each processor [BPP99, Theorems 1 and 2].

This implies that, under the δ metric, D-BSP is asymptotically more effective than

BSP with respect to multidimensional arrays.

2.4 Effectiveness of D-BSP: Examples

We note that non-constant slowdown for simulating an arbitrary computation of

a processor network on D-BSP is to be expected since D-BSP disregards the fine

structure of the network topology, and, consequently, it is unable to fully exploit

topological locality. However, for several prominent topologies and several relevant

computational problems arising in practical applications, the impact of such a loss

of locality is much less than what the above simulation results may suggest, and, in

many cases, it is negligible.

Consider, for example, a processor network G whose bounded-degree topology

has a recursive structure with flux Ω (n−α) and diameter O
(
nβ
)
, for arbitrary con-

stants 0 < α, β < 1 (note that d-dimensional arrays satisfy these requirements). In

this case, by combining the routing results of [LMR99, LR99] with those in [BPP99]

it can be shown that a D-BSP(n, g(α), `(β)) M can be supported on G with a slow-

down S(M, G) that is at most polylogarithmic3. Hence, algorithms devised on M

can be implemented on G with at most polylogarithmic inefficiency. We now show

that M allows us to develop algorithms for a number of relevant computational

problems, which exhibit optimal performance when run on G. Hence, for these

problems, the loss of locality of M with respect to G is negligible.

Broadcast and Prefix With broadcast we indicate a communication operation

that delivers a constant-sized item, which is initially stored in a single processor,

to every processor in the parallel machine. With the term n-prefix we indicate the

calculation of a binary, associative operation ⊕ using the constant-sized elements of

an array of length n; before the prefix starts processor Pj, 0 ≤ j < n, stores element

3Recall that the flux of a network G = (V,E) is defined as the minimum among all subsets

U ⊂ V , with |U | ≤ |V |/2, of |C(U, V − U)|/|U |, where C(U, V − U) denotes the edge-cut induced

by U [LR99].

20 CHAPTER 2. THE D-BSP MODEL

aj of the array, and after the prefix it stores the quantity a0⊕a1⊕ . . .⊕aj. Note that

n-prefix requires time Ω
(
nβ
)

to be performed on G [Lei92]. On D-BSP(n, g(α), `(β)),

we have:

Proposition 2.4.1 ([dK96]) Any instance of single-item broadcast or n-prefix can

be accomplished in optimal time O
(
nα + nβ

)
on D-BSP(n, g(α), `(β)).

Proof For broadcast, we suppose that the item is initially stored in processor P0:

this hypothesis can be easily satisfied in time O
(
nα + nβ

)
by means of a 0-superstep.

The standard tree algorithm for broadcast consists of log v steps: during Step j,

0 ≤ j < log n, processor Pi sends a copy of the item to processor Pi+2j if it already

owns the item, otherwise it does nothing. Correctness is proved by inductively

showing that, at the beginning of Step j, processors P0, . . . , P2j−1 have a copy of

the item. Since Step j requires a (log n− j − 1)-superstep, the running time of the

algorithm is

O

(
log n−1∑

j=0

(2j+1)α + (2j+1)β

)
,

which evaluates to O
(
nα + nβ

)
.

For n-prefix, the solution we present is based on a recursive decomposition into

two n/2-prefix subproblems, which are assigned to distinct submachines of size n/2.

When invoked on a problem of size n, the algorithm behaves as follows.

1. If n = 1, then the algorithm returns the input unmodified.

2. If n > 1, then the algorithm is recursively invoked on the two n/2-prefix

subproblems that are contained in clusters C
(1)
0 and C

(1)
1 ; these clusters behave

as submachines with n/2 processors. When the subproblems have been solved,

the prefix an/2−1 is broadcasted to the processors in cluster C
(1)
1 , which update

their current prefix by setting aj = an/2−1 ⊕ aj, for n/2 ≤ j < n.

By using the broadcast algorithm described above, the time for n-prefix is given by

the recurrence equation

TPREFIX(n) =

 2TPREFIX(n/2) + O
(
nα + nβ

)
for n > 1,

O (1) for n = 1.

2.4. EFFECTIVENESS OF D-BSP: EXAMPLES 21

The solution of the recurrence via the iteration method yields the stated running

time of O
(
nα + nβ

)
. �

Clearly, when α ≤ β the implementation of the D-BSP algorithm on G exhibits opti-

mal performance. We remark that optimality cannot be obtained using the standard

BSP model. Indeed, results in [Goo96] imply that the direct implementation on G

of any BSP algorithm for n-prefix, runs in time Ω
(
nβ log n/ log(1 + dnβ−αe)

)
, which

is not optimal, for instance, when α = β.

Sorting We call k-sorting a sorting problem in which k keys are initially assigned

to each one of the n D-BSP processors and are to be redistributed so that the k

smallest keys will be held by processor P0, the next k smallest ones by processor

P1, and so on. It is easy to see that k-sorting requires time Ω
(
knα + nβ

)
to be

performed on G because of the bandwidth and diameter of the network. On D-

BSP(n, g(α), `(β)), we have:

Proposition 2.4.2 ([FPP01]) Any instance of k-sorting, with k upper bounded by

a polynomial in n, can be executed in optimal time TSORT(k, n) = O
(
knα + nβ

)
on

D-BSP(n, g(α), `(β)).

Proof The algorithm we propose prescribes to sort the k keys inside each processor

sequentially, then simulate bitonic sorting on a hypercube [Lei92] using the merge-

split rather than the compare-swap operator. To complete a merge-split phase, two

processors Pa, Pb perform the following operations.

1. Processor Pb sends its k keys to Pa in a single superstep.

2. Pa merges the keys coming from Pb with its own keys. Since the keys of both

Pa and Pb are sorted, this phase takes time Θ (k).

3. Pa splits the new, sorted list in two, then it sends half of the list to Pb in a

single superstep.

Processors adjacent along the i-th dimension of the cube are mapped to D-BSP

processors within the same (log n−i−1)-cluster, for 0 ≤ i < log n: as a consequence,

22 CHAPTER 2. THE D-BSP MODEL

the time to complete a merge-split phase during the simulation of the i-th dimension

of the hypercube is Θ (k + kgi+1 + li+1). The preliminary sorting is executed only

once and it clearly takes time Θ (k log k). To sum up, the overall running time for

the k-sorting algorithm is

O

(
k log k +

log n−1∑
i=0

(i + 1) (kgi + li)

)
,

which simplifies to O
(
knα + nβ

)
if k is upper bounded by a polynomial in n. A

simple bandwidth argument is sufficient to prove optimality. �

The algorithm of Proposition 2.4.2 is clearly optimal when ported to G. Again, a

similar result is not possible with standard BSP: the direct implementation on G of

any BSP algorithm for k-sorting runs in time Ω
(
(log n/ log k)(knα + nβ)

)
, which is

not optimal for small k.

Routing We call (k1, k2)-routing a routing problem where each processor is the

source of at most k1 packets and the destination of at most k2 packets. Observe that

any (k1, k2)-routing is a max{k1, k2}-relation, hence the “greedy” routing strategy

where all packets are delivered within the same superstep requires, in the worst case,

max{k1, k2}·nα+nβ time on D-BSP(n, g(α), `(β)), which is the best one could do on a

BSP with matching bandwidth/latency parameters. However, a careful exploitation

of the submachine locality exhibited by the D-BSP yields a better algorithm for

(k1, k2)-routing.

Proposition 2.4.3 ([FPP01]) Any instance of (k1, k2)-routing can be executed on

D-BSP(n, g(α), `(β)) in optimal time

Trout(k1, k2, n) = O
(
kα

mink
1−α
maxnα + nβ

)
,

where kmin = min{k1, k2} and kmax = max{k1, k2}.

Proof We accomplish (k1, k2)-routing on D-BSP in two phases as follows.

1. For i = log n − 1 down to 0, in parallel within each C
(i)
j , 0 ≤ j < 2i: evenly

redistribute messages with origins in C
(i)
j among the processors of the cluster.

2.4. EFFECTIVENESS OF D-BSP: EXAMPLES 23

2. For i = 0 to log n − 1, in parallel within each C
(i)
j , 0 ≤ j < 2i: send the

messages destined to C
(i+1)
2j to such cluster, so that they are evenly distributed

among the processors of the cluster. Do the same for messages destined to

C
(i+1)
2j+1 .

Note that the above algorithm does not require that the values of k1 and k2 be

known a priori. It is easy to see that at the end of iteration i of the first phase

each processor holds at most ai = min{k1, k22
i} messages, while at the end of

iteration i of the second phase, each message is in its destination (i + 1)-cluster,

and each processor holds at most di = min{k2, k12
i+1} messages. Note also that

iteration i of the first (resp., second) phase can be implemented through a constant

number of prefix operations and one routing of an ai-relation (resp., di-relation)

within i-clusters. Putting it all together, the running time of the above algorithm

on D-BSP(n, g(α), `(β)) is

O

(
log n−1∑

i=0

(
max{ai, di}

(n

2i

)α

+
(n

2i

)β
))

.

The theorem follows by plugging in the above formula the bounds for ai and di

derived above.

Optimality is, again, based on a bandwidth argument. If k1 ≤ k2, consider the

case in which each of the n processors has exactly k1 packets to send; the destinations

of the packets can be easily arranged so that at least one 0-superstep is required

for their delivery. Moreover, suppose that all the packets are sent to a cluster of

minimal size, i.e. a cluster containing 2dlog(k1n/k2)e processors: the time to make the

packets enter the cluster is

Ω

(
k2

(
k1

k2

n

)α

+

(
k1

k2

n

)β
)

= Ω
(
kα

1 k1−α
2 nα

)
. (2.5)

The lower bound is obtained by summing up the quantity (2.5) and the time required

by the 0-superstep. The lower bound for the case k1 > k2 is obtained in a similar

way: this time each processors receives exactly k2 packets, which come from a cluster

of minimal size 2dlog(k2n/k1)e. �

Standard lower bound arguments [SK94] show that this routing time is optimal

for G.

24 CHAPTER 2. THE D-BSP MODEL

As a corollary of Proposition 2.4.3, we can show that, unlike the standard BSP

model, D-BSP is also able to handle unbalanced communication patterns efficiently,

which was the main objective that motivated the introduction of E-BSP [JW96].

Let an (h,m)-relation be a routing instance where each processor sends/receives at

most h messages, and a total of m messages are exchanged. Although a greedy

routing strategy for an (h,m)-relation requires time Θ
(
hnα + nβ

)
on both D-BSP

and BSP, the exploitation of submachine locality in D-BSP allows us to route any

(h,m)-relation in time O
(
dm/neαh1−αnα + nβ

)
, which is equal or smaller than the

greedy routing time and it is optimal for G. Consequently, D-BSP can be as effec-

tive in dealing with unbalanced communication as E-BSP, where the treatment of

unbalanced communication is a primitive of the model.

Chapter 3

Simulation of Shared Memory

Providing a shared address space on a distributed-memory parallel system is a fun-

damental problem which has been extensively investigated over the last two decades

from both a theoretical and a practical perspective. In the theoretical setting, the

problem has been regarded as the simulation of the PRAM model of parallel compu-

tation [FW78] over processor networks [JáJ92]. More precisely, PRAM simulation

requires the development of a scheme to represent m shared objects (called vari-

ables) onto a network of n ≤ m processor/memory pairs in such a way that any

n-tuple of variables can be read/written efficiently by the processors. The time re-

quired by a parallel access to an arbitrary n-tuple of variables is referred to as the

slowdown of the scheme. In this chapter, we present both randomized and deter-

ministic strategies to endow D-BSP with an efficient shared memory abstraction.

Our results indicate that the network locality modeled by D-BSP can be exploited

to reduce significantly the impact of network congestion and bank contention during

an access to the shared address space.

The rest of the chapter is organized as follows. Section 3.1 summarizes existing

results concerning the simulation of shared memory on processor networks. Sec-

tion 3.2 sketches our original contributions on the subject. Section 3.3 focuses on

the memory organization employed by our deterministic scheme, and on the graphs

involved; section 3.4 describes the two main components of the simulation algorithm,

namely the copy selection step (Subsection 3.4.1) and the protocol to access the se-

lected copies (Subsection 3.4.2). Section 3.5 briefly discusses issues related to the

25

26 CHAPTER 3. SIMULATION OF SHARED MEMORY

constructivity of the deterministic scheme. Finally, Section 3.6 describes a simple,

randomized scheme for shared memory access that exhibits optimal slowdown with

high probability.

3.1 Previous Work

In the literature, the PRAM simulation problem has been solved with both ran-

domized and deterministic schemes. Randomized schemes typically distribute the

variables among the memory modules local to the processors through one (or more)

hash functions, chosen from a suitable universal class. The properties of these

functions guarantee, with high probability, that the variables be evenly distributed

among the modules so that an access to any n-tuple of variables incurs low conges-

tion both at the memory modules and across the network. Randomized schemes

based on this strategy have been proposed to simulate a PRAM step, with high

probability, in O (log log log n log∗ n) time on the complete network [CMadHS00], in

O (log n) time on the butterfly [Ran91] and in O
(
dn1/d

)
time on the d-dimensional

mesh [LMRR94]. Work-optimal randomized schemes are presented in [Val90b], to

simulate an (n log n)-processor PRAM on an n-processor hypercube with slowdown

O (log n), and in [GMR99], to simulate an (n log log n)-processor PRAM on an n-

processor Optical Communication Parallel Computer with slowdown O (log log n).

In contrast, deterministic schemes require a redundant representation of the ad-

dress space where every variable is replicated into ρ copies distributed among the

memory modules through a map which exhibits suitable expansion properties. Such

expansion properties are needed to avoid trivial worst cases, where all of the copies

of some n-tuple of variables are confined within few memory modules, or, more gen-

erally, within a low-bandwidth region of the network. The parameter ρ is referred

to as the redundancy of the scheme. The main idea, originally introduced in [MV84]

and subsequently refined in [UW87], is that any access (read or write) to a variable

is satisfied by reaching only a subset of its copies which is suitably chosen to re-

duce congestion while ensuring consistency (i.e., a read access must always return

the most updated value of the variable). Based on the above idea, deterministic

schemes have been devised in the literature for a number of network topologies. In

3.2. ORIGINAL CONTRIBUTIONS 27

particular, for m polynomial in n, schemes are known to simulate a PRAM step

on a complete network in time O (log n) [AHMP87], and on a mesh of trees with

n processors and n2 switching elements in time O
(
log2 n/ log log n

)
[LPP90]. For

arbitrary values of m, schemes achieving polylogarithmic worst-case slowdown have

been proposed for an expander-based network [HB94], and for an augmented mesh

of trees [Her96]. By employing suitable splitting/combining techniques, the deter-

ministic scheme presented in [HPP01] attains O
(√

n log(m/n)
)

slowdown on the

pruned butterfly (a variant of the fat tree), and O
(
n1/d(log(m/n))1−1/d

)
slowdown

on a d-dimensional mesh. In the same work, a general argument is provided to

bound from below the worst-case slowdown of any deterministic simulation scheme

as a function of certain bandwidth characteristics of the interconnection.

All of the aforementioned deterministic schemes crucially exploit the specific

structure of the underlying network topology and, consequently, are not easily ap-

plicable to other topologies. Moreover, they require redundancy logarithmic in m

and rely on the existence of very powerful expanding graphs of nonconstant degree

for which no explicit construction is known.

The first deterministic schemes that are also fully constructive have been de-

vised in [PP97] for the complete network. For m = Θ
(
n3/2

)
, m = Θ (n2) and

m = Θ (n3), these schemes attain worst-case slowdown of O
(
n1/3

)
, O

(
n1/2

)
and

O
(
n2/3

)
, respectively, while using constant redundancy. In a recent work [PPS00],

a deterministic scheme for an n-processor mesh has been presented, which achieves

O (
√

n log n) slowdown and features a novel memory organization based on weakly

expanding graphs that can be explicitly constructed for a range of memory sizes.

Moreover, the memory map exhibits a hierarchical structure tailored to the natu-

ral recursive decomposition of the mesh into submeshes and shows promise to be

portable to other clustered architectures.

3.2 Original Contributions

Building on the techniques of [PPS00], in this chapter we develop a general scheme to

implement shared memory on parallel machines with a clustered structure, achiev-

ing a worst-case slowdown which is optimal, or close to optimal, with respect to

28 CHAPTER 3. SIMULATION OF SHARED MEMORY

the limitations imposed by the machine’s bandwidth/latency characteristics. The

scheme is designed for the D-BSP model, which, as we showed in Chapter 2, can

be efficiently supported on a wide class of clustered architectures by a suitable set-

ting of the model’s parameters: the choice of D-BSP, therefore, allows us to achieve

generality. Our main result is summarized in the following theorem.

Theorem 3.2.1 For any value m upper bounded by a polynomial in n and for

any k ≥ 0 there exists a scheme to implement a shared memory of size m on D-

BSP(n, g(α), `(β)) with redundancy Θ
(
3k
)

and slowdown

O

(
2kn

α+
α(1−α)

2k(2−α) + knβ

)
.

The scheme requires only weakly expanding graphs of constant degree and can be

made fully constructive for m = O
(
n3/2

)
and α ≥ 1/2.

(Recall that D-BSP(n, g(α), `(β)) was defined in Section 2.2 as an n-processor D-BSP

where the bandwidth and latency parameters for a cluster C are set to |C|α and |C|β,

respectively.) The following corollary is an immediate consequence of the theorem.

Corollary 3.2.2 For any value m upper bounded by a polynomial in n there exists

a scheme to implement a shared memory of size m on D-BSP(n, g(α), `(β)) with

optimal slowdown O
(
nβ
)

and constant redundancy, when α < β, and slowdown

O (nα log n) and redundancy O
(
log1.59 n

)
, when α ≥ β. The scheme requires only

weakly expanding graphs of constant degree and can be made fully constructive for

m = O
(
n3/2

)
and α ≥ 1/2.

The importance of the above results is twofold. First, the proposed scheme is gen-

eral and can be implemented on any machine supporting the D-BSP abstraction.

Second, Corollary 3.2.2 shows, for the first time in the literature, that optimal worst-

case slowdowns for shared memory access are achievable with constant redundancy

for machines where latency overheads dominate over those due to bandwidth limi-

tations, as is often the case in network-based parallel machines. On the other hand,

the lower bound proved in [HPP01] shows that under reasonable assumptions, the

performance of our scheme is not far from optimal for bandwidth-limited machines.

3.2. ORIGINAL CONTRIBUTIONS 29

Indeed, consider a machine that supports D-BSP(n, g(α), `(β)) with α ≥ β, and as-

sume that each subset of processors associated with an i-cluster is connected to the

rest of the network by O ((n/2i)1−α) links (note that such a machine cannot support

a D-BSP(n, g(α′), `(β)) with α′ < α). The result in [HPP01, Theorem 9] implies that

the minimal slowdown achievable by any scheme like ours which dispatches an indi-

vidual message for each copy to be accessed is Ω (nα(log(m/n)/ log log(m/n))1−α),

and that in order to achieve such slowdown redundancy Ω (log(m/n)/ log log(m/n))

is necessary.

Note also that, unlike the other classical deterministic schemes in the literature,

the above scheme solely relies on expander graphs of mild expansion, hence it can

be made fully constructive for a significant range of the parameters involved. Such

mild expanders, however, are only able to guarantee that the copies of an arbitrary

n-tuple of variables be spread among O (n1−ε) memory modules, for some constant

ε < 1. Hence the congestion at a single memory module can be as high as O (nε)

and the clustered structure of D-BSP is essential in order to achieve good slowdown.

In fact, any deterministic strategy employing these graphs on BSP(n, g, `) could not

achieve better than Θ (gnε) slowdown.

As mentioned before, our scheme builds upon the one presented in [PPS00],

whose design exploits the recursive decomposition of the underlying interconnection

to provide a hierarchical, redundant representation of the shared memory based on

k + 1 levels of logical modules, an organization which fits well with the hierarchical

nature of D-BSP. More specifically, each variable is replicated into r = O (1) copies,

and the copies are assigned to r logical modules of level 0. In turn, the logical

modules at the i-th level, 0 ≤ i < k are replicated into three copies, which are

assigned to three modules of level i+1. This process eventually creates r3k = Θ
(
3k
)

copies of each variable, and 3k−i replicas of each module at level i. The number

(resp., size) of the logical modules decreases (resp., increases) with the level number,

and their replicas are assigned for storing to distinct subnetworks of appropriate size.

The key ingredients of the above memory organization are represented by the

bipartite graph that governs the distribution of the copies of the variables among

the modules of the first level, and by the graphs which govern the distribution of

30 CHAPTER 3. SIMULATION OF SHARED MEMORY

Problem Execution Time

Broadcast O
(
nα + nβ

)
Prefix computation O

(
nα + nβ

)
k-sorting O

(
knα + nβ

)
if k = poly(n)

(k1, k2)-routing
O
(
kα

mink
1−α
maxnα + nβ

)
,

where kmin = min{k1, k2} and kmax = max{k1, k2}

Table 3.1: execution times on D-BSP(n, g(α), `(β)) of some common primitives.

the replicas of the modules at the subsequent levels. The former graph is required

to exhibit some weak expansion property and its existence can always be proved

through combinatorial arguments although, for certain memory sizes, explicit con-

structions can be given. In contrast, all the other graphs employed in the scheme

require expansion properties that can be obtained by suitable modifications of the

BIBD graph [HJ86], and can always be explicitly constructed. In fact, the choice of

these latter graphs is where the memory organization adopted here mainly differs

from the one presented in [PPS00]. In particular, unlike [PPS00], these graphs are

not simply subgraphs of the BIBD, but their construction requires some nontrivial

rearrangements to make them suitable for the clustered structure of D-BSP while

maintaining good expansion properties.

For an n-tuple of variables to be read/written, the selection of the copies to be

accessed and the subsequent access to the selected copies are performed via suitable

protocols, similar to the ones in [PPS00], which can be implemented through a com-

bination of prefix, sorting and routing primitives: to obtain the results stated above,

we employ efficient D-BSP implementations for these primitives, including an opti-

mal implementation of (k1, k2)-routing. Such primitives were extensively analyzed

in Section 2.4; for ease of reference, the results of the analysis are summarized in

Table 3.1.

3.3 Memory Organization

The Hierarchical Memory Organization Scheme (HMOS) that governs the distri-

bution of the copies of the m shared variables among the local memories of the n

3.3. MEMORY ORGANIZATION 31

V

(variables)
U (0-modules)0 U (1-modules)1 U (2-modules)2

u01

u02

u03

u04

u05

u06

u07

u08

u11

u12

u13

u14

u21

u22

u23

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

Figure 3.1: a sample HMOS built upon |V | = m = 8 variables, with k = 2 levels of

i-modules, |U0| = 8 0-modules, |U1| = 4 1-modules, |U2| = 3 2-modules and r = 5.

To reduce the size of the HMOS, thus making it easier to read, the figure does not

respect all the constraints on the parameters that are listed in Section 3.3. For the

same reason, only the edges associated with the copies of variable v4 are shown.

processors is a cascade of bipartite graphs obtained as a modification of the one

introduced in [PPS00]. A sample HMOS is depicted in Figure 3.1. In what follows

we recall how the HMOS is structured and point out the differences with the version

in [PPS00].

Let V denote the set of variables, and let Ui, 0 ≤ i ≤ k, denote a set of nodes

referred to as i-modules, where k = O (log log n) is a suitable nonnegative integer

that will be specified in the analysis. The Ui’s can be regarded as nested collections

of variables, and are obtained as follows. First, each variable is replicated into

r = O (1) copies, r odd, which are assigned to distinct 0-modules. The contents of

each 0-module, viewed as an indivisible unit, are in turn replicated into 3 copies,

which are assigned to distinct 1-modules. In general, the contents of each (i − 1)-

32 CHAPTER 3. SIMULATION OF SHARED MEMORY

v
2

v
3

v
4

v
5

v
6

v
8

v
7

V

(variables)

v
1

v
1

v
3

v
4

v
6

v
7

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
3

v
4

v
6

v
8

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
2

v
5

v
6

v
7

v
8

u
01

u
02

u
03

u
04

u
05

u
06

u
07

u
08

u
11

u
12

u
13

u
14

u
21

u
22

u
23

U (0-modules)0 U (1-modules)1 U (2-modules)2

u
11

u
12

u
13

u
14

u
11

u
12

u
13

u
14

u
11

u
12

u
13

u
14

Figure 3.2: contents of i-modules, 0 ≤ i ≤ 2, according to the HMOS of Figure 3.1.

Variable v4 is first replicated into r = 5 copies, which are assigned to 0-modules,

then 3 copies of each such module are assigned to suitable 1-modules. Finally, each

1-module is replicated into 3 copies. As a whole, the process creates 5 · 32 = 45

copies of v4.

module, viewed as an indivisible unit, are replicated into 3 copies, which are assigned

to distinct i-modules, for 0 < i ≤ k. The above process will eventually create 3k−i

replicas of each i-module and r3k copies per variable. An example of the content

of i-modules and of the whole memory is given by Figures 3.2 and 3.3. We will

reserve the term copy to denote the replica of a variable, and i-block to denote the

replica of an i-module. (Note that with this terminology k-modules and k-blocks

coincide.) A k-module is composed of (k − 1)-blocks, which in turn are composed

of (k − 2)-blocks, and so on. Finally, 0-blocks contain copies of variables.

The mapping between variables and 0-modules is represented by a bipartite graph

(V, U0), where each variable v ∈ V is adjacent to the r 0-modules whose 0-blocks

hold the copies of v. Similarly, the mapping between (i− 1)-modules and i-modules

is represented by a bipartite graph (Ui−1, Ui), 1 ≤ i ≤ k, where each (i− 1)-module

3.3. MEMORY ORGANIZATION 33

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
3

v
4

v
6

v
8

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
3

v
4

v
6

v
8

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
3

v
4

v
6

v
8

v
2

v
5

v
6

v
7

v
8

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
4

v
5

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
2

v
4

v
5

v
7

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

v
1

v
3

v
4

v
6

v
7

v
2

v
5

v
6

v
7

v
8

v
2

v
3

v
6

v
7

v
8

v
1

v
3

v
4

v
5

v
6

v
1

v
2

v
3

v
5

v
8

v
1

v
3

v
4

v
6

v
8

0-modules 1-modules 2-modules Whole memory

Figure 3.3: contents of the aggregate memory of the D-BSP according to the HMOS

of Figure 3.1. The mapping process ensures that each i-block, 0 < i ≤ k, is recur-

sively assigned to a distinct D-BSP cluster.

u is adjacent to the 3 i-modules whose i-blocks contain the (i − 1)-blocks of u.

We assume that m = nτ , for some constant τ > 1. Let us fix m0 = |U0| = n and

mi = |Ui| = Θ
(
n1/2i

)
, for 1 ≤ i ≤ k. We assume that the quantity di = d3mi−1/mie

is a power of 2, and that every u ∈ Ui has degree at most di in (Ui−1, Ui), for

1 ≤ i ≤ k. Later, we will show how the various graphs can be chosen to satisfy

all of the above constraints on the parameters while exhibiting suitable expansion

properties, which are needed to ensure low parallel access time.

The HMOS is mapped onto the D-BSP by assigning each i-block to a cluster

of appropriate size in the following recursive fashion. Each of the mk k-blocks is

assigned to a distinct cluster with tk = n/2dlog mke processors. The (at most) dk

(k − 1)-blocks contained in a k-block, as prescribed by (Uk−1, Uk), are assigned to

distinct subclusters of size tk−1 = tk/dk of the cluster assigned to the k-block. In

general, for 2 ≤ i ≤ k, the (at most) di (i − 1)-blocks contained in an i-block are

assigned to distinct subclusters of size ti−1 = ti/di of the cluster assigned to the

i-block. Consequently, an i-block, 1 ≤ i ≤ k, is mapped to a cluster with

ti =
n

2dlog mke
∏k

j=i+1 dj

(3.1)

processors. Note that a certain number of processors may be wasted at each level

of the mapping; a processor is wasted if no copies of variables are assigned to it.

The presence of wasted processors is undesirable since it may lead to an asymptotic

increase of storage space in the processors which are actually assigned some of the

34 CHAPTER 3. SIMULATION OF SHARED MEMORY

mr3k copies of variables. Anyway, the following lemma shows this is not the case.

Lemma 3.3.1 For 1 ≤ i ≤ k, the mapping process assigns an i-block to a cluster

containing

ti = Θ
(
3i−kn1−1/2i

)
(3.2)

processors.

Proof If i = k then the bound can be easily found by observing that 2dlog mke =

Θ (mk) and mk = Θ
(
n1/2k

)
. The case 1 ≤ i < k is a bit more involved since it is

necessary to explicitly bound the quantity (3.1). The upper bound follows from the

fact that di ≥ 3mi−1/mi, therefore

ti ≤
n

mk

∏k
j=i+1 3mj−1/mj

=
n

mk · 3k−imi/mk

= O

(
n

3k−imi

)
.

The lower bound is obtained by leveraging on the inequality di ≤ 3mi−1/(mi − 1),

which, if n is sufficiently large, makes it possible to bound the product in (3.1) as:

k∏
j=i+1

dj = Ω

(
3k−i mi

mk

k−1∏
j=i+1

mj

mj − 1

)
= Ω

(
3k−i mi

mk

k−1∏
j=i+1

(
1 +

1

n1/2j − 1

))
. (3.3)

Lengthy but straightforward calculations show that the product that appears in

the right-hand side of (3.3) is upper bounded by a suitable constant, hence ti =

Ω
(
n/(3k−imi)

)
and the thesis follows. �

This property shows that each of the 3k−imi i-blocks is assigned to a cluster of

asymptotically maximal size, so wasted processors and memory size increase are

contained within constant factors. Moreover, ti is a power of 2 and, since k =

O (log log n), we have that ti > 1 if n is large enough.

The mapping of the HMOS is completed by evenly distributing the (at most)

d1 = Θ (
√

n) 0-blocks contained in a 1-block among the t1 = Θ
(√

n/3k
)

processors

of the cluster assigned to the 1-block; each such processor stores the copies of the

variables contained in every 0-block it receives. In this way, a processor stores a

total of O
(
r3km/n

)
copies of variables, which ensures a balanced distribution of

the copies among the processors.

3.3. MEMORY ORGANIZATION 35

As mentioned before, suitable expansion properties are required of the component

graphs of the HMOS in order to ensure that, for any set of variables to be accessed,

their copies be well spread among the processors’ memories, thus yielding low access

time.

Definition 3.3.2 Let G = (X, Y) be a bipartite graph where each node in X has

degree d. For 0 < σ ≤ 1, 0 < ε < 1 and 1 ≤ µ ≤ d, G has (σ, ε, µ)-expansion if for

any subset S ⊆ X, S ≤ σ|X|, and for any set E of µ|S| edges, µ outgoing edges

for each node in S, the set ΓE(S) ⊆ Y reached by the chosen edges has cardinality

|ΓE(S)| = Ω (|S|1−ε).

We will choose (V, U0) to have odd input degree r and output degree mr/n, and

to exhibit (n/m, ε, (r + 1)/2)-expansion, where ε < 1 is a suitable constant that

will be chosen by the analysis. In [PPS00, Lemma 5.1], the existence of such a

graph is proved for ε = 2(τ − 1)/(r + 1) through the probabilistic method; however,

explicit constructions are currently known for certain ranges of the parameters (see

Section 3.5).

The main difference between the HMOS presented here and the one in [PPS00]

concerns the structure of the graphs (Ui−1, Ui), 1 ≤ i ≤ k. Specifically, we need these

graphs to exhibit similar expansion and constructivity properties as in [PPS00], but

the choice of the graphs is now influenced by further, stricter constraints. The main

constraint is on the degree of the nodes in every bipartite graph (Ui−1, Ui) of the

HMOS: to be precise the outdegree of each node x ∈ Ui−1 must be equal to the

number of replicas of the (i − 1)-module associated with x, i.e. it must be exactly

3; furthermore, the indegrees of the nodes in Ui must be powers of 2, and they

must be all equal within constant factors. The last requirement is crucial for an

efficient mapping of i-blocks to clusters; note that this requirement was not present

in [PPS00] because the n-node mesh studied in that work exhibits a fine, regular

interconnection topology that allows an efficient partitioning into submeshes even if

such submeshes do not have exactly the same size and shape.

Regardless of the constraints imposed by D-BSP, it is still possible to obtain the

bipartite graphs (Ui−1, Ui) by suitably manipulating BIBD graphs as in [PPS00];

however, the new scenario requires nontrivial modifications to the construction pre-

36 CHAPTER 3. SIMULATION OF SHARED MEMORY

sented in that paper. A BIBD is formally defined as follows.

Definition 3.3.3 A Balanced Incomplete Block Design [HJ86] with parameters z

and q, or (z, q)-BIBD, is a bipartite graph (X, Y) such that |Y | = z, the degree of

each node in X is q, and for any two nodes y1, y2 ∈ Y there is exactly one node

x ∈ X adjacent to both.

It is straightforward to see that a (z, q)-BIBD has z(z − 1)/(q(q − 1)) input nodes,

and that the degree of each output node is (z−1)(q−1). BIBDs are a good starting

point for building the desired graphs, since they provide sufficient expansion. A

proof of this fact is provided in [PPS00, Lemma 3.3 and Corollary 3.4]; for ease of

presentation, we recall these results below.

Lemma 3.3.4 Let (X, Y) be a (z, q)-BIBD. Consider a node ȳ ∈ Y and a subset

S ⊆ X such that any node in S is adjacent to ȳ. Let E be a set of ν|S| edges, ν ≤ q,

containing ν outgoing edges from each x ∈ S, and let ΓE(S) denote the set of nodes

of Y reached by the chosen edges. Then, |ΓE(S)| ≥ (ν − 1)|S|+ 1.

Corollary 3.3.5 A (z, q)-BIBD has (1, 1/2, µ)-expansion for every 2 ≤ µ ≤ q.

By relying on the above results, the following lemma provides the crucial technical

step through which the new graphs are obtained.

Lemma 3.3.6 For every positive integer w, a bipartite graph G = (X, Y) with

|X| = w can be explicitly constructed such that

(i)
√

6w < |Y | < 6 + 6
√

6w;

(ii) every node of X has degree 3;

(iii) every node of Y has degree at most d = d3w/|Y |e, and d is a power of 2;

(iv) for every subset S ⊂ X whose nodes are all adjacent to some y ∈ Y and

for every selection of ν|S| edges, ν incident on every s ∈ S, the nodes of Y

reached by the selected edges are at least (ν − 1)|S|/4 + 1.

3.3. MEMORY ORGANIZATION 37

Proof The base GBIBD of our construction is a (z, 3)-BIBD, where z is the smallest

power of 3 such that |A| ≥ w. By employing the techniques presented in [PPS00]

we can extract a subgraph G′ = (X,B) of GBIBD with X ⊆ A, |X| = w, and such

that each node of X has degree 3 and each node of B has degree either b3w/zc or

d3w/ze.

Let d be the largest power of 2 not exceeding b3w/zc, and let B = {bi : 0 ≤ i <

z}. We index the edges of G′ from 1 to 3w so that all edges incident on the same

node bi have consecutive indices, and, for j < i, edges incident on bj have indices

smaller than those incident on bi. Observe that by the BIBD property, for every

0 < i < z there is at most one node x ∈ X adjacent to both bi−1 and bi: this allows

us to rearrange the indices of the edges incident on bi, for every i, so that if there

are two edges (x, bi−1) and (x, bi), for some x ∈ X, the indices of these two edges

differ by at least d. This is obtained by sequentially examining all pairs of nodes

〈bi−1, bi〉 starting from 〈b0, b1〉: if there exists a pair of edges (x, bi−1) and (x, bi), for

some x ∈ X, then the indexing is changed so that (x, bi−1) is given the lowest index

among the edges incident on bi−1, and (x, bi) is given the lowest index among the

edges incident on bi. Note that Step i of this procedure does not disrupt the work

done in the previous steps: if for some x′ ∈ X there exists a pair of edges (x′, bi−2)

and (x′, bi−1), which has been dealt with in Step i − 1, then the distance between

the indices of these edges can only increase as a consequence of Step i.

We construct G = (X, Y) by grouping the edges of G′ into d3w/de bundles of

d consecutively indexed edges each (the last bundle may have less than d edges),

and by creating a distinct node of Y for each bundle, which becomes the new right

endpoint for all edges in the bundle.

Note that Properties (ii) and (iii) stated in the lemma follow easily from the

above construction. To show that Property (i) holds, observe that the choice of z

ensures that w ≤ |A| < z2/6, whence |Y | ≥ |B| = z >
√

6w. Similarly, the upper

bound on |Y | follows from the inequalities w > (z/3−1)2/6 and |Y | ≤ 2|B|. Finally,

the construction of the bundles guarantees that the edges incident on every node

y ∈ Y were previously adjacent to at most 2 nodes of B, therefore for every pair of

nodes in Y there are no more than four nodes in X adjacent to both. By applying

38 CHAPTER 3. SIMULATION OF SHARED MEMORY

this observation to the nodes in S (that are all adjacent to a single node y ∈ Y) it

is straightforward to show that for each y′ ∈ Y , y′ 6= y, there are at most 4 nodes of

S adjacent to y′. Let now Γ ⊆ Y be the set of nodes reached by the selected edges:

from the previous observations, Γ has cardinality at least (ν − 1)|S|/4 + 1. �

As an immediate corollary of the above lemma, it is easy to prove that (Ui−1, Ui)

still has good expansion properties.

Corollary 3.3.7 The bipartite graph (Ui−1, Ui) has (1, 1/2, µ)-expansion for 1 ≤
i ≤ k and µ ∈ {2, 3}.

Proof To prove that the corollary holds, it is enough to show that |ΓE(S)| >√
(µ− 1)µ|S|/4; by applying Property (iv) stated in Lemma 3.3.6, this inequality

follows easily. �

Given U0, we apply Lemma 3.3.6 to construct the graph (U0, U1), thus fixing the

size of U1. Once the size of U1 is known, we apply the lemma again to construct the

graph (U1, U2), thus fixing the size of U2. By iterating this process we can construct

every graph (Ui−1, Ui), 1 ≤ i ≤ k. By Property (i) of Lemma 3.3.6, such a process

yields mi = |Ui| = Θ
(
n1/2i

)
, for 1 ≤ i ≤ k, as required.

3.4 Access Protocol

Suppose that m shared variables are distributed among the n D-BSP processors

according to the HMOS described above. In this section, we show how any n-tuple

of variables can be efficiently accessed when every processor requires a read or write

access to a distinct variable. Note that the case of concurrent accesses to the same

variable can be reduced to the case of exclusive accesses by means of straightforward,

sorting-based techniques which do not asymptotically affect the overall running time.

The access protocol has the same structure as the one presented in [PPS00], but it

differs in the implementation, which fully exploits the explicit hierarchical nature of

the D-BSP model.

Let S denote the set of variables to be accessed, with every processor in charge of

a distinct variable of S. As customary in redundant shared memory implementation

3.4. ACCESS PROTOCOL 39

schemes, a suitable set of copies for the variables in S must be chosen, so that access-

ing these copies will enforce data consistency and generate low memory contention

and network congestion. We first explain how copy selection is accomplished and

then show how the selected copies can be efficiently reached.

3.4.1 Copy Selection

The hierarchical structure of the HMOS provides a geographical distribution of

the copies into the D-BSP clusters. Copy selection essentially aims at limiting the

number of copies that have to be accessed in any block at any level of the HMOS,

in order to reduce the traffic into/from the cluster storing the block. Consider a

directed version H of the HMOS, where edges in every constituent bipartite graph

are directed from the left to the right node set. Note that H is a dag and that

the r3k copies of a variable v are in one-to-one correspondence with the source-sink

paths of the subdag Hv ⊂ H induced by v and by all of its descendants. In order to

guarantee consistency, we require that the selected copies for every variable v ∈ S

form a target set, defined as follows.

Definition 3.4.1 A set of copies Cv of v is a target set for v if, by coloring the

nodes in Hv along the paths corresponding to the copies in Cv, it turns out that each

colored node has a majority of its children colored.

Specifically, µ = (r + 1)/2 children of the root v and two children of every colored

node x 6= v must be colored. It is easy to see that any two target sets for v share at

least one copy. Consistency is enforced since a read access will always reach at least

one most updated copy, which can be identified by means of timestamps [UW87].

Copy selection for the set of variables S is accomplished in k + 1 iterations,

numbered from 0 to k, during which in every Hv, v ∈ S, the nodes along the paths

corresponding to the copies being selected are colored level by level from the source

to the sinks. Since, in general, a node of the HMOS belongs to several Hv’s, we use

a distinct color γv for each variable v ∈ S, and allow a node to be assigned a set

of colors. Initially, the color set of every node is empty. Iteration 0 assigns the set

{γv} to the source v and adds γv to the color sets of µ of its adjacent 0-modules, for

40 CHAPTER 3. SIMULATION OF SHARED MEMORY

every v ∈ S. Iteration i, 0 < i ≤ k, selects two adjacent i-modules for every colored

(i− 1)-module u, and adds to their color sets the one assigned to u. (Clearly, if an

i-module is selected for two or more colored (i − 1)-modules, it receives the union

of the color sets of these (i − 1)-modules.) In this fashion, for every v ∈ S, at the

end of Iteration i the nodes whose color sets contain γv form exactly µ2i distinct

paths from the source to nodes at level i in Hv. We call such paths γv-colored paths.

We choose Cv as the set of copies of v corresponding to the µ2k γv-colored paths

in Hv at the end of the last iteration. In order to identify the selected copies of

each v ∈ S, the processor issuing the access request for v keeps track of the coloring

being performed on Hv.

We define the weight w(u) of an i-module u ∈ Ui, 0 ≤ i ≤ k, as the sum, over all

v ∈ S, of the number of γv-colored paths containing u. The above coloring ensures

that for every u ∈ Ui with nonempty color set, only 2k−i i-blocks of u contain copies

in
⋃

v∈S Cv, with exactly w(u) copies per block. Using the expansion properties of the

HMOS, we are able to establish suitably low bounds for the w(u)’s. The following

lemmas provide such bounds and evaluate the running times of the iterations on

D-BSP(n, g(α), `(β)).

Lemma 3.4.2 If (V, U0) has (n/m, ε, µ)-expansion, Iteration 0 can be executed in

time O
(
nα + nβ

)
, in such a way that, for every u ∈ U0

w(u) = O (nε) .

Proof At the beginning of the iteration, every processor Pv in charge of a variable

v ∈ S creates r packets of type [Pv, v, u], where u is the name of a distinct 0-module

adjacent to v in Hv. Upon creation, all packets are regarded as unmarked. Then,

the following steps are executed until µ packets for each variable are marked and all

other packets are destroyed.

1. (Sort) Sort all unmarked packets by their third component (i.e., the associated

0-module).

2. (Select) Let a be a suitable constant. For each u ∈ U0, if there are at most

arnε packets with third component u in the sorted sequence, then all such

3.4. ACCESS PROTOCOL 41

packets are marked. Otherwise, none of them is marked. Subsequently, all the

packets are sent back to their origins.

3. (Count) For each v ∈ S, the total number of marked packets relative to v

are counted. If these are at least µ, then exactly µ of them are kept and the

remaining µ− 1 (either marked or unmarked) are destroyed.

Finally, for every v ∈ S the nodes in Hv corresponding to the µ marked packets

picked for v receive color γv. Based on the expansion of (V, U0) it can be shown

[PPS00, Lemma 4.4] that at the end of the whole procedure the bound on w(u)

holds for every u ∈ U0; moreover, after the i-th execution of the Sort, Select and

Count steps, packets relative to at most n/2i variables remain unmarked. Hence,

the i-th execution of these three steps can be implemented through r-sorting and

prefix within an (i − 1)-cluster, which yields the desired running time by applying

the results of Propositions 2.4.1 and 2.4.2. �

Lemma 3.4.3 For 1 ≤ i ≤ k, Iteration i can be executed in time O
(
2inα + nβ

)
in

such a way that, for every u ∈ Ui

w(u) = O
(
2in1−(1−ε)/2i

)
.

Proof We can adopt the same implementation of Iteration i as in [PPS00]. Let Pv

be the processor in charge of variable v. At the beginning of Iteration i, Pv contains

a certain number of packets of type

[Pv, v, u, hv,u],

where u is a colored (i− 1)-module and hv,u is the number of distinct colored paths

from v to u; for each v ∈ S the overall number of such paths is µ2i−1. (If i > 1 the

packets are received from the previous iteration, otherwise they are easily created

by adding a fourth component hv,u = 1 to the packets which survived Iteration 0.)

Iteration i is composed of the following steps.

1. (Sort) Sort all packets by their third component (that is, by the associated

(i− 1)-module).

42 CHAPTER 3. SIMULATION OF SHARED MEMORY

2. (Create module-packets) For each group of packets associated with an (i− 1)-

module u ∈ Ui−1, elect a leader processor Pu (for instance, choose as leader the

processor with the lowest index among those containing packets in the group).

Using a prefix algorithm, Pu calculates the weight

w(u) =
∑
v∈S

hv,u,

then it creates 3 module-packets, which are auxiliary packets that will be de-

stroyed at the end of the iteration. A module-packet is a 4-tuple

[Pu, u, γ(u, j), w(u)], for j = 1, 2, 3,

where γ(u, 1), γ(u, 2) and γ(u, 3) identify the 3 i-modules adjacent to u.

3. (Sort module-packets) Sort the module-packets lexicographically by their third

and fourth components.

4. (Select module-packets) For each i-module x ∈ Ui, select a maximal set Mx of

module packets with third component x so that∑
[Pu,u,x,w(u)]∈Mx

w(u) ≤ cµ2i−1
(
n1−(1−ε)/2i

+ n1−(1−ε)/2i−1
)

,

with c a suitable constant that will be fixed later. Note that Mx has at most

3 elements. When the sets have been prepared, all the module-packets are

sent back to the processors which created them, then each leader processor Pu

counts the number hu of its packets that have been selected: if hu < 2, then

Pu selects 2 − h extra module-packets from the 3 − h that were not chosen

before, otherwise, Pu picks out 2 module-packets among those previously se-

lected. In both cases, at the end of the procedure each leader processor owns

exactly 2 marked packets: we can denote them with [Pu, u, γ(u, j1), w(u)] and

[Pu, u, γ(u, j2), w(u)].

5. (Append) Send the labels γ(u, j1) and γ(u, j2) to all processors in the group

of Pu, then destroy the module-packets and append such labels to the original

packets. Finally, send all packets back to the processors that contained them

at the beginning of the first (Sort) step.

3.4. ACCESS PROTOCOL 43

6. (Color) For each modified packet [Pv, v, u, hv,u, γ(u, j1), γ(u, j2)] received by

processor Pv, add color γv to the color sets of the i-modules γ(u, j1) and

γ(u, j2). Moreover, for each newly marked node u′ ∈ Ui create a new packet

[Pv, v, u′, hv,u′], where hv,u′ is the sum of the hv,u’s in all the modified packets

which contain u′ as the fifth or sixth component. The newly-created packets

are passed to the next iteration, while the old ones are discarded.

Iteration i essentially requires a constant number of O (2i)-sorting, broadcast and

prefix operations; the running time follows from Propositions 2.4.1 and 2.4.2. The

bound on w(u) is obtained by repeating the argument in [PPS00, Lemma 4.5] and

tuning the constants to reflect the different expansion properties of the graphs de-

fined in Lemma 3.3.6 with respect to the ones adopted in that paper; to be precise,

it can now be proved that there is a suitable constant c ≥ 12 such that, at the end

of Iteration i, w(u) ≤ cµ2in1−(1−ε)/2i
for each u ∈ Ui. �

The following theorem is an immediate consequence of the above lemmas and the

preceding discussion.

Theorem 3.4.4 Copy selection requires time O
(
2knα + knβ

)
and ensures that ev-

ery i-block, 0 ≤ i ≤ k, contains at most O
(
2in1−(1−ε)/2i

)
selected copies.

3.4.2 Access to the Selected Copies

After copy selection is completed, for every v ∈ S the processor in charge of v

creates µ2k distinct messages to access the copies in Cv. Each message is routed to

its destination (i.e., the processor whose memory stores the requested copy) where

the read/write access is performed. (For the case of read accesses, the return of the

accessed data to the requesting processors is dealt with in a symmetric fashion, hence

we omit its description.) Messages are delivered to the destinations in k + 1 stages

through smaller and smaller clusters, thus taking advantage of the good distribution

of the copies among the i-blocks, for every i.

For 1 ≤ i ≤ k, let τi = log n − log ti and recall that every i-block is assigned to

a distinct cluster with ti processors, that is, a τi-cluster. Let also τk+1 = 0. The

stages are numbered from k + 1 down to 1. For k + 1 ≥ i ≥ 2, Stage i is executed

44 CHAPTER 3. SIMULATION OF SHARED MEMORY

in parallel and independently in every τi-cluster and sends all messages residing in

the cluster to arbitrary positions in the internal τi−1-clusters associated with their

destination (i− 1)-blocks, in such a way that the processors in the same τi−1-cluster

receive approximately the same number of messages. The intermediate destination

of each message is easily established via sorting and ranking. Finally, in Stage 1

every message is sent to its final destination, in parallel and independently within

every τ1-cluster.

Let δi be the maximum number of messages held by any processor at the begin-

ning of Stage i, k+1 ≥ i ≥ 1. By virtue of the message balancing described above, δi

is upper bounded by the maximum number of selected copies within a single i-block

divided by the size of a τi-cluster. Moreover, at the end of Stage 1, O (nε) messages

per 0-block reach the processor storing the block in its local memory. Since the

number of 0-blocks assigned to a single processor is Θ
(
3k
)
, the maximum number

of messages delivered to a processor at the end of the access protocol is δ0 = O
(
3knε

)
.

By plugging in the bounds derived in Theorem 3.4.4 and Equation (3.2), we obtain:

δi =

 µ2k for i = k + 1,

O
(
2i3k−inε/2i

)
for k ≥ i ≥ 0.

Stage i can be easily implemented by means of a constant number of δi-sorting

and prefix operations and one instance of (δi, δi−1)-routing within τi-clusters. From

Propositions 2.4.1, 2.4.2 and 2.4.3 it then follows that the time required to access

the selected copies is

O

((
2kn

(1−α)ε

2k +
k∑

i=1

2i3(1−α)(k−i)n
(2−α)ε−α

2i

)
nα + knβ

)
. (3.4)

Note that the above time always dominates over the time for copy selection. Let

us now choose r so that the expansion parameter ε of (V, U0) is strictly less than

α/(2 − α). Simple manipulations of Equation (3.4) then suffice to prove that an

n-tuple of variables can be accessed by the D-BSP processors in time

O

(
2kn

α+
α(1−α)

2k(2−α) + knβ

)
. (3.5)

In order to achieve the best possible tradeoff between performance and redundancy

on a specific D-BSP(n, g(α), `(β)), we need to choose a suitable value for k as a

3.5. CONSTRUCTIVITY ISSUES 45

function of α and β. More specifically, when α < β, it suffices to choose k = O (1)

large enough to obtain optimal O
(
nβ
)

slowdown with constant redundancy. This

result demonstrates that optimal worst-case slowdown is achievable on machines

where delays due to latency dominate over those due to bandwidth. Instead, when

α ≥ β, by choosing k = log log n, we obtain a minimal slowdown of O (nα log n)

with redundancy Θ
(
loglog 3 n

)
= O

(
log1.59 n

)
.

3.5 Constructivity Issues

It must be remarked that the performance of the access protocol analyzed in the

previous section relies on the (n/m, ε, µ)-expansion of (V, U0). Although such level

of expansion is considerably milder than those required by most schemes in the lit-

erature (e.g., ε = O (1/ log n) in [UW87, AHMP87, HPP01]), in general we can only

show the existence of (V, U0) through the probabilistic method. However, unlike the

aforementioned schemes, ours can take advantage of the few explicit constructions

known in the literature. For example, in [PP97] an efficient construction is provided

for a bipartite graph with m inputs, n′ = Θ
(
m2/3

)
outputs, input degree r = 3,

and output degree Θ
(
m1/3

)
, which exhibits (1, 1/3, 2)-expansion. This graph can

be employed to implement (V, U0) for every value m = O
(
n3/2

)
. Note that for

m = o
(
n3/2

)
, the number n′ of output nodes in the graph is o (n). In this case,

in order to obtain |U0| = n, we simply replace each output node by n/n′ new out-

puts, subdividing the incoming edges evenly among these new nodes. Clearly, the

expansion property is not affected by this modification. Also, it is easy to see that

by plugging ε = 1/3 and α ≥ 1/2 in Equation (3.4), the overall running time of

the access protocol reduces to the one stated in Equation (3.5), thus yielding the

constructivity result of Theorem 3.2.1.

3.6 An Optimal Randomized Scheme

As we have already said, randomized schemes (see e.g., [CMadHS00, Ran91]) usually

distribute the variables randomly among the memory modules local to the proces-

sors. As a consequence of such a scattering, a simple routing strategy is sufficient to

46 CHAPTER 3. SIMULATION OF SHARED MEMORY

access any n-tuple of variables efficiently, with high probability. Following this line,

we can give a simple, randomized scheme for shared memory access on D-BSP. As-

sume, for simplicity, that the variables be spread among the local memory modules

by means of a totally random function. As a matter of fact, a polynomial hash func-

tion drawn from a log n-universal class [CW79] suffices to achieve the same results

[MV84], but it takes poly(log n) rather than O (n log n) random bits to be generated

and stored at the nodes. We have:

Theorem 3.6.1 Any n-tuple of memory accesses on D-BSP(n, g, `) can be per-

formed in time

O

blog(n/ log n)c−1∑
i=0

TPREFIX(i) + gblog(n/ log n)c
log n

log log n
+ `blog(n/ log n)c

 (3.6)

with high probability, where TPREFIX(i) denotes the time of a prefix-sum operation

within an i-cluster.

Proof Consider the case of write requests. By regarding the D-BSP clusters as bins,

a standard occupancy argument [MR95] suffices to show that, during an access to

n randomly distributed variables, there will be no more than O (|C|) messages des-

tined to the same cluster C for |C| ≥ log n, and no more than O (log n/ log log n)

messages destined to a single processor, with high probability. According to these

observations, the access is performed in blog(n/ log n)c + 1 steps by first sending

messages to their destination cluster of size log n in a balanced way, then sending

each message to the appropriate processor in a final routing step. More specifically,

in Step i, for 1 ≤ i ≤ blog(n/ log n)c, the messages containing the access requests

are sent to their destination i-clusters, so that they are evenly distributed among

the processors of the cluster: each step requires a constant number of prefix oper-

ations and the routing of an O (1)-relation in (i − 1)-clusters. In the last step, the

messages are directly sent to their final destinations, where the memory access is

performed: by the occupancy argument, the degree of the relation in this case is

O (log n/ log log n), with high probability. The running time stated in Equation 3.6

is obtained by simply summing up the costs of the operations performed in the

various steps of the algorithm.

3.6. AN OPTIMAL RANDOMIZED SCHEME 47

For read accesses, the return journey of the messages containing the accessed

values can be performed by reversing the algorithm for writes, thus remaining within

the same time bound. �

By plugging in Equation (3.6) the time for prefix given by Proposition 2.4.1, we

obtain:

Corollary 3.6.2 Any n-tuple of memory accesses can be performed in optimal time

O
(
nα + nβ

)
on D-BSP(n, g(α), `(β)).

Observe that under a uniform random distribution of the variables among the

memory modules, Θ (log n/ log log n) out of any set of n variables will be stored in the

same memory module, with high probability, hence any randomized access strategy

will require at least Ω
(
nα log n/ log log n + nβ

)
time on a BSP with bandwidth nα

and latency nβ. This lower bound proves that the network locality featured by

D-BSP(n, g(α), `(β)) affords a better simulation slowdown.

48 CHAPTER 3. SIMULATION OF SHARED MEMORY

Chapter 4

Parallelism and Temporal Locality

Most modern, high-performance computer platforms consist of several processors,

each endowed with its local memory, communicating through some interconnection.

When looking at the overall aggregate memory available at the system, one observes

a multi-level hierarchical structure, where lower (fast) levels are internal to the pro-

cessing nodes while upper (slow) levels are implicitly imposed by the interconnection

topology. This is the case, for example, of popular architectures such as clusters of

workstations or UMA and NUMA multiprocessors. The main idea behind the ef-

ficient exploitation of such a hierarchical organization is that an algorithm will be

able to reduce access costs

• by organizing the computation so that the same data be frequently reused

within a short time interval (temporal locality of reference), and that consec-

utive data in memory be involved in consecutive operations (spatial locality);

• by organizing communication so that each processor exchange data mainly

with its near neighbors (network locality).

The performance of applications running on these platforms is determined by the

maximum number of operations performed at a node (computation), and by the

data movements required to bring the data close to the units that have to process

them. These movements can either occur at individual nodes (local accesses) or

involve several nodes (communication).

49

50 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

In the past, the development of fast algorithms has either focused on minimiz-

ing memory access time on sequential hierarchies, or on attaining optimal compu-

tation/communication tradeoffs on parallel architectures with flat local memories.

Moreover, in the latter case, high parallelism has been often pursued under the as-

sumption that performance could then be scaled down linearly with the number of

processors. Such is the case, for instance, of PRAM algorithms designed for a large

number of virtual processors (typically proportional to the input size), or algorithms

for bulk-synchronous models such as BSP [Val90a] and CGM [DFRC96], a BSP vari-

ant where the nodes have a fixed amount µ of memory and every communication

is regarded as a Θ (µ)-relation. In these studies, virtual parallelism is employed to

hide communication latency. It is well known, however, that when implementing

an algorithm designed for many (virtual) processors on a real machine with a fixed

number of processors, in addition to the natural slowdown due to the loss of paral-

lelism (Brent’s lemma [Bre74]), a further slowdown may be introduced if the (larger)

subcomputations entrusted to each individual processor exhibit a low degree of lo-

cality of reference. This chapter offers a rigorous framework integrating parallelism

and memory hierarchy, and showing that in many cases this additional slowdown

can be avoided by designing algorithms that expose parallelism in the structured

fashion prescribed by D-BSP. The focus is on temporal locality; a complete scenario

including spatial locality will be developed in Chapter 5.

The rest of the chapter is organized as follows. Section 4.1 summarizes existing

results concerning parallelism and locality of reference. Section 4.2 gives an overview

of our original contributions on the subject. Section 4.3 defines our reference models.

Section 4.4 describes the simulation scheme, first introducing its main ideas with

two special cases (Subsections 4.4.1 and 4.4.2), and then deriving the general result

(Subsection 4.4.3). Finally, in Section 4.5 we provide evidence of how our simulation

yields efficient hierarchy-conscious sequential algorithms from efficient parallel ones.

4.1 Previous Work

As mentioned before, few works in the literature have dealt with both parallelism and

memory hierarchy in an integrated fashion. The Parallel Hierarchical Memory Model

4.1. PREVIOUS WORK 51

(P-HMM), defined in [VS94b], is a generalization of the sequential HMM model by

[AACS87] consisting of p HMM processors communicating through some powerful

interconnection attached to the fastest levels of the local hierarchies. A similar

model, also featuring block transfer, is the Parallel Memory Hierarchy (PMH) model

of [ACF93]. Unlike P-HMM, in PMH communication occurs via a shared memory

module which is seen as connected to one of the slowest levels of each hierarchy.

Both the P-HMM and the PMH models idealize communication either by assuming

that its cost never dominates the time complexity (P-HMM) or by disregarding

the impact of the interconnection topology (PMH). Another attempt at integrating

parallelism and memory hierarchy is the H-PRAM [HR92], where processors can

be partitioned into clusters operating as independent PRAM machines with smaller

memories. However, in the H-PRAM access costs do not depend on the position of

the data in memory, but solely on the size of the cluster, hence locality of reference

is not captured.

The Md(n, p,m) model introduced by Bilardi and Preparata [BP97, BP99] fea-

tures a better integration of parallelism and memory hierarchy and explicitly de-

scribes the network’s topology. Specifically, an Md(n, p,m) is a d-dimensional mesh

of p HMM nodes where the memory at each node has size nm/p, and access function

f(x) = d(x + 1)/me1/d. The cost for sending a constant-size message from a node

to a neighbor is proportional to the cost of accessing the farthest cell in the node’s

local memory. Although the authors argue that the Md(n, p,m) is the only scalable

architecture under speed of light limitations, its reliance on a specific interconnec-

tion may hamper the portability and generality of algorithm design based on this

model.

In [BP97] it is shown that an Md(n, n,m) can be simulated by an Md(n, p,m),

for p < n and d = 1, 2, with slowdown (n/p)Λ(n, p,m). This provides an analogue of

Brent’s lemma except for the factor Λ(n, p,m), which represents an extra slowdown

due to the interaction with the larger local memories. Such a slowdown, which can

grow up to (n/p)1/d, is proved to be unavoidable for certain computations [BP99].

Note that the Md(n, n,m) being simulated is fine-grained in the sense that each

node has only a constant number of available memory cells (i.e., access time can be

52 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

regarded as a constant).

The translation of parallelism into locality of reference is also studied in [DDH03,

DDHM99, SK97]. These works present strategies for efficiently simulating BSP-

like computations designed for machine configurations with flat local memories on

smaller configurations where a two-level (disk-RAM) hierarchy is provided at each

node. The key of the simulation is a careful exploitation of the disks through striped

access to the data.

4.2 Original Contributions

Continuing along the lines of [BP97, BP99, DDH03, DDHM99], in this chapter we

show that for a wide class of computations, parallelism exposed in a structured

fashion can be fully translated into temporal locality, affording the formulation of a

Brent-like result proving that for such computations no slowdown due to the loss of

locality is incurred when scaling down the number of processors.

Again, our results lay their foundations on the D-BSP model. To deal with tem-

poral locality, we modify the D-BSP definition we gave in Section 2.2 by regarding

each processor as an HMM and setting the cost of communication within a cluster to

be proportional to the cost of accessing the farthest cell in a memory of size equal to

the aggregate size of the cluster processors’ memories. In this fashion, we integrate

memory hierarchy and network by regarding the latter as a seamless continuation

of the former.

Our main technical result is a uniform scheme that simulates any v-processor

D-BSP computation on a v′-processor D-BSP, with v′ ≤ v and the same aggregate

memory size. For a large family of computations, including most prominent ones

(e.g., sorting, FFT and matrix multiplication), our simulation exhibits an optimal

O (v/v′) slowdown, thus providing an analogue of Brent’s lemma. The simulation

is based on a recursive strategy aimed at translating D-BSP submachine locality

into temporal locality on the HMM. The strategy is similar in spirit to the one em-

ployed in [BP01] for porting DAG computations efficiently across sequential memory

hierarchies while retaining temporal locality.

Our results complement those in [BP97, BP99] since they show that the su-

4.3. MACHINE MODELS 53

perlinear slowdown incurred by the simulation of fine-grained algorithms can only

manifest itself for a restricted class of machine-dependent computations, namely

those which take the fullest advantage of fine topological details. For these compu-

tations, some degree of network locality is bound to be lost when transformed into

temporal locality.

Finally, as an important special case, by setting v′ = 1 our simulation can be

employed to obtain efficient hierarchy-conscious sequential algorithms from efficient

fine-grained ones. In this fashion, a large body of algorithmic techniques exhibit-

ing structured parallelism can be effortlessly transferred to the realm of sequential

algorithms for memory hierarchies. We provide evidence of this fact by showing

that, for a number of prominent computations, optimal sequential algorithms can

be obtained in this fashion. In this respect, our work provides a generalization of

the results by [DDH03, DDHM99] to multi-level memory hierarchies.

Recall that in memory hierarchies another type of locality exists, namely spatial

locality, exploitable through the block transfer mechanism. The issue of how to

include spatial locality into our framework will be addressed in Chapter 5.

4.3 Machine Models

4.3.1 HMM

The Hierarchical Memory Model (HMM) was introduced in [AACS87] as a random

access machine where access to memory location x ≥ 0 requires time f(x), for a given

non-decreasing function f(·)1. It is supposed that an n-ary operation (i.e., an oper-

ation involving memory cells x1, . . . , xn) can be completed in time 1 +
∑n

i=1 f(xi),

regardless of the value of n. We refer to such a model as f(x)-HMM. As most works

in the literature, we focus our attention on polynomially bounded access functions.

Definition 4.3.1 A non-decreasing function f(x) is said to be polynomially bounded

if there exists a constant c such that f(2x) ≤ cf(x), for any x.

1If necessary, we will silently assume that f(x) is rounded to the nearest integer.

54 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

Particularly interesting and widely studied special cases are the polynomial function

f(x) = xα and the logarithmic function f(x) = log x. The following two technical

facts are proved in [AACS87].

Fact 4.3.2 If f(x) is polynomially bounded, then the amount of memory available

for an f(x)-HMM algorithm can be doubled while increasing the running time at

most by a constant factor.

Fact 4.3.3 If f(x) is polynomially bounded, then the time to access the first n mem-

ory cells of an f(x)-HMM is Θ (nf(n)).

4.3.2 D-BSP with Hierarchical Memory

To deal with the memory hierarchy in a reasonable way, we equip the original D-BSP

model with hierarchical memory at the processors; a single cost function accounts

for both memory accesses and communication costs in a uniform fashion. We will

refer to this model as a D-BSP(v, µ, f(x)).

Let v be a power of two. A D-BSP(v, µ, f(x)) is a collection of v processors

{Pj : 0 ≤ j < v} communicating through a router, where each processor is an

f(x)-HMM machine with memory size µ. In particular, a D-BSP(1, µ, f(x)) coin-

cides with an f(x)-HMM with memory size µ. As in the original D-BSP, the v

processors are partitioned into 2i fixed, disjoint i-clusters, 0 ≤ i ≤ log v, of v/2i

processors each; the processors of a cluster are capable of communicating among

themselves independently of the other clusters. The clusters form a hierarchical,

binary decomposition tree of the D-BSP machine. A D-BSP(v, µ, f(x)) program

consists of a sequence of labelled supersteps; the type and order of operations dur-

ing an i-superstep, 0 ≤ i ≤ log v, are the same which we have already described in

Section 2.2 for the original D-BSP. If each processor spends at most τ units of time

performing local computation during the superstep, and if the messages that are

sent form an h-relation (i.e., each processor is the source or destination of at most

h > 0 messages), then the cost of the i-superstep is upper bounded by

τ + f(µv/2i) · h.

4.4. THE GENERAL SIMULATION ALGORITHM 55

We call a program full if the communication required by every superstep is a Θ (µ)-

relation, that is, each processor sends/receives an amount of data proportional to

its local memory size. As we will see, several prominent problems can be efficiently

solved by full programs. Also, it is reasonable to assume that any D-BSP com-

putation ends with a global synchronization (i.e., the last superstep executed by a

D-BSP processor is always a 0-superstep).

Note that the communication costs in our variant of the model are as in a stan-

dard D-BSP where both bandwidth and latency parameters within i-clusters are set

to f(µv/2i). Our choice for such parameters aims at creating a seamless hierarchy

of memory access and communication costs. More specifically, the communication

medium is regarded as an extension of the local memory hierarchies, with each mes-

sage sent by a processor in an i-cluster C being charged with the cost of accessing

the farthest memory cell in an f(x)-HMM with memory size equal to the aggregate

memory size of C.

Although in this chapter we deal with arbitrary polynomially bounded access

functions f(x), we will support our findings by considering, as case studies, the

aforementioned polynomial and logarithmic functions. For the polynomial function

f(x) = xα, we observe that when α = 1/d, the D-BSP(v, µ, xα) can be regarded as

an abstraction of the d-dimensional architecture proposed by Bilardi and Preparata

in [BP97] as the only scalable machine in the limiting technology. In fact, this

D-BSP can be simulated on such an architecture with constant slowdown.

4.4 The General Simulation Algorithm

In this section, we present a general scheme to simulate any D-BSP(v, µ, f(x)) pro-

gram on a D-BSP(v′, µv/v′, f(x)), with v′ ≤ v. In order to introduce the main

ideas underlying our simulation strategy, we first consider the simpler case v′ = 1

and f(x) = xα, with α < 1 a positive constant (Subsection 4.4.1). We then de-

scribe suitable modifications that are needed to extend the simulation to the case

of arbitrary polynomially bounded functions (Subsection 4.4.2). Finally, in Subsec-

tion 4.4.3 we remove the assumption v′ = 1.

56 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

4.4.1 Simulation of D-BSP(v, µ, xα) on xα-HMM

Without loss of generality, we can restrict ourselves to consider D-BSP(v, µ, xα)

programs where the labels of consecutive supersteps differ by at most 1: we refer

to these programs as smooth. In a smooth program, an i-superstep can only be

followed by a j-superstep, with |j − i| ≤ 1. Indeed, for any non-smooth program

there is an equivalent smooth program which exhibits the same asymptotic time

complexity. This is easily seen as follows. If f(x) = xα, the cost of communication

grows polynomially with the cluster size, hence one can insert, between any two

consecutive supersteps with labels i and j, with |j − i| > 1, one dummy superstep

for every distinct label between i and j. This transformation increases the time

complexity of the program by at most a constant multiplicative factor.

Consider now a smooth D-BSP(v, µ, xα) program P to be simulated on an xα-

HMM. Let us regard the HMM memory as divided into v blocks, numbered from 0 to

v−1, of µ cells each, with block 0 at the top of memory (i.e., comprising memory cells

0, 1, . . . , µ− 1), and block v− 1 at the bottom. During the course of the simulation

every block will contain the context of a distinct D-BSP processor, that is, an image

of the processor’s local memory at a certain point of execution. At the beginning of

the simulation, block i contains the context of processor Pi, i = 0, 1, . . . , v − 1, but

this association changes as the simulation proceeds. Additional constant-size space

is needed for bookkeeping operations. For simplicity, we assume that O (1) registers

with unit-time access are employed for this purpose. Alternatively, we could use the

memory cells at the top of memory and shift the processors’ contexts down by a

constant amount, thus paying a negligible time penalty.

The simulation of P on HMM is organized in a number of rounds, where a round

simulates the operations prescribed by a certain superstep of P for a certain cluster,

and performs a number of context swaps to prepare the execution of the next round.

Suppose that the supersteps of P are numbered consecutively and let is be the label

of Superstep s, for s ≥ 0 (i.e., Superstep s is executed independently within each

is-cluster). The simulation algorithm is given by the following pseudo-code, where

the loop iterations correspond to rounds.

4.4. THE GENERAL SIMULATION ALGORITHM 57

while true do

1 P ← processor whose context is on top of memory

s← superstep number to be simulated next for P

is ← superstep index to be simulated next for P

C ← is-cluster containing P

2 Simulate Superstep s for cluster C

3 if P has finished its program then exit

{final 0-superstep executed: simulation complete}
4 if is+1 = is − 1 then

Swap the first |C| blocks on top of memory

with the next |C| blocks

During the course of the simulation we say that a D-BSP processor P is s-ready if

for all processors in the is-cluster of P (including P itself) Supersteps 0, 1, . . . , s−1

have been simulated while Superstep s has not yet been simulated. As will be proved

later, the following two invariants are maintained at the beginning of each round.

Let s and C be defined as in Step 1 of the round.

INV1 The contexts of all processors in C are stored in the topmost |C| blocks,

sorted in increasing order by processor number. All processors in C are s-

ready.

INV2 For any other cluster C ′, the contexts of all processors in C ′ are stored in

consecutive memory blocks.

If invariant INV1 holds, the cluster simulation in Step 2 can be correctly performed

as follows.

for j ← 0 to |C| − 1 do

2.1 Swap the contents of memory blocks 0 and j

2.2 Simulate the local operations prescribed by Superstep s

for the processor whose context is in block 0

2.3 Swap the contents of memory blocks j and 0

2.4 Simulate the message exchange prescribed by

the superstep for cluster C

58 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

The message exchange in Step 2.4 can be completed by scanning the output pools

of the processor contexts sequentially and delivering each message to the input pool

in the destination processor’s context. Since by invariant INV1 the contexts of the

processors are sorted by processor number, the location of each input pool is easily

determined based on the processor number.

Theorem 4.4.1 The simulation algorithm is correct.

Proof We first show that the invariants INV1 and INV2 hold at the beginning of

each round: this is proved by induction on the number v of D-BSP processors. The

claim is trivial for the basis v = 1, since in this case, the D-BSP program is simply

a sequence of 0-supersteps, which are simulated in a straightforward fashion one

after the other. Suppose that the claim is true for machines of up to v processors,

and consider the simulation of a program P of t supersteps for a D-BSP with 2v

processors. First, consider the case in which the t supersteps include a single 0-

superstep (which by our former assumption must be the last superstep). If t = 1

then the claim trivially follows. Otherwise, consider Step 4 of the algorithm’s pseudo-

code: the algorithm swaps the contexts of cluster C
(1)
0 with those of the sibling cluster

C
(1)
1 , thus touching memory blocks v/2, . . . , v − 1, only if is+1 = 0. Since is > 0 for

s < t, such a swap never takes place before Superstep t, and the algorithm initially

simulates the first t− 1 supersteps for C
(1)
0 and its subclusters as if it were running

a program for a D-BSP with v processors. By the inductive hypothesis, the two

invariants hold for all the rounds performed in this initial phase, which ends with

a round that simulates superstep t− 1 (a 1-superstep, by the smoothness of P) for

cluster C
(1)
0 . At the end of such a round, the simulation algorithm swaps the contexts

of the processors in C
(1)
0 with those in the sibling cluster C

(1)
1 . Since this is the first

time C
(1)
1 is brought to the top of the HMM memory and the first superstep of P

has label strictly greater than 0, both invariants hold at the beginning of the next

round. The inductive hypothesis can then be applied again for C
(1)
1 , thus showing

that the invariants hold for all rounds up to and including the round that simulates

superstep t− 1 for C
(1)
1 . At the end of this latter round, C

(1)
0 and C

(1)
1 are swapped

back and the next (final) round simulates Superstep t, which, being a 0-superstep,

involves the entire machine. Clearly, the invariants hold at the beginning of the

4.4. THE GENERAL SIMULATION ALGORITHM 59

final round. If P contains more than one 0-superstep, we can split the program into

subprograms terminating at 0-superstep boundaries and iterate the above argument

for each subprogram.

Once INV1 and INV2 are proved to hold, it is easy to see that the simulation

algorithm executes, at the rate of one cluster per round, all the clusters (and, con-

sequently, all the supersteps) that constitute program P . The algorithm terminates

when the topmost processor P has finished its program: since the last superstep

of P is necessarily a 0-superstep, all the other processors of the guest D-BSP ma-

chine have finished their program as well. The correctness of the entire algorithm

immediately follows. �

Let us now evaluate the running time of a generic round of the algorithm, where

a given superstep s for a given is-cluster C is simulated. Clearly, Steps 1 and 3

require constant time. Consider now Step 2, and note that, for Substep 2.2, the

simulation of the local operations of each processor Pj ∈ C incurs no slowdown:

in fact, each D-BSP processor is an xα-HMM, and the context of Pj is on top of

the HMM memory when local computation takes place. Note also that by virtue of

invariant INV1, the time for the message exchange in Substep 2.4 is bounded by

the cost of accessing the first µ|C| HMM memory cells a constant number of times.

As a whole, the same bound holds for Substeps 2.1 and 2.3. Hence, letting τs denote

the maximum local computation time for a processor in Superstep s, the simulation

of Step 2 is accomplished in time

O

τs|C|+
µ|C|−1∑

x=0

xα

 = O (|C| (τs + µ(µ|C|)α))

because of Fact 4.3.3. Finally, observe that whenever a swap between |C| blocks

occurs in Step 4, we have just finished simulating the computation of a cluster of

|C| processors, hence the cost Θ ((µ|C|)α+1) required by such swap on an xα-HMM

is dominated by that of Step 2.

By summing up the results of the analysis, the overall running time for the

simulation of a given is-cluster is

O
(v

2is

(
τs + µ(µv/2is)α

))
.

60 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

Since Superstep is is composed by 2is such clusters, the overall time for an entire

is-superstep is

O
(
v
(
τ ′ + µ(µv/2is)α

))
,

where τ ′ is the maximum local computation time for a processor during the su-

perstep. By considering the contributions of all the supersteps in program P , the

equation above immediately leads to the following theorem.

Theorem 4.4.2 Consider a program P for D-BSP(v, µ, xα), where each processor

performs local computation for O (τ) time, and there are λi i-supersteps, for 0 ≤
i ≤ log v. Then, P can be simulated on xα-HMM in time

O

(
v

(
τ + µ

log v∑
i=0

λi(µv/2i)α

))
.

Recall that P is full if every superstep requires a Θ (µ)-relation. In this case, the

simulation of a superstep for cluster C incurs a slowdown merely proportional to

the cluster size, which is optimal due to the loss of parallelism. We have:

Corollary 4.4.3 Any T -time full program P for D-BSP(v, µ, xα) can be simulated

in optimal time Θ (Tv) on xα-HMM.

4.4.2 General Simulation of D-BSP(v, µ, f(x)) on f(x)-HMM

The simulation presented in the preceding subsection crucially relies on the as-

sumption that the program P being simulated is smooth. Such an assumption was

made without loss of generality since the access function f(x) = xα is such that ev-

ery D-BSP(v, µ, xα) program admits an equivalent smooth program with the same

asymptotic complexity. This is not true, however, if f(x) is subpolynomial (although

still polynomially bounded). In this case f(x) grows so slowly that the introduction

of dummy supersteps between adjacent supersteps with non-consecutive labels may

increase the complexity of the transformed program by more than a constant factor.

Note that if P is not smooth, then it is no longer true that adjacent supersteps

involve clusters of size differing by at most a factor two, which is a property the

simulation algorithm in the previous subsection relies upon when performing context

4.4. THE GENERAL SIMULATION ALGORITHM 61

swaps in Step 4. Consequently, we need to modify this step to make it work correctly

under the new scenario. Consider a round that simulates a certain superstep s of

an arbitrary program P for a cluster C, and suppose that the subsequent superstep

s + 1 in P is such that is+1 < is. Let Ĉ be the is+1-cluster that contains C; note

that Ĉ is composed by b
∆
= 2is−is+1 ≥ 2 is-clusters, including C, which we denote

by Ĉ0, Ĉ1, . . . , Ĉb−1. Suppose that C = Ĉ0, that is, this is the first round executing

Superstep s for processors in Ĉ. The simulation will enforce the property that at the

beginning of the round the contexts of all processors in Ĉ are at the top of memory

sorted by processor number (i.e., the topmost contexts are those of the processors

in Ĉ0, followed by those of the processors in Ĉ1, and so on). At this point the

simulation enters a cycle consisting of b phases, each phase comprising one or more

simulation rounds. In the k-th phase, 0 ≤ k < b, the contexts of the processors

in Ĉk are brought to the top of memory, then all supersteps up to Superstep s

are simulated for these processors, and finally the contexts of Ĉk are put back to

the positions occupied at the beginning of the cycle. An example of the memory

movements performed during a cycle is depicted in Figure 4.1.

We remark that smaller cycles can open within a cycle, so the simulation algo-

rithm needs a way to keep track of the nested phases: with reference to the notation

above, when the simulation of Superstep s for cluster C is over and is+1 < is, the

algorithm must be capable of determining the index k of the phase that has just

been completed. We now show that this fundamental operation can be performed

with a constant number of arithmetic calculations by looking at the index j of an

arbitrary processor Pj ∈ C. By the numbering of clusters and processors we defined

in Section 2.2, the number of the i-cluster that contains Pj is given by the i most

significant bits of the binary encoding of j: in other words, we can say that

Pj ∈ C
(i)

bj/2log v−ic, for 0 ≤ i ≤ log v.

In particular, this property holds for i = is and i = is+1. Now, let Ĉ be the is+1-

cluster that contains C, and recall that Ĉ contains b is-clusters, numbered from 0

to b− 1. Since b is a power of two, from the above observation it straightforwardly

follows that the number k such that C = Ĉk is contained in bits v − is, . . . , v − is+1

of j. Consequently, the required index k of the phase that has just been completed

62 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

is

k = bj/2log v−isc div 2is−is+1 .

As a whole, Step 4 of the simulation algorithm presented in the previous subsection

must be replaced by the following piece of pseudo-code.

4 if is+1 < is then

Let Ĉ be the is+1-cluster containing C, and let Ĉ0, . . . , Ĉ2is−is+1−1

be its component is-clusters, with C = Ĉk

4.1 if k > 0 then swap the contexts of Ĉk with those of Ĉ0

4.2 if k < 2is−is+1 − 1 then swap the contexts of Ĉ0 with those of Ĉk+1

Theorem 4.4.4 The generalized simulation algorithm is correct.

Proof We prove that the same invariants INV1 and INV2 stated in the previous

subsection hold at the beginning of every round: the correctness of the generalized

algorithm follows immediately. The proof is by induction on m = |G|, where G ⊆
{0, 1, . . . , log v} is the set of superstep indices available to the D-BSP program.

The claim is trivial for the basis m = 1, because in this case it is G = {0}.
Suppose now that the property holds for m and consider a t-step D-BSP program

with |G| = m + 1; as in the proof of Theorem 4.4.1 we will only illustrate the

case in which the program contains exactly one 0-superstep at the end, since the

argument easily extends to the case of multiple 0-supersteps. If t = 1 then the

claim is straightforward, otherwise the algorithm simulates every it−1-cluster Ĉ0,

Ĉ1, . . ., Ĉb−1 with b = 2it−1−it = 2it−1 (each of which can be seen as a D-BSP with

|G′| = |G|−1 = m superstep types) in a cycle where each such it−1 cluster is taken in

turn to the top of memory and supersteps up to t−1 are executed for the processors

of the cluster. The invariants hold at the beginning of the k-th phase of the cycle,

0 ≤ k < b, because the processors of Ĉk have never been executed before. Moreover,

they also hold in every round of the phase because of the inductive hypothesis.

After Substep 4.1 of the round in which the last cluster completes Superstep t−
1, the it−1-clusters occupy their original positions; since k = b − 1, the swap in

Substep 4.2 is not executed and the invariants hold at the beginning of the next,

final round. �

4.4. THE GENERAL SIMULATION ALGORITHM 63

7 7 7 7 7

1

6 6

5

4

3

2

0

1

1

2

0

3

4

5

6 6

5

4

0

2

1

3

1

4

2

3

0

5

6

2

3

4

5

7

6

0

3

2

4

1

5

7

1

6

2

3

4

5

0 6

5

4

1

7

0

2

3

7

1

0

2

3

4

5

6

t

0

Figure 4.1: snapshots of the HMM memory showing cluster movements during a

cycle involving an is+1-cluster containing b = 8 is-clusters. Each box represents the

processor contexts of a different is-cluster. Grey boxes indicate s-ready (i.e., not yet

executed) clusters, while white boxes refer to clusters that are being or have already

been executed. Snapshots are taken at the beginning of each phase and at the end

of the cycle. Rounded boxes indicate the clusters involved in memory swaps during

the previous phase.

Since the invariants INV1 and INV2 hold, the simulation of a single is-cluster

during Step 2 can still be performed as we described for the case f(x) = xα. As a

consequence, the time for Steps 1, 2 and 3 is dominated by Step 2 and is given by

O (|C|(τs + µf(µ|C|))) . (4.1)

The memory overhead connected with a cycle (Step 4 of the pseudo-code) needs

more careful consideration. Memory blocks 0, 1, |C| − 1 are accessed a constant

number of times for each is-cluster that is being simulated, so this cost is dominated

by (4.1). Memory blocks |C|, |C| + 1, . . . , v/2is+1 − 1 are accessed twice: the cost

O (µ|C|f(µ|C|)) of these accesses is amortized by the cost of the future execution

of Superstep s + 1 for the is+1-cluster. Finally, the calculation of k pays a negligible

64 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

cost. We are therefore able to conclude that the overall cost for the simulation of

an is-cluster is

O
(v

2is
(τs + µf(µv/2is))

)
.

By considering the contributions of all the clusters and supersteps in a program, the

following results can be straightforwardly proved.

Theorem 4.4.5 Consider a program P for D-BSP(v, µ, f(x)) where each processor

performs local computation for O (τ) time, and there are λi i-supersteps for 0 ≤ i ≤
log v. If f(x) is polynomially bounded, then P can be simulated on f(x)-HMM in

time

O

(
v

(
τ + µ

log v∑
i=0

λif(µv/2i)

))
.

Corollary 4.4.6 If f(x) is polynomially bounded then any T -time full program for

D-BSP(v, µ, f(x)) can be simulated in optimal time Θ (Tv) on f(x)-HMM.

As a concluding remark, we note that the notion of smoothness can be extended

to any polynomially bounded function as follows. Let us define G(v, µ, f(x)) as the

set of superstep labels 0 = j0 < j1 < · · · < jm < log v, with the property that for

any 0 ≤ ` < m

γ1f(µv/2j`) ≤ f(µv/2j`+1) ≤ γ2f(µv/2j`), (4.2)

where 0 < γ1 < γ2 < 1 are suitable constants. We call G-smooth a program P for

D-BSP(v, µ, f(x)) if the label of every superstep of P belongs to G(v, µ, f(x)), and if

for any pair of adjacent supersteps with labels j` and j`′ we have |`−`′| ≤ 1. It is easy

to see that for any arbitrary D-BSP(v, µ, f(x)) program there exists a functionally

equivalent G-smooth program that exhibits the same asymptotic running time. We

remark that the set G(v, µ, f(x)) may contain much less than log v elements: for

example, if f(x) = log x then |G| = Θ (log log v). In general, the slower f(x) grows,

the less elements G has. Since any D-BSP program can be made G-smooth, these

observations show that, for certain values of f(x), the network hierarchy can have

much less than log v levels without losing expressive power. Informally, we can say

that the network hierarchy “flattens” as f(x) becomes faster and faster: this is a

hint that exploiting network locality is particularly important if f(x) grows rapidly.

4.4. THE GENERAL SIMULATION ALGORITHM 65

4.4.3 Analogue of Brent’s Lemma

The following theorem generalizes the simulation results of the previous subsections

providing an analogue of Brent’s lemma [Bre74] for parallel and hierarchical com-

putations.

Theorem 4.4.7 Consider a program P for D-BSP(v, µ, f(x)), where each processor

performs local computation for O (τ) time, and there are λi i-supersteps, for 0 ≤ i ≤
log v. If f(x) is polynomially bounded, then for any 1 ≤ v′ ≤ v, P can be simulated

on D-BSP(v′, µv/v′, f(x)) in time

O

(
v

v′

(
τ + µ

log v∑
i=0

λif(µv/2i)

))
.

Proof Let us refer to the D-BSP(v, µ, f(x)) and the D-BSP(v′, µv/v′, f(x)) as guest

and host machine, respectively. For every 0 ≤ j < v′, the simulation of the proces-

sors in cluster C
(log v′)
j of the guest machine is assigned to host processor Pj. The

memory organization we described in Subsections 4.4.1 and 4.4.2 is used to accom-

modate the processors in C
(log v′)
j : in particular, the topmost µv/v′ memory cells of

Pj are organized into v/v′ blocks of µ cells each, with block 0 at the top, and block i

contains the context of the i-th processor of C
(log v′)
j . The simulation algorithm also

needs constant space per context (which is negligible) to keep track of the simulation

state.

For i < log v′, each i-superstep of P is simulated by two i-supersteps on the host.

In the first superstep, Pj takes care of local computation, which is performed by first

moving each context to the top of memory; after that, the messages prepared by the

v/v′ guest processors are copied to the output buffer of Pj and sent to the appropriate

destinations. Since the assignment of guest processors to host processors is fixed,

the destination of each message can be determined in constant time. In the second

superstep, Pj moves the messages it just received to the input buffers of the guest

processors. Suppose that the original superstep prescribes local computation for

O (τ ′) time and the execution of an h-relation: then, the superstep can be simulated

in time

O
(
(v/v′)(τ ′ + hf(µv/2i)) + µf(µv/2i))

)
,

66 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

where the term (v/v′)hf(µv/2i) accounts for the execution of an h(v/v′)-relation

within i-clusters on the host. Since h ≤ µ, this time is dominated by the cost of the

memory movements required by the simulation of the v/v′ local computations at each

host processor; such movements require reading the topmost Θ (µv/v′) memory cells

no more than a constant number of times, which takes time O ((v/v′)µf(µv/v′)).

Instead, for i ≥ log v′ each i-superstep is simulated sequentially, using the strat-

egy of Subsection 4.4.2: in fact, with the introduction of a final (log v′)-superstep (if

not already present) any sequence P ′ of supersteps whose labels are equal or greater

than log v′ can be treated as a program for D-BSP(v/v′, µ, f(x)). It is straightfor-

ward to see that an i-superstep of P must be regarded as an (i − log v′)-superstep

in P ′. The slowdown incurred in the simulation of an i-superstep can be obtained

by applying Theorem 4.4.5, and is

O

(
(v/v′)

(
τ ′ + µf

(
µv/v′

2i−log v′

)))
= O

(
(v/v′)

v

v′
(τ ′ + µf(µv/2i))

)
.

The extra time due to the added (log v′)-superstep is O ((v/v′)µf(µv/v′)), and it is

amortized by the cost for the simulation of the superstep immediately following P ′,

which certainly exists since P ends with a 0-superstep. �

Corollary 4.4.8 If f(x) is polynomially bounded then any T -time full program for

D-BSP(v, µ, f(x)) can be simulated in optimal time Θ (Tv/v′) on D-BSP(v, µv
v′

, f(x)),

for any 1 ≤ v′ ≤ v.

4.5 Application to Case Study Problems

In this section we show, on a number of prominent reference problems, how our

simulation strategy can be employed to transform efficient D-BSP algorithms into

optimal solutions for those problems on the HMM. This provides evidence that the

structured parallelism exposed by D-BSP through submachine locality can be au-

tomatically transformed into temporal locality on a memory hierarchy. As a conse-

quence, D-BSP can be profitably employed to develop efficient, portable algorithms

for hierarchical architectures.

In order to emphasize the transformation of parallelism into temporal locality,

for the aforementioned problems we will consider fine-grained D-BSP algorithms, i.e.

4.5. APPLICATION TO CASE STUDY PROBLEMS 67

algorithms where the number of processors v is equal to the problem size n; note

that a fine-grained algorithm is also full. In this scenario the size µ of each local

memory is constant, hence the D-BSP algorithm is purely based on the exploitation

of parallelism and needs not bother with the local hierarchies. Furthermore, for

concreteness, we will consider the access functions f(x) = xα, with 0 < α < 1,

and f(x) = log x. Under these functions, upper and lower bounds for our reference

problems have been developed directly for the HMM in [AACS87]. We will make

use of these HMM results as a comparison stone for the results obtained through

our simulation.

Matrix multiplication We call n-MM the problem of multiplying two
√

n×
√

n

matrices on an n-processor D-BSP using only semiring operations. Both the input

matrices and the output matrix are evenly and arbitrarily distributed among the

D-BSP processors. We have:

Proposition 4.5.1 For the n-MM problem there is a D-BSP(n, 1, xα) algorithm

that runs in time

TMM(n) =

O (nα) for 1/2 < α < 1,

O (
√

n log n) for α = 1/2,

O (
√

n) for 0 < α < 1/2,

and a D-BSP(n, 1, log x) algorithm that runs in time TMM(n) = O (
√

n). The sim-

ulation of these algorithms yields optimal performance on the xα-HMM and the

log x-HMM, respectively.

Proof We resort to the standard decomposition of n-MM into eight (n/4)-MM

subproblems. Let

A =

 A11 A12

A21 A22

 , B =

 B11 B12

B21 B22

be two square matrices, where Aij Bij denote submatrices of size n/4. The problem

of calculating C = A ·B can be decomposed as follows:

C =

 C11 C12

C21 C22

 =

 A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

 .

68 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

Initial configuration

A , B11 11 A , B12 12

A , B21 21 A , B22 22

Round 1

A , B11 11 A , B12 22

A , B22 21 A , B21 12

Round 2

A , B12 21 A , B11 12

A , B21 11 A , B22 22

Figure 4.2: assignment of submatrices to the four D-BSP 2-clusters during the

execution of the matrix multiplication algorithm.

The eight (n/4)-MM subproblems, which are clearly recognizable in the above equa-

tion, are recursively solved by the four D-BSP 2-clusters. To keep memory space

requirements at a minimum, the subproblems are solved in two rounds; specifically,

1. subproblems A11B11, A12B22, A22B21 and A21B12 are solved in Round 1;

2. subproblems A12B21, A11B12, A21B11 and A22B22 are solved in Round 2.

Each submatrix is required exactly once in each of the two rounds, hence it is

sufficient to have one copy of it; a reasonable assignment of subproblems to the 2-

clusters is sketched in Figure 4.2. We remark that data can be moved in the correct

position for each round through a constant number of 0-supersteps during which

every D-BSP processor exchanges O (1) data: the running time of the algorithm is

therefore given by the recurrence equation

TMM(n) =

 2TMM(n/4) + Θ (f(n)) for n > 1,

O (1) for n = 1.
(4.3)

The solution of this equation gives

TMM(n) = O

√n +

(log n)/2∑
i=0

2if(n/4i)

 ,

which leads to the stated running times. (In particular, the solution for f(x) = log x

can be reduced to the solution for the case in which f(x) is a polynomial by observing

4.5. APPLICATION TO CASE STUDY PROBLEMS 69

that log x = O (xα), α < 1/2.) By Corollary 4.4.6, the simulation of the algorithm

on HMM yields a performance matching the lower bound proved in [AACS87]. �

Discrete Fourier Transform We call n-DFT the problem of computing the

Discrete Fourier Transform of an n-vector evenly and arbitrarily distributed among

the n D-BSP processors. We have:

Proposition 4.5.2 For the n-DFT problem there is a D-BSP(n, 1, xα) algorithm

that runs in time Tα
DFT(n) = O (nα), and a D-BSP(n, 1, log x) algorithm that runs

in time T log
DFT(n) = O (log n log log n). The simulation of these algorithms matches

the best known bounds for the xα-HMM and log x-HMM, respectively.

Proof For D-BSP(n, 1, xα), we adopt a straightforward schedule of the standard

n-input FFT computation dag on the n processors of the D-BSP machine. The

algorithm requires O (1) i-supersteps for 0 ≤ i < log n, therefore the running time

is

O

(
log n−1∑

i=0

(
n/2i

)α)
= O (nα) .

Instead, for D-BSP(n, 1, log x) it is more efficient to resort to the well known algo-

rithm of Cooley and Tukey [CT65]; we quickly remind that the algorithm recursively

decomposes an n-DFT problem, with n = n1n2, into n1 independent n2-DFT prob-

lems followed by n2 n1-DFT problems. By setting n1 = n2 = n1/2, we obtain a

recursive decomposition of the FFT dag into 2 layers of
√

n independent
√

n-FFT

subgraphs; the two layers are separated by a permutation, i.e. by a 0-superstep.

Each subgraph can be scheduled onto a distinct D-BSP submachine with
√

n pro-

cessors, hence the running time of the Cooley-Tukey algorithm on D-BSP(n, 1, f(x))

is given by the recurrence equation

T log
DFT(n) =

 2T log
DFT(
√

n) + O (f(n)) for n > 1,

O (1) for n = 1.

By solving the recurrence for f(x) = log x, we have:

T log
DFT(n) = O

(
log log n−1∑

i=0

2i log
(
n1/2i

))
= O (log n log log n) .

70 CHAPTER 4. PARALLELISM AND TEMPORAL LOCALITY

The performance of the HMM algorithms obtained by applying the results stated

in Corollaries 4.4.3 and 4.4.6 matches the best known bounds of O (n1+α) on the

xα-HMM and of O (n log n log log n) on the log x-HMM, proved in [AACS87]. �

Sorting We call n-sorting the problem in which n keys are initially evenly dis-

tributed among the n D-BSP processors and have to be redistributed so that the

smallest key is held by processor P0, the second smallest one by processor P1, and

so on. We have:

Proposition 4.5.3 There is an n-sorting algorithm for D-BSP(n, 1, xα) that runs

in time

Tα
SORT(n) = O (nα) .

The simulation of this algorithm on xα-HMM exhibits optimal performance.

Proof Proposition 2.4.2 gives a sorting algorithm that runs in time TSORT(1, n) =

O (nα) on D-BSP(n, 1, xα); by Corollary 4.4.3, this algorithm can be simulated in

time O (n1+α) on xα-HMM. Optimality follows from the lower bound proved in

[AACS87]. �

We remark that all n-sorting strategies known in the literature for BSP-like models

seem to yield Ω
(
log2 n

)
-time algorithms when implemented as fine-grained on D-

BSP(n, 1, log x). By simulating one such algorithm on the log x-HMM we get a

running time of Ω
(
n log2 n

)
, which is a log n/ log log n factor away from optimal

[AACS87]. However, such non-optimality is due to the inefficiency of the D-BSP

algorithm employed and not to a weakness of the simulation. In fact, our simulation

implies a Ω (log n log log n) lower bound for n-sorting on D-BSP(n, 1, log x). No

tighter lower bound or better algorithm are known so far.

Chapter 5

Parallelism and Spatial Locality

The design of algorithms exhibiting a high degree of temporal and spatial local-

ity of reference is crucial to attain good performance on current and foreseeable

computing systems featuring ever deeper memory hierarchies. Previous work has

demonstrated that task parallelism can be efficiently transformed into locality of ref-

erence in two-level hierarchies; in Chapter 4, we moved a step forward and showed

how the more structured type of parallelism exposed by submachine locality can

be efficiently turned into temporal locality on arbitrarily deep hierarchies. In this

chapter, we complete and extend the above result by encompassing both tempo-

ral and spatial locality. Specifically, we present two schemes to simulate parallel

algorithms designed for an extension of D-BSP that models locality of reference:

the first scheme attains a slowdown proportional to the loss of parallelism, while

the second one, under certain conditions, is able to yield sequential algorithms for

the Hierarchical Memory Model with Block Transfer [ACS87] with a slowdown less

than proportional to the loss of parallelism. The resulting simulations give good

hierarchy-conscious sequential algorithms from parallel ones, and provide evidence

of the strict relation between submachine locality in parallel computation and lo-

cality of reference (both temporal and spatial) in the hierarchical memory setting.

Crucial to these results is the block transfer mechanism of the BT model, which

sets no upper limit on the size of the block that can be transferred at once. We

will name such a mechanism unlimited block transfer. Unlimited block transfer is

in contrast with the considerable body of work on RAM-disk memory hierarchies

71

72 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

started in [VS94a], but has been advocated in [ACS89, BEP02].

The remainder of the chapter is organized as follows. Section 5.1 is a survey

on existing results concerning parallelism and spatial locality. Section 5.2 sketches

our original contributions on the subject. In Section 5.3 we describe how to include

block transfer in the D-BSP model. Then, in Section 5.4, on such an augmented

model we develop an evolutionary simulation scheme that is directly inspired by

the one of Chapter 4 and naturally leads to a Brent-like lemma for block transfer,

with slowdown proportional to the loss of parallelism. After that, in Section 5.5

we introduce a new scheme that makes better use of spatial locality; indeed, the

block transfer mechanism is exploited so efficiently that the cost of simulating a

superstep does not depend on the access cost function f(x) any more, hence codes

tuned for very different machines yield the same running time once simulated. As a

corollary of this fact, we show that fine-grained algorithms developed for a D-BSP

with logarithmic cost function are simulated efficiently on a whole class of memory

hierarchies. An extensive comparison of the two simulation schemes is performed in

Section 5.6, which discusses several implications of our results and their application

to some relevant case studies.

5.1 Previous Work

In the last decade, a number of computational models have been proposed which

explicitly account for the hierarchical structure of the memory system. The following

models can be considered relevant for our study.

The Hierarchical Memory Model (HMM), introduced in [AACS87] and defined

in Section 4.3, is a random access machine where access to memory location x

requires time f(x), thus encouraging the exploitation of temporal locality. The

Hierarchical Memory Model with Block Transfer (BT, for short) [ACS87, VS94b]

was subsequently introduced with the intention of also rewarding spatial locality

by augmenting HMM with the capability of moving blocks of memory at a reduced

cost.

The P-HMBT model [JW94] is a variant of BT which changes the memory copy

mechanism. Memory is divided into levels, with cells in the same level exhibiting the

5.1. PREVIOUS WORK 73

same access cost, and block transfers can only take place between adjacent levels;

copy operations involving distinct levels can take place in parallel. The model is more

powerful than BT in some situations (e.g., the touching problem), but sometimes it

is weaker (e.g., search operations) at least for the log x cost function. The Pipelined

P-HMBT, or PP-HMBT for short [JW94], is an empowered P-HMBT where multiple

block transfers between adjacent levels can take place simultaneously; anyway, only

one word can be transferred between adjacent levels in a “clock” cycle. This model

is strictly more powerful than BT.

The Block Move (BM) model [Reg96] is an extension of BT that allows memory

pipelining not only for memory copy operations, but for a whole set T of complex

primitives called transductions. A transduction t ∈ T maps the content of a memory

block [x, x+ l] into a disjoint, output block [y, y + l] of the same size. In general, the

content of block [x, x+ l] is altered by t before it is written to the output block: the

transformation operated by t is described by a deterministic generalized sequential

machine, which is a sort of finite state automata. Not surprisingly, BM is strictly

more powerful than BT.

In the LPM model [LP93], the cost of an access to a size-m memory is log m

regardless of the memory address; this flat cost model makes it possible to pipeline

an unlimited number of memory requests in an easy and nice way. The memory

subsystem accepts new requests at a fixed rate; the requests are processed in the

order in which they are submitted. An LPM algorithm is at most log m times

slower than its RAM counterpart (in the worst case, the algorithm exhibits no

spatial locality, hence it uses no pipelining); under the reasonable hypothesis that

m is polynomial in the input size n, the “LPM slowdown” is at most logarithmic.

Finally, a two-level memory organization is featured by the External Memory

(EM) model [VS94a], which has been extensively used in the literature to develop

I/O-efficient algorithms. The model provides a finite-size internal memory connected

to multiple disks; during an I/O operation, it is possible to simultaneously read/write

B consecutive records from each of the disks.

Few parallel models have dealt with spatial locality in the network hierarchy; the

most relevant of them are BSP∗ [BDMadH98, BDP99], which we already introduced

74 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

in Section 2.1, and BPRAM [ACS89]. Remember that BSP∗ is a BSP variant which

sets the cost of communication during a superstep to g1b+gh+`, where gh+` is the

standard BSP cost function and b is the maximum aggregate size of the messages

exchanged by a processor. In the BPRAM model, every processing node is endowed

with a local, flat-cost memory of unlimited size; the nodes are then connected to a

shared memory module that is used for message exchange. A block of b consecutive

cells can be transferred from the shared memory in time b+`, where ` is a fixed start-

up cost. With a generalized cost function of g1b + `, which accounts for bandwidth

limitations, BPRAM yields good performance predictions in the experimental study

of Juurlink and Wijshoff [JW98]. We remark that no parallel model in the literature

deals with spatial locality in both the network and the memory hierarchy.

Earlier works provided evidence that efficient sequential algorithms for two-level

hierarchies can be obtained by simulating parallel ones. In [DDH03, DDHM99,

SK97] schemes are presented that simulate parallel algorithms designed for coarse-

grained parallel models, such as BSP [Val90a], BSP* [BDMadH98], and CGM

[DFRC96], on the EM model. The main intuition behind these works is that the in-

terleaving between large local computation and bulk communication phases, which

characterizes coarse-grained parallel algorithms, maps nicely on the two-level struc-

ture of the EM model. However, the flat parallelism offered by the above coarse-

grained models is unable to afford the finer exploitation of locality which is required

by deeper hierarchies.

Another approach to the development of efficient EM algorithms was proposed

in [CGG+95] based on the simulation of fine-grained PRAM algorithms. Beside

proving a general simulation result, the authors show how to turn PRAM compu-

tations that involve geometrically smaller subsets of processors into highly efficient

EM algorithms. This suggests that some form of submachine locality in the par-

allel setting can be profitably transformed into locality of reference in the memory

accesses. The simulation of PRAM algorithms to obtain efficient sequential ones

has also been explored in [Vis96], where parallelism is turned into efficient cache

prefetching strategies.

5.2. ORIGINAL CONTRIBUTIONS 75

5.2 Original Contributions

The objective of this chapter is to continue the investigation of Chapter 4 to encom-

pass temporal and spatial locality, so to assess to what extent structured parallelism

can lead to a combined exploitation of both forms of locality of reference in multi-

level hierarchies. More specifically, we first extend D-BSP to model spatial locality

in both memory and interconnection network; then, building on the results of the

previous chapter, we devise two strategies to simulate D-BSP algorithms on a host

machine exhibiting a reduced degree of parallelism. The first strategy shows that

a Brent-like lemma can still be attained in the new, broader scenario. The sec-

ond strategy reveals that efficiency in the BT model can be achieved starting from

D-BSP algorithms exhibiting a much coarser level of submachine locality than the

one needed by the simulation on HMM, which required a decomposition into sub-

machines strictly dependent on the access cost function. However, some examples

provide evidence that a certain level of submachine locality must nonetheless be

exhibited by the D-BSP algorithm in order to achieve optimal or quasi-optimal BT

algorithms. Our results are in accordance with the ones in [ACS87], which show that

an efficient exploitation of the powerful block transfer capability of the BT model

is able to hide access costs almost completely.

The importance of our contribution is twofold. On the one hand, to the best

of our knowledge, ours is the first work that establishes a relation between the

network locality embodied in parallel algorithms and both temporal and spatial

locality of reference in sequential algorithms for general hierarchies. On the other,

our simulation provides a tool to obtain efficient BT algorithms automatically from

the large body of parallel algorithms developed in the literature over the last two

decades.

5.3 Machine Models

5.3.1 BT

The f(x)-BT (Hierarchical Memory Model with Block Transfer) was introduced in

[ACS87] by augmenting the f(x)-HMM model of [AACS87] with a block transfer

76 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

facility. Specifically, as in the HMM, an access to memory location x requires time

f(x), for a given non-decreasing function f(·), but the model makes it also possible

to copy a block of l memory cells [x− l + 1, x] into a disjoint block [y − l + 1, y] in

time max{f(x), f(y)}+ l, for arbitrary l > 1.

It must be remarked that the block transfer mechanism featured by the model

allows memory pipelining only for copy operations and only for non-overlapping

memory regions; such mechanism is nevertheless powerful since it allows for the

pipelined movement of arbitrarily large blocks. This is particularly noticeable if we

look at the fundamental touching problem, which requires to bring each of a set of n

memory cells to the top of memory. The following proposition is proved in [ACS87].

Proposition 5.3.1 The touching problem on f(x)-BT requires time Θ (n log∗ n) if

f(x) = log x, and Θ (n log log n) if f(x) = xα, for a positive constant α < 1.

This proposition gives a nontrivial lower bound on the execution time of many

problems where all the inputs, or at least a constant fraction of them, must be

examined. For the sake of comparison, observe that on f(x)-HMM the touching

problem requires time Θ (nf(n)), which shows the added power introduced by block

transfer.

Although the powerful transfer capability of BT might appear unrealistic with

respect to current technology, the architectural feasibility of unlimited pipelined

transfers within memory hierarchies has recently been advocated in [BEP02].

5.3.2 D-BSP with Block Transfer

In this subsection we augment the D-BSP model with block transfer. Our aim is

to extend the model we presented in Chapters 2 and 4 by adding block transfer

facilities to both the memory hierarchy and the network hierarchy; still moving on

the “seamless integration” path of Chapter 4, we want these two facilities to be alike

and equally powerful. Moreover, although we are introducing yet another model of

computation, we intend to resort as much as possible to features for block transfer

that are already established in the literature. These guidelines have been met as

follows, giving birth to what we call the D-BSPB model.

5.3. MACHINE MODELS 77

• For the memory hierarchy inside each processing node, block transfer is shaped

after the mechanism of f(x)-BT: the cost of a single access to memory cell x

is f(x), and it is possible to copy an interval of memory cells [x− l +1, x] into

a disjoint interval [y − l + 1, y] in time max{f(x), f(y)}+ l.

• For the network hierarchy, block transfer is modeled as proposed in [BDP99]

for the BSP∗ model [BDMadH98]: an i-superstep is charged a cost

τ + b + f(µv/2i) · h.

As in Chapter 4, µ is the size of the local memories, τ is the maximum time

spent by a processor for local operations and h is the maximum number of

messages that a processor exchanges. The new variable is b, the maximum

aggregate size (in machine words) of the messages exchanged by a processor.

The two points above provide a complete description of the mechanisms with which

the D-BSPB model deals with temporal, spatial and network locality; in all other

respects, a D-BSPB behaves exactly as the standard D-BSP we have already de-

scribed. In particular, note that D-BSPB is still specified by three parameters: the

number v of (virtual) processors, the size µ of the local memory available to each

processor, and the cost function f(x). As a consequence, in what follows we will

indicate a D-BSP with Block Transfer as D-BSPB (v, µ, f(x)). Unless otherwise

noted, f(x) can be an arbitrary function satisfying Definition 4.3.1. The D-BSPB

model is an extension of D-BSP, in the sense that a T -time D-BSP(v, µ, f(x)) pro-

gram (i.e., a program that makes no use of block transfer) can be executed in time

O (T) on D-BSPB (v, µ, f(x)). The converse is not true, since D-BSPB (v, µ, f(x))

may be strictly more powerful than D-BSP(v, µ, f(x)). Consider the trivial example

that follows:

• a D-BSPB (1, µ, xα) can sort n items from its internal memory in O (n log n)

time [ACS87], whereas a D-BSP(1, µ, nα) cannot;

• each processor of a D-BSPB (v, µ, xα) can send a constant fraction of its local

memory to a distinct processor (permutation) in time O (µ) if µ is big enough,

whereas a D-BSP(v, µ, nα) cannot.

78 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

As we have already noticed for the BT model, the block transfer mechanism

featured by D-BSPB is rather powerful since it offers unlimited block transfer: in

fact, it is possible to move arbitrary blocks of memory (a sort of DMA transfer) or

arbitrarily large network messages in a single operation. This is not true in current

implementations of DRAM memories (which only allow the pipelined transfer of a

small, constant number of memory cells for each memory request) and hard disks

(where the block size is fixed). Moreover, internal memory is shaped on BT memory

and consequently exhibits unitary injection ratio, i.e. it is able to accept a new

pipelined memory access in each clock cycle. Since we want memory pipelining and

network pipelining to be equally powerful, we must force the D-BSPB network to

exhibit unitary injection ratio as well: once the start-up cost f(µv/2i) has been

paid for a message, the payload is transferred on the network at the rate of one

word per cycle. All in all, this means that bandwidth limitations are completely

neglected in our model, or, better, that hardware pipelining is assumed to be so

powerful to hide them completely. This is acceptable because, in this chapter, our

study is focused on spatial locality: we want to see what advantages can be reaped

from block transfer in its most powerful form. In a broader scenario, bandwidth

can be readily added to the model by making access times to memory and network

dependent on injection ratio parameters; this has already been done, for example,

in the (f(x), r)-PHM memory architecture [BEP02]. A reasonable way to modify

the cost function of D-BSP is the following.

• The cost of copying memory region [x− l + 1, x] into the disjoint region [y −
l + 1, y] is set to max{f(x), f(y)}+ g−1l.

• The cost of performing an h-relation inside an i-cluster, 0 ≤ i ≤ log v, is set

to gib + hf(µv/2i), with b the maximum number of words exchanged by a

processor.

In this fashion, bandwidth for the memory and the network hierarchies is given by

a vector g = (g−1, g0, . . . , glog v) of length log v + 1. The D-BSPB model we use in

this chapter can clearly be obtained by taking g = (1, 1, . . . , 1).

5.4. THE PLAIN SIMULATION SCHEME 79

5.4 The Plain Simulation Scheme

In this section we discuss a scheme to simulate a D-BSPB (v, µ, f(x)) program P
on D-BSPB (v′, µv/v′, f(x)). We move from the simulation scheme of Section 4.4.2

and we show that, by modifying it to introduce block transfer whenever possible, we

still obtain a slowdown that is proportional to the loss of parallelism. This result is

not surprising, but it is not completely trivial either: D-BSPB (v, µ, f(x)) is more

powerful than D-BSP(v, µ, f(x)) as a parallel model, hence the loss of parallelism

potentially brings a higher slowdown in the first model than in the second one. Our

results provide evidence that this is not the case, thanks to the availability of block

transfer in the memory hierarchy.

We need not prove the correctness of the modified scheme because it performs

the same choices and uses the same data structures as the one in Section 4.4.2; as

a consequence, we focus on the analysis of execution time. We incidentally remark

that the notion of G-smoothness introduced in Subsection 4.4.2 can be extended to

D-BSPB (v, µ, f(x)) without modifications; moreover, any D-BSPB program can be

made G(v, µ, f(x))-smooth without asymptotically increasing its running time.

Subsection 5.4.1 considers the case in which the simulating (guest) machine is

sequential (v′ = 1): in this case, the D-BSPB model reduces to the BT model. Then,

Subsection 5.4.2 deals with the general case in which there is only a partial loss of

parallelism.

5.4.1 Simulation of D-BSPB (v, µ, f(x)) on f(x)-BT

Although the simulation scheme of Section 4.4.2 gives a correct algorithm for the

BT model, it is clearly doomed to give a poor execution time since it makes no use

of spatial locality. Therefore, it is necessary to re-examine every step of the scheme

to see if its efficiency can be increased by means of block transfer. We can pinpoint

two opportunities for improvement: swaps of contexts and message delivery.

The first opportunity for improvement is given by all the steps that prescribe a

swap of processor contexts (Steps 2.1 and 2.3) or even groups of |C| ≥ 1 processor

contexts (Steps 4.1 and 4.2): these memory regions are at least µ cells in size, so

80 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

they are clearly eligible for block transfer. However, there is a technical difficulty

to face. The BT model does not allow to swap two memory blocks in place: since

the only block transfer operation available is the copy of disjoint memory blocks, in

order to implement a swap we need some buffer space, that is, extra space where

data can be freely copied without overwriting processor contexts or data structures.

Such a buffer must be as small as possible and it must reside in a fast memory

region. To keep the swaps efficient, it is enough to create an extra swap buffer of

size µ and place it into memory cells µ, µ + 1, . . . , 2µ− 1: memory blocks numbered

from 1 to v − 1 are pushed down accordingly, hence a memory cell x ≥ µ is moved

to cell x + µ. After the introduction of the buffer, the amount of memory required

by the simulation scheme is O (µv + µ) = O (µv). Memory block 0 does not change

its position, so the access time to its cells is unchanged; for x ≥ µ, the time to

access cell x is increased from f(x) to f(x + µ) ≤ f(2x) = Θ (f(x)), since f(x) is

polynomially bounded. As a consequence, the introduction of the swap buffer does

not asymptotically alter the amount of memory for the simulation or the access

time to the cells of any memory block, so the presence of the buffer can be neglected

during all operations except memory swaps. With regard to this point, swapping

the contents of two memory regions A and B relies on the buffer as described by

the trivial pseudo-code that follows.

k ← d|A|/µe
for i← 0 to k − 1 do

S.1 Copy cells iµ, . . . min{|A|, (i + 1)µ} − 1 of region A

into the buffer

S.2 Copy cells iµ, . . . min{|A|, (i + 1)µ} − 1 of region B

into the corresponding cells of region A

S.2 Copy the content of the buffer into cells

iµ, . . . min{|A|, (i + 1)µ} − 1 of region B

According to this pseudo-code, straightforward calculations lead us to conclude that

the contents of memory blocks 0 and j (Steps 2.1 and 2.3 of the simulation scheme)

can be swapped by the guest f(x)-BT machine in time

O (f(jµ) + µ) . (5.1)

5.4. THE PLAIN SIMULATION SCHEME 81

Furthermore, the |C| blocks on top of memory can be swapped with the k-th group

of |C| blocks (Steps 4.1 and 4.2 of the scheme) in time

O

|C|−1∑
j=0

(f ((k|C|+ j)µ) + µ)

 . (5.2)

The second opportunity to exploit block transfer arises in the simulation of mes-

sage exchanges (Step 2.4 of the simulation scheme). To be more specific, every mes-

sage can be seen as a sequence of consecutive memory locations that can be copied

to the appropriate input buffer by means of block transfer. The advantage of such a

strategy depends on the number and size of the messages: the longer a message, the

more effective the memory copy. Anyway, if the simulated program is efficient we

expect block transfer to be useful on average, since the D-BSPB (v, µ, f(x)) model

rewards the use of long messages. To estimate the cost of performing the message

exchange prescribed for Superstep s of cluster C, let us first define the following

quantities.

• hk, 1 ≤ k ≤ |C|: number of messages sent by the k-th processor of cluster C.

• rk, 1 ≤ k ≤ |C|: number of messages received by the k-th processor of C.

• bk
l , 1 ≤ l ≤ hk: length of the l-th message sent by processor k.

By using these quantities, the time required for the message exchange can be ex-

pressed as

O

 |C|∑
k=1

rkf(kµ) +

|C|∑
k=1

hk∑
l=1

(
f(kµ− l) + bk

l

) ,

where the first term is the time for pointer updating and the second one is the time

to actually copy each message to the appropriate input buffer. Since hk ≤ h, rk ≤ h,

and
∑

k

∑
l b

k
l ≤ |C|b, this expression can be immediately rewritten as

O

h

|C|∑
k=1

f(kµ) + |C|b +

|C|∑
k=1

h∑
l=1

f(kµ− l)

and then bounded from above as

O

h

|C|∑
k=1

f(kµ) + |C|b

 . (5.3)

82 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

The analysis of the two improvements is complete; it is now possible to calculate

the time required by the simulation algorithm. Remember that, by our analysis in

Subsections 4.4.1 and 4.4.2, such a time can be split into two main components: the

cost for the simulation of one superstep for the topmost cluster C, and the cost of

selecting a new cluster when the superstep is over. The first component includes:

1. the cost for the simulation of local computation, which is the sum of the

computation times of the |C| processors in the cluster;

2. the cost for message exchange, which is now given by Equation (5.3);

3. the cost of copying each context of the cluster into the topmost memory block,

which is obtained by summing the quantity (5.1) for all values of j between 1

and |C|.

As a whole, the cost for the simulation of Superstep s for cluster C is

O

|C|τs + |C|µ + |C|b + h

|C|∑
j=1

f(jµ)

 = O (|C| (τ + µ + b + hf(µ|C|))) ,

where |C| = v/2is . The second component of the cost, which is present only if

is+1 < is, is due to the swap of the |C| topmost blocks with a new set of blocks, as

bounded by Equation (5.2). Recall that, when the processors in the is+1-cluster are

ready to begin Superstep is+1, k has been assigned all the integer values from 0 to

2is−is+1 − 1 inclusive. By inspecting Equation (5.2) in the light of this observation,

it is easy to infer that the overall time for swaps is asymptotically equal to the time

for reading the topmost v/2is+1 blocks a constant number of times; as usual, the

cost of these accesses is amortized by the cost of the future execution of Superstep

s + 1 for the is+1-cluster. By combining these observations and remembering that

h ≤ b ≤ µ, we conclude:

Theorem 5.4.1 Consider a program P for D-BSPB (v, µ, f(x)) where each proces-

sor performs local computation for O (τ) time, and there are λ supersteps. If f(x)

is polynomially bounded, then P can be simulated on f(x)-BT in time

O

(
v

(
τ +

λ−1∑
s=0

(
hsf(µv/2is) + µ

)))
,

5.4. THE PLAIN SIMULATION SCHEME 83

where hs is the degree of the relation prescribed by Superstep s.

Note that, since hs ≤ µ, we can still say that the simulation time is

O

(
v

(
τ + µ

log v∑
i=0

λif(µv/2i)

))

as we did in Theorem 4.4.5, but this is too rough an approximation for D-BSPB.

A D-BSPB program P is full if b = Θ (µ) in every superstep. It must be

noticed that this definition is different from the one of Chapter 4, which bounded

the degree h of the relation in every superstep. However, the spirit of the definition

remains the same: in a full program, each processor sends/receives an amount of

data proportional to its local memory size. We have:

Corollary 5.4.2 If f(x) is polynomially bounded then any T -time full program for

D-BSPB (v, µ, f(x)) can be simulated in time Θ (Tv) on f(x)-BT.

5.4.2 Analogue of Brent’s Lemma

This subsection describes a general simulation strategy that is capable of simulating

a D-BSPB (v, µ, f(x)) program P on D-BSPB (v′, µv/v′, f(x)), with 1 ≤ v′ ≤ v;

the corresponding simulation time shows that a Brent-like lemma still holds for

the D-BSPB model. Since a T -time D-BSP(v, µ, f(x)) program is also a O (T)-

time D-BSPB (v, µ, f(x)) program, this result is a natural extension of the one of

Subsection 4.4.3.

The idea behind the simulation strategy is identical to the one that is described

in the proof of Theorem 4.4.3. For every 0 ≤ j < v′, the processors in cluster

C
(log v′)
j of the guest machine are assigned to host processor Pj. For i < log v′, each

i-superstep of P is simulated by an i-superstep on the host; the simulation takes

time

O
(
(v/v′)(τ + hf(µv/2i) + µ)

)
, (5.4)

where τ is the maximum time spent by a guest processor to perform local compu-

tation. The term (v/v′)(hf(µv/2i) + µ) accounts for the execution of an (hv/v′)-

relation within i-clusters and dominates the time O ((v/v′)(f(µv/v′) + µ)) required

84 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

by memory movements during the simulation of the v/v′ local computations at each

host processor.

Instead, for i ≥ log v′, each i-superstep is simulated sequentially, using the strat-

egy of Subsection 4.4.2 with the improvements of Subsection 5.4.1. The slowdown

incurred in the simulation of any of these supersteps is obtained by applying Theo-

rem 5.4.1 while setting the number of processors of the guest machine to v/v′, and

is still given by Equation (5.4).

If P has λ supersteps, and the s-th superstep, 0 ≤ s < λ, prescribes an hs-

relation, then, by summing up the contributions (5.4) for all the λ supersteps, the

time required for the simulation of P turns out to be

O

(
v

v′

(
τ +

λ−1∑
s=0

(
hsf(µv/2is) + µ

)))
. (5.5)

The following corollary is an immediate application of Equation (5.5) to the special

case in which P is full.

Corollary 5.4.3 If f(x) is polynomially bounded then any T -time full program for

D-BSPB (v, µ, f(x)) can be simulated in time Θ (Tv/v′) on D-BSPB (v, µv
v′

, f(x)),

for any 1 ≤ v′ ≤ v.

5.5 An Advanced Simulation Scheme

In this section we present an advanced scheme to simulate a D-BSPB (v, µ, f(x))

program P on f(x)-BT. We will refer to D-BSP and BT as the guest and host

machine, respectively. We assume that f(x) = O (xα), for some arbitrary constant

0 ≤ α < 1, and that Θ (v log log v) memory is available on the host BT machine.

Note that all relevant BT access functions f(x) considered in the literature [AACS87,

ACS87] are captured by the above scenario.

In Subsection 5.5.1, we explain the main idea behind the new scheme and the

corresponding memory organization; then, in Subsection 5.5.2 we describe and ana-

lyze the scheme. Subsection 5.5.3 presents some observations for the case in which

the host machine has v′ > 1 processors.

5.5. AN ADVANCED SIMULATION SCHEME 85

5.5.1 Memory Organization

If we look at the simulation scheme of Section 5.4, we see that it makes only a

limited use of block transfer; for example, the scheme reads one context at a time

during the simulation of local computations. This is usually inefficient because the

cost f(µj) paid when reading the j-th context of the cluster under simulation may

not be amortized by the size µ of the context itself: in a broad sense, the start-up

cost is not compensated by a corresponding “data processing” activity on a sufficient

number of memory cells. The correct mode of operation is suggested in [ACS87]:

a good BT algorithm must be recursive, and block transfer must be used at every

level of recursion. For our simulation scheme, we interpret this rule as the need

to simulate an i-cluster by recursively reading chunks of approximately f(µv/2i)

memory cells: this strategy ensures an optimal balance between the start-up cost

that is paid to access the chunk and the cost of reading the chunk by means of a single

block transfer operation. This simulation strategy gives birth to the COMPUTE

subroutine, whose pseudo-code will be given in Subsection 5.5.2; for the time being,

to understand the memory organization it is enough to know that the chunk size for

recursive calls is decided by function c(n,m) defined below.

Definition 5.5.1 Let n, m be two positive integers; c(n, m) is the greatest power of

2 such that c(n,m) ≤ min{f(nm)/m, n/2}.

A straightforward consequence of this definition is that

1

2
min{f(nm)/m, n/2} < c(n, m) ≤ min{f(nm)/m, n/2}. (5.6)

If COMPUTE is invoked on an i-cluster C, then the chunk contains c(|C|, µ) =

c(v/2i, µ) processor contexts. Note that the size of the chunk is chosen in a way that

does not split any context into multiple parts, a property which greatly simplifies

the description of the simulation.

As far as chunks are concerned, it is necessary to face a technical problem: as we

have already said, copying a memory block of size c(n, µ) in one operation requires

a buffer of size c(n, µ). The buffer cannot be too far from the block for efficiency

reasons: for example, if the buffer were simply placed after all the v processors’ con-

texts, then the time to access the buffer would be high enough to rise the cost of the

86 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

entire simulation. As a consequence, the required buffer space must be interspersed

with the contexts. During the simulation, buffer space is rearranged as needed by

means of PACK and UNPACK subroutines. More specifically, UNPACK(i), with

0 ≤ i ≤ log v, is invoked when all contexts of an i-cluster are consecutively stored

on top of memory, followed by an empty space equal to the cluster size (i.e., v/2i

empty blocks). The code for UNPACK(i) is the following:

UNPACK(i)

if i = log v then exit

Shift blocks v/2i+1, . . . , v/2i − 1 to blocks v/2i, . . . , 3v/2i+1 − 1

{creates buffer space to simulate the topmost (i + 1)-cluster}
UNPACK(i + 1)

The net effect of a call to UNPACK(i) when an i-cluster C is on top of memory, is to

intersperse the v/2i empty blocks which followed C among the contexts of C itself.

Figure 5.1 illustrates how the memory layout is modified by a call to UNPACK(0).

The subroutine PACK(i) performs the same operations of UNPACK(i) but in reverse

order, thus compacting the contexts belonging to the topmost i-cluster: after a call

to PACK(i), the i-cluster is therefore followed by a free memory area having the

same memory footprint of the cluster. The pseudo-code of PACK(i) follows.

PACK(i)

if i = log v then exit

PACK(i + 1)

Shift blocks v/2i, . . . , 3v/2i+1 − 1 to blocks v/2i+1, . . . , v/2i − 1

{expunges buffer space from the topmost i-cluster}

The buffer management process guarantees that the starting memory address for

each context in C is at most doubled by the presence of the buffers. Since f(x) is

polynomially bounded, we can conclude that the buffers do not alter memory access

time by more than a multiplicative constant.

Since PACK(i) and UNPACK(i) read the same memory cells, the execution time

of both subroutines is given by the same expression. The shift operation prescribed

by PACK and UNPACK can be performed as a single block transfer by relying on

5.5. AN ADVANCED SIMULATION SCHEME 87

UNPACK(0) UNPACK(1) UNPACK(2)

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

Figure 5.1: snapshots of the BT memory layout during an UNPACK(0) operation.

The host D-BSP machine has 8 virtual processors. Grey boxes indicate processor

contexts, and white boxes indicate empty buffers.

the invariant that the topmost i-cluster is followed by a free memory area of size

µv/2i; as a consequence, the execution time is

O

(
log v−1∑

j=i

(
f(µv/2j) + µv/2j+1

))
.

Since f(x) is polynomially bounded and f(x) = O (x), the execution time of PACK(i)

and UNPACK(i) can be simply rewritten as

O
(µv

2i

)
. (5.7)

Another source of inefficiency of the simulation scheme in Section 5.4 is that

message delivery is a straightforward adaptation of the mode of operation of the

parallel machine: this is unnecessary, and in fact the independent delivery of every

88 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

single message limits the exploitation of block transfer. In Subsection 5.5.2, we will

see how this issue can be dealt with through a suitable sorting procedure. As far

as memory is concerned, we must say that this procedure requires the presence of

a certain number of tags inside each processor context: the analysis will show that

such tags do not alter the time to access any memory cell by more than a constant,

multiplicative factor, hence their presence will be overlooked in all the steps of the

simulation but the one which uses them.

5.5.2 The Simulation Algorithm

The simulation scheme requires, within a constant factor, µv log log µv memory cells

to function properly; cells 0, . . . , µv − 1 are initially occupied, as usual, by the v

processors’ contexts, while the remaining cells are empty. Since it is not restrictive,

we will suppose that the parallel program P , written for the host D-BSPB (v, µ, f(x))

machine, is G(v, µ, f(x))-smooth. For ease of presentation, we will further suppose

that µ is a power of 2. The pseudo-code of the scheme is as follows.

1 UNPACK(0)

while true do

2 P ← processor whose context is on top of memory

s← superstep number to be simulated next for P

C ← is-cluster containing P

3 PACK(is)

4 COMPUTE(|C|)
5 simulate the message exchange for C

6 if P has finished its program then exit

7 if is+1 < is then

Let Ĉ be the is+1-cluster containing C, and let Ĉ0, . . . , Ĉ2is−is+1−1

be its component is-clusters, with C = Ĉj for some index j

7.1 if j > 0 then swap the contexts of C with those of Ĉ0

7.2 if j < 2is−is+1 − 1 then swap the contexts of Ĉ0 with those of Ĉj+1

8 UNPACK(is)

5.5. AN ADVANCED SIMULATION SCHEME 89

Observe that the overall structure of the simulation is the same as the one presented

in Sections 4.4 and 5.4: in particular, the above scheme simulates one cluster per

round, and the choice of such cluster is based on the same “proximity” criterion we

have already discussed. As a consequence, it is unnecessary to include a new proof

of correctness. Furthermore, the code maintains the invariant that at the beginning

of each round, the overall memory layout is the same as the one resulting from a

call to UNPACK(0).

As indicated by Steps 4 and 5 of the pseudo-code, the simulation of Superstep

s for cluster C is performed in two phases: first, local computations are executed

in a recursive fashion, and then the communications required by the superstep are

simulated. By Step 3 of the algorithm, the simulation of Superstep s for cluster

C begins with all contexts of C being packed at the top of memory. In order

to exploit both temporal and spatial locality, processors’ contexts are iteratively

brought to the top of memory in chunks of size c(v/2is , µ), and the prescribed local

computation is then performed for each chunk recursively. Memory movements can

be performed by exploiting block transfer because of the buffer of size µv/2is that is

available immediately after the cluster. Eventually, each processor context reaches

the topmost µ memory cells where computation finally takes place. This step of the

simulation is described by the recursive subroutine COMPUTE(n), whose pseudo-

code is given in Figure 5.2; the subroutine is initially invoked with parameter v/2is .

It is essential to note that the buffer is big enough to accommodate for the recursive

calls. Let f (k)(x) be the iterated function which is obtained by applying f(x) k

times, and let f ∗(x) = min{k ≥ 1 : f (k)(x) ≤ µ}. Finally, let c(x) = c(x, µ). Since

c(n) ≤ n/2, the overall buffer space required by COMPUTE(n) and all its recursive

calls is smaller than

µ

c∗(v/2i)∑
k=1

n/2k ≤ µn.

In particular, COMPUTE(v/2is) needs a buffer of size at most µv/2is , which is

certainly available after Step 3.

Let us now calculate the execution time of COMPUTE(v/2is). As usual, local

computations for a processor are always performed while the corresponding pro-

cessor context is stored in the topmost µ memory cells, hence the time for local

90 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

COMPUTE(n)

4.1 if n = 1 then {we were told to operate on a single context}
4.2 Simulate local computation for the context in block 0

else

4.3 c← c(n, µ)

4.4 t← n/c {number of chunks}
4.5 Shift blocks c, . . . , n− 1 to blocks 2c, . . . , n + c− 1

{creates buffer space for recursive calls}
4.6 COMPUTE(c)

4.7 for j ← 2 to t do

4.8 Swap blocks 0, . . . , c− 1 with blocks jc, . . . , (j + 1)c− 1

4.9 COMPUTE(c)

4.10 Swap blocks jc, . . . , (j + 1)c− 1 with blocks 0, . . . , c− 1

4.11 Shift blocks 2c, . . . , n + c− 1 to blocks c, . . . , n− 1

Figure 5.2: the COMPUTE subroutine.

computations is simply the sum of the original computation times for the guest pro-

cessors belonging to cluster C. In addition to this cost, COMPUTE(n) presents a

significant overhead TMEM(n) caused by memory copy operations. Since each shift

or swap operation requires a constant number of block transfers, it is easy to see

that

TMEM(n) =

n

c(n)
TMEM(c(n)) + O

(
µn +

∑n/c(n)
j=1 f (jµc(n))

)
for n > 1,

O (1) for n = 1.

(Note that n/c(n) is an integer number since both n and c(n) are powers of 2.)

The solution of the recurrence equation depends on f(x); we now give an upper

bound on TMEM(n) that holds for f(x) = O (x), which encompasses the class of

functions we are considering throughout this section. First of all, the summation

that appears in the recurrence equation is O ((n/c(n))f(µn)). By Inequality (5.6),

c(n) is not smaller than min{f(µn)/µ, n/2}/2, hence the summation is O (µn) and

5.5. AN ADVANCED SIMULATION SCHEME 91

the recurrence equation can be rewritten as

TMEM(n) =

 n
c(n)

TMEM(c(n)) + O (µn) for n > 1,

O (1) for n = 1.
(5.8)

The bound we give on TMEM(n) is based on the reckoning of the work that is

performed at each level of the recursion. By direct inspection of Equation (5.8),

it is straightforward to see that such a work is O (µn) at the base level, and

(n/c(n))O (µc(n)) = O (µn) at the first level. In general, the work at the j-th

level of recursion can be expressed through the iterated function c(k)(x) as

O
(
µc(j)(n)

) j∏
k=1

c(k−1)(n)

c(k)(n)
,

which is still O (µn) for 1 ≤ j ≤ c∗(n). By summing up the contributions of the

c∗(n) + 1 levels of recursion, we conclude that

TMEM(n) = O (µnc∗(n)) .

As particular instances, TMEM(n) is O (µn log∗ n) if f(x) = log x, and O (µn log log n)

if f(x) = xα. For the purpose of our simulation, it is enough to say that if f(x) =

O (xα), then c∗(n) = O (log log n) and consequently

TMEM(v/2is) = O
(µv

2is
log log

v

2is

)
.

The second part of the simulation of cluster C is the delivery of messages to

destination processors (Step 5). To perform this step, the contexts of C are divided

into Θ (µ|C|) constant-sized elements, which are attached a tag; the elements are

then sorted according to the tags. If the tags are suitably chosen, the elements

are delivered in such a way that the structure of the contexts is not disrupted, and

D-BSPB messages reach the input buffers of the appropriate processors. Although

the idea behind this simulation step is quite simple, there are two technical issues

that must be dealt with.

1. The sorting algorithm must use block transfer effectively. We select the al-

gorithm of [ACS87] for this purpose; anyway, as we will see, this algorithm

requires space O (n log log n) to sort n elements, hence extra space must be

provided in some way.

92 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

2. The sorting algorithm may alter the position and size of some contexts, and

tags must be removed; it is therefore necessary to introduce a final “clean up”

step.

Let us start by describing the tagging procedure. As anticipated, the context of each

processor Pi ∈ C is divided into constant-sized elements; each element is attached

a tag, which is a triple (a, b, c) of integer numbers. Let κ < µ be the size of an

element, and let λ be the size (to be determined) of a tag. For ease of presentation,

we also suppose that a processor Pi, 0 ≤ i < v, exchanges messages through a

unified input/output queue which resides at the end of Pi’s context. Tagging for Pi

is performed in accordance with the following rules.

• The part of Pi’s context not belonging to the queue is divided into elements of

exactly κ memory cells each; the last element may require padding. Element

l of this part receives (i,−1, l) as tag.

• In the I/O queue, each outgoing message is divided into elements of exactly

κ memory cells each; the last element of each message may require padding.

Element l of the queue is tagged as (j, i, l), where Pj is the destination processor

of the message that originated the element. Memory cells that do not contain

messages (i.e. the empty part of the queue) are all assigned the dummy tag

(v, v, 0).

Note that the tagging procedure increases the amount of memory required to store

a context because tags are added and some elements may require padding. To be

precise, since the size of a tag is λ and at most h + 1 elements require padding, the

maximum size of a cluster after tagging is (λ+κ)dµ/κe+(h+1)κ = O (λµ); to make

this bound meaningful, it is necessary to know λ. The first two components of a tag

assume values not greater than v, and the third component is at most dµ/κe: as a

consequence, O (log v + log µ) bits are sufficient to store the tag. We can reasonably

assume that the host machine is powerful enough to represent µ or v in a single

memory word, so the size of λ is bounded by a constant and the size of a context

after tagging is O (µ). Although the contexts are not asymptotically bigger after

tagging, they certainly require more than µ cells each to be stored. However, this is

5.5. AN ADVANCED SIMULATION SCHEME 93

not a problem because f(x) is polynomially bounded so we can manage Θ (µ) extra

memory cells after each of the v contexts while increasing the execution time by a

constant multiplicative factor.

To conclude the analysis of the tagging procedure, we must determine its running

time. For any i, the tags belonging to the first part of the context of Pi depend

only on i, so they do not change during the simulation and they can be statically

assigned before the simulation begins. Instead, the tags for the I/O queue depend

on the particular communication pattern that is being performed, hence they must

be necessarily created on-line: we choose to create them just after the simulation

of the local computations for Pi, when the context of Pi is still in the fastest cells

at the top of memory. This operation requires a constant amount of work on each

of the topmost Θ (µ) memory cells. As a whole, the tagging procedure for cluster

C is not more costly than touching the |C| contexts belonging to the cluster; by

Proposition 5.3.1, such a touching problem can be solved in time

O (µ|C| log log(µ|C|)) = O
(µv

2is
log log

µv

2is

)
(5.9)

on a O (xα)-BT machine.

Let us now move to the sorting stage. We adopt the Approx-Median-Sort algo-

rithm proposed in [ACS87]; this algorithm is capable of sorting m constant-sized

items in time O (m log m) if f(x) = O (xα), 0 ≤ α < 1. Unfortunately, the algo-

rithm requires O (m log log m) space. In our case, the number of elements to sort is

Θ (µv/2is) so the required time is

O
(µv

2is
log

µv

2is

)
, (5.10)

and the required memory space L = L(is) is

O
(µv

2is
log log

µv

2is

)
. (5.11)

Our buffer policy ensures that when we start simulating the message exchange, the

is-cluster is followed by an empty space of size µv/2is : clearly this is not enough,

because it is asymptotically smaller than (5.11). To obtain more free space, we

are forced to involve a cluster bigger than C in the sorting stage. Recall that the

buffer creation policy ensures that for every 0 ≤ i ≤ is, if we PACK the topmost

94 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

i-cluster, we create an adjacent free memory region having the same size of the

cluster: intuitively, if i is small enough then µv/2i ≥ L. More formally, let ik < is

be the biggest integer such that µv/2ik ≥ L(is), or 0 if µv < L(is). Then, we can

free a sufficient amount of space for sorting through the following steps.

A.1 UNPACK(is)

A.2 PACK(ik)

A.3 Shift blocks v/2is , . . . , v/2ik − 1 to the memory region

that starts with block v/2is + dL(is)/µe

After the execution of the above fragment of pseudo-code, memory cells µv/2is , . . .,

µv/2is +L−1 are free and available for the Approx-Median-Sort algorithm. By (5.7),

the time for the execution of Steps A.1 and A.2 is

O
(
µv/2ik

)
= O (L) = O

(µv

2is
log log

µv

2is

)
.

Step A.3 move a block of at most L memory cells into an empty memory region;

the index of the slowest cell belonging to this region is no greater than 2L. Since

f(x) = O (x), the time required to perform the prescribed memory movement is

therefore

O (f(L) + L) = O (L) = O
(µv

2is
log log

µv

2is

)
,

that is, not asymptotically higher than the time (5.10) required by the Approx-

Median-Sort algorithm.

Finally, we must examine the clean up stage, which must clearly undo all the

undesired effects of the previous stages. Tags, padding data and memory buffers

can be removed by performing the operations that created them in reverse order;

besides, there is a side-effect of sorting that must be carefully considered. Remember

that, during the tagging stage, the portions of input/output buffers that contained

no messages were all marked with the same tag (v, v, 0), so Approx-Median-Sort

places them after all the contexts of C. As a consequence, after the sorting phase

the input/output buffer of a processor has a size that depends on the aggregate size

of the messages it received. Since each processor may receive a different amount of

data, each context of C may have a different size, thus occupying a position that

is different from the original one by a nonconstant amount; this is a problem, since

5.5. AN ADVANCED SIMULATION SCHEME 95

the simulation algorithm relies on the knowledge of the position of the contexts.

Before going on with the simulation, it is therefore necessary to realign the contexts

so that the context of the j-th processor of C ends up again in memory block j, for

0 ≤ j < |C|. Since the contexts C are still in sorted order (i.e. context l comes

first, then context l + 1 and so on, for a suitable integer l), this operation can be

performed by the recursive subroutine that follows.

ALIGN(n)

B.1 if n = 1 then exit

B.2 Locate the (n/2)-th topmost context

B.3 Shift contexts n/2, . . . , n− 1 to the memory region

that starts with block n

B.4 ALIGN(n/2)

B.5 Swap blocks 0, . . . , n/2− 1 with blocks n, . . . , 3n/2− 1

B.6 ALIGN(n/2)

B.7 Shift blocks 0, . . . , n/2− 1 to blocks n/2, . . . , n− 1

B.8 Swap blocks n, . . . , 3n/2− 1 with blocks 0, . . . , n/2− 1

The subroutine is initially invoked with n = |C| = v/2is . The location of a context

can be accomplished through binary search over the tags. Each step of the binary

search copies a block of 2(κ+λ) = O (1) consecutive memory cells on top of memory

and then scans them until it finds a tag (the size of the block is chosen so that it

certainly contains at least one tag); the tag is associated with a single processor

context, and with a specific position inside that context. If the tag identifies the

beginning of context v/2i+1 then the search is over, otherwise the search contin-

ues on a halved search area. The binary search requires O (log(µn)) steps; each

such step reads a constant number of consecutive memory cells and then perform

a constant amount of work on them, thus taking time O (f(µn)). Finally, context

realignment (Step B.3) and the swaps of the two recursive subproblems (Steps B.5

and B.7) are all implemented with pipelined memory copy operations and require

time O (f(µn) + µn) as a whole. By putting all these observations together, the

96 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

time TAL(n) for alignment can be distilled into the following recurrence equation:

TAL(n) =

 2TAL(n/2) + O (f(µn) log(µn) + µn) for n > 1,

O (1) for n = 1.

Since f(x) = O (xα), α < 1, the recurrence equation evaluates to O (µn log(µn)),

therefore the time taken by the clean up stage for an is-cluster is

O
(µv

2is
log

µv

2is

)
. (5.12)

Having completed the analysis of all the steps, we can now give an upper bound

on the simulation time of Superstep s for cluster C. The time spent for PACK(is) and

UNPACK(is) operations is given by Equation (5.7). The time for local computations

is simply the sum τ of computation times for the processors in C. The time for

message delivery is the sum of the execution times for the tagging, sorting and clean

up steps, which are given by Equations (5.9), (5.10) and (5.12) respectively. As a

whole, the time required to simulate is-cluster C is therefore

O
(
τ +

µv

2is
log

µv

2is

)
under the hypothesis f(x) = O (xα), 0 ≤ α < 1. It is important to note that this

bound does not depend on f(x) and h any more. Note also that the simulation of

communications is dominated by the sorting step.

If is+1 < is, the simulation algorithm incurs an additional cost due to the need

of moving a new cluster to the top of memory, as prescribed by Steps 7 through 7.2

of the pseudo-code. Thanks to the availability of buffer space, the swaps of Steps

7.1 and 7.2 can be performed with three pipelined memory copy operations each,

thus taking time O (f(jµ|C|) + µ|C|). By summing up this cost over all the values

of j, we conclude that the overall time for cluster swaps before the simulation of an

is+1-cluster is

O

2is−is+1∑
j=1

(f(jµ|C|) + µ|C|)

 = O
(
2is−is+1f

(µv

2is+1

)
+

µv

2is+1

)
. (5.13)

Now, by the G-smoothness of the program P being simulated, is and is+1 are con-

secutive indices in G(v, µ, f(x)), hence f(µv/2is+1) = Θ (f(µv/2is)) because of (4.2).

5.5. AN ADVANCED SIMULATION SCHEME 97

By applying this observation together with the fact that f(x) = O (x), we conclude

that the overall cost of cluster swaps is O
(

µv

2is+1

)
, hence it is amortized by the cost

of the future simulation of the is+1-cluster. As a consequence, the cost of Step 7

can be completely neglected and the time for simulating P is simply the sum of the

times for the simulation of the clusters that compose the various supersteps of P .

Theorem 5.5.2 Consider a program P for D-BSPB (v, µ, f(x)), where each pro-

cessor performs local computation for O (τ) time, and there are λi i-supersteps for

0 ≤ i ≤ log v. If f(x) = O (xα), 0 ≤ α < 1, then P can be simulated on f(x)-BT in

time

O

(
v

(
τ + µ

log v∑
i=0

λi log(µv/2i)

))
.

Theorem 5.5.2 shows that the advanced simulation scheme is quite efficient for full

programs. In addition to local computation time, which exhibits a slowdown that

is merely proportional to the loss of parallelism and is consequently optimal, the

scheme incurs a cost per superstep that is O (µv log(µv)) in the worst case1. For

the sake of comparison, Proposition 5.3.1 implies that for relevant access functions

f(x), any straightforward approach simulating one entire superstep after the other

would require time ω(µv) per superstep just for touching the v processor contexts.

Note that the scheme does no longer offer a “Brent-like” slowdown in the sense of

Corollaries 4.4.8 and 5.4.3; this fact will be discussed in Section 5.6.

5.5.3 Partial Loss of Parallelism

Let us now see how the advanced simulation scheme can be employed if the sim-

ulating (host) machine has v′ > 1 processors, i.e. the loss of parallelism is only

partial. The simulation strategy is still the one that is described in the proof of

Theorem 4.4.3. Recall that for every 0 ≤ j < v′, the processors in cluster C
(log v′)
j of

the guest machine are assigned to host processor Pj. For i < log v′, each i-superstep

of P is simulated by an i-superstep on the host. Such a superstep can be simulated

in time

O
(
(v/v′)(τ ′ + hf(µv/2i) + µ)

)
,

1Actually, it may be asymptotically less than this if the superstep label i is greater than zero.

98 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

where the term (v/v′)(hf(µv/2i) + µ) accounts for the execution of an (hv/v′)-

relation and dominates the time O ((v/v′)(f(µv/v′) + µ)) required by memory move-

ments during the simulation of the v/v′ local computations at each host processor.

Instead, for i ≥ log v′, each i-superstep is simulated sequentially, using the strategy

of Subsection 5.5.2. The slowdown incurred in the simulation of these supersteps is

O

(
(v/v′)

(
τ ′ + µ log

(
µv/v′

2i

)))
,

and is obtained by applying Theorem 5.5.2 while setting the number of processors

of the guest machine to v/v′.

To sum things up, the simulation time exhibits a flex point for i = log v′. For

superstep indices smaller than log v′, communications are simulated by resorting

to the network of the host machine, thus exhibiting a (v/v′)-fold slowdown. On

the other hand, if i ≥ log v′, the advanced simulation scheme is used with all the

consequences that follow. Therefore, this simulation strategy leads to the following

result.

Proposition 5.5.3 Consider a program P for D-BSPB (v, µ, f(x)), where each pro-

cessor performs local computation for O (τ) time, and there are λi i-supersteps for

0 ≤ i ≤ log v. If f(x) = O (xα), 0 ≤ α < 1, then for any 1 ≤ v′ ≤ v, P can be

simulated on D-BSPB (v′, µv/v′, f(x)) in time

O

(
v

v′

(
τ + µ

log v′−1∑
i=0

λif(µv/2i) + µ

log v∑
i=log v′

λi log

(
µv/v′

2i

)))
.

5.6 Discussion and Applications

Since we presented two simulation schemes, it is natural to wonder if what we

name the “advanced” scheme is indeed more efficient than the plain one, and under

which conditions. To address this question, in this section we perform a comparison

of the two schemes. We concentrate on the simulation of communications since

both schemes simulate local computations optimally. Since the advanced scheme

is tailored to f(x)-BT, the comparison is limited to the case in which there is a

complete loss of parallelism.

5.6. DISCUSSION AND APPLICATIONS 99

The first observation is against the advanced scheme: if f(x) = o (log x), in fact,

communications are simulated more efficiently by the plain scheme. This conclusion

is obtained by comparing execution times as expressed by Theorems 5.4.1 and 5.5.2.

The limiting factor of the advanced scheme relies in the use of sorting: in fact,

sorting Θ (µv) items takes time Θ (µv log(µv)) even on the flat-memory RAM model.

Although the use of sorting may look unjustified, note that [ACS87, Corollary 5.9]

shows that the expected time for achieving a random permutation on n elements is

Ω (n log n) on a f(x)-BT machine with f(x) = Ω (log x). With high probability, for

a wide class of cost functions there is nothing to be gained by looking at message

delivery as a permutation. These observations provide evidence that if the memory

cost function f(x) grows very slowly, then it is profitable to send messages directly

to their destinations instead of moving them multiple times according to elaborate,

recursive algorithms.

If f(x) = Ω (log x), let n
∆
= µv be the aggregate size of the memory available in

the guest machine for the execution of program P . In most situations n can also

be regarded as the size of the problem to be solved by P , so it is interesting to see

how the two simulation schemes behave “asymptotically”, i.e. as n grows. We are

interested in two main scenarios.

1. Limited parallelism. The number v of processors remains constant as n

grows; in other words, we can say that v = O (1) and µ = Θ (n). This scenario

is “realistic”, in the sense that any real-world parallel computer has a fixed

number of processing units. In this scenario, block transfer potentially offers

a significant advantage.

2. Full Parallelism. The number of virtual processors is a constant fraction of

n: as a consequence, v = Θ (n) and µ = O (1). This scenario reflects our view

of the guest machine as a virtual model that conveniently guides the choices of

the algorithm designer: the exploitation of the memory hierarchy is then left to

the automatic translation of parallelism into locality of reference. Note that, in

this scenario, D-BSP(v, 1, f(x)) and D-BSPB (v, 1, f(x)) are equivalent within

constant factors, since block transfer in the latter model cannot offer but a

constant speed-up.

100 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

In the first scenario, the time spent for message delivery during an i-superstep is

• O (hf(µ) + µ) = O (hf(n) + n) for the plain simulation scheme, and

• O (µ log µ) = O (n log n) for the advanced simulation scheme.

Recall that h is the maximum number of messages exchanged by a processor. Indeed,

h decides which scheme is more efficient: if h = o (n log n/f(n)), then the plain

scheme is faster, otherwise the advanced scheme is faster. Note that the plain

scheme may be sometimes preferable even if P is full; a notable evidence of this

fact is the case of full programs where h = O (1) in every superstep. For example,

the algorithms of Section 4.5 naturally fall in this class if adapted to the limited

parallelism scenario.

In the second scenario (full parallelism), the time spent for message delivery

during an i-superstep sums up to

• O (vf(v/2i)) = O (nf(n/2i)) for the plain simulation scheme, and

• O (v log(v/2i)) = O (n log(n/2i)) for the advanced simulation scheme.

(Remember that h ≤ µ, and that f(x) is polynomially bounded.) In this case, the

advanced scheme is always convenient: as a matter of fact, the faster f(x) grows,

the bigger the improvement. Moreover, the advanced scheme offers the potential

for sublinear slowdown if applied to communication-bound problems. For example,

consider the problem of multiplying two
√

n by
√

n dense matrices; the guest and

host machines are the D-BSP(n, 1, xα) and the xα-BT, 0 < α < 1. We resort to the

recursive algorithm described in Section 4.5; the running time on D-BSP is given by

Proposition 4.5.1 and is

TMM(n) =

O (nα) for 1/2 < α < 1,

O (
√

n log n) for α = 1/2,

O (
√

n) for 0 < α < 1/2.

With the help of recurrence equation (4.3), it is easy to prove that this algorithm

uses superstep label 2i, 0 ≤ i ≤ (log n)/2, a number of times proportional to 2i: by

5.6. DISCUSSION AND APPLICATIONS 101

Theorem 5.5.2, the running time of the algorithm on the host machine is therefore

O

n3/2 + n

(log n)/2∑
i=0

2i log(n/22i)

 = O
(
n3/2

)
. (5.14)

Then, for the matrix multiplication problem, the advanced simulation scheme yields

an optimal sequential algorithm. Note that a trivial step-by-step D-BSP simulation

would have required at least time Ω
(
n3/2 log log n

)
, hence the exploitation of network

locality is crucial in this case. Besides, the slowdown incurred by the advanced

scheme with respect to the parallel algorithm is
O
(
n3/2−α

)
for 1/2 < α < 1,

O (n/ log n) for α = 1/2,

O (n) for 0 < α < 1/2.

As a consequence, for 1/2 ≤ α < 1, our simulation also exhibits a slowdown that is

less than proportional to the loss of parallelism.

The main reason why matrix multiplication exhibits good results is that, on the

host machine, the overall amount of computation is asymptotically higher than any

other cost. In other words, the algorithm performs enough computation to hide

the “inefficiency” of the simulation, which is caused by memory movements and is

quantitatively determined by the summation

µv

log v∑
i=0

λi log(µv/2i) (5.15)

in Theorem 5.5.2. Since the amount of computation is optimal in this parallel

algorithm, and the advanced scheme simulates local computation optimally, the

algorithm produced by the simulation is also optimal. A sublinear slowdown is

attained for matrix multiplication because, on the guest machine, the computation

and communication costs are unbalanced in the opposite direction: in other words,

for α ≥ 1/2 the cost function xα is such that, on the guest machine, communication

time dominates the time τ spent for computation. In general, we can say that a

sublinear slowdown is observed in the simulation of a D-BSPB (v, µ, f(x)) program

on f(x)-BT if the following two conditions hold:

1.
∑log v

i=0 λif(µv/2i) = ω (τ);

102 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

2. µ
∑log v

i=0 λi log(µv/2i) = O (τ).

These observations on optimality and slowdown show that the key to the perfor-

mance of the simulation is summation (5.15), which includes all the costs of the

simulation but local computation. Anyway, such observations do not bring practical

clues to the properties that must be exhibited by the parallel algorithm and the par-

allel model to ensure an optimal, sequential algorithm. In particular, note that it is

not always true that if a parallel algorithm for D-BSPB (v, µ, f(x)) is work-optimal,

then it can be simulated in optimal time through the advanced scheme.

Definition 5.6.1 The work performed by a v-processor algorithm, v ≥ 1, is the

product of its running time and v. A parallel algorithm is work-optimal with respect

to a sequential model Mseq if its work is within a constant factor from the one of an

optimal algorithm on Mseq for the same problem.

This is a weaker definition of work-optimality than the one that is commonly adopted

(see e.g. [JáJ92]), which assumes a RAM [AHU74] as the sequential model: in the

light of Proposition 5.3.1, we feel that it is unfair to take as golden standard the

running time on a model where the cost of accesses to memory can be completely

neglected. By Definition 5.6.1 and Corollary 5.4.2, we can say that if a full (not nec-

essarily fine-grained) parallel program is work-optimal with respect to f(x)-BT, then

the plain scheme turns it into a sequential f(x)-BT program that is also optimal. As

we have already explained, the same property may not hold for the advanced scheme,

even under our weak notion of work-optimality: for instance, this is the case if the

optimal parallel algorithm is computation-bound, while the sequential running time

obtained through simulation is dominated by the cost (5.15) of memory movements.

At this point, it is natural to wonder which parallel model is best “coupled” with

(5.15): in other words, which set of parameters for D-BSPB yields the best prediction

for the running time of the simulation? Which set guides algorithmic choices in such

a way that the simulation gives the best running time possible? Unlike the HMM

scenario of Chapter 4, the straightforward choice of having the same cost function for

the guest and the host machine is not optimal. Consider, for example, the problem

of solving an n-DFT instance on xα-BT, for 0 < α < 1; the guest machine that

5.6. DISCUSSION AND APPLICATIONS 103

is used for algorithm development is the D-BSP(n, 1, xα). As for many problems

in this section, we reuse the algorithms of Section 4.5. Remember that Section 4.5

presents two n-DFT algorithms: the first one is a standard execution of the n-input

FFT dag, while the second is based on a recursive decomposition of the same dag

into two layers of
√

n independent
√

n-input subdags, which are assigned to distinct

D-BSP clusters. The two layers are separated by a transpose permutation, that

is, by a 0-superstep. The running time of the first algorithm on D-BSP(n, 1, xα)

is given by Proposition 4.5.2 and is O (nα). For the second algorithm, the proof

of Proposition 4.5.2 shows that it requires 2i supersteps with label (1− 1/2i) log n,

0 ≤ i < log log n, hence the running time is

O

(
log log n−1∑

i=0

2i
(
n1/2i

)α
)

= O (nα) .

Clearly, the two algorithm are equally efficient and optimal on D-BSP(n, 1, xα).

However, when the advanced scheme is adopted, the simulation times of these two

algorithms on xα-BT are

O

(
n log n + n

log n−1∑
i=0

log(n/2i)

)
= O

(
n log2 n

)
and

O

(
n log n + n

log log n−1∑
i=0

2i log(n1/2i

)

)
= O (n log n log log n) ,

respectively: in this case, the second algorithm is more efficient than the first one.

This implies that the choice of having the same cost function for the guest and host

machine is not effective, in the sense that D-BSP(n, 1, xα) does not reward the use

of the second algorithm over the first.

To find the most effective cost function for the guest machine, we observe that

(5.15) resembles the overall cost of communication for a D-BSP(v, µ, log x); actually,

if the slowdown v due to the loss of parallelism is neglected, it is that very cost for

full algorithms. As a consequence, D-BSPB (v, µ, log x) seems the guest model we

are looking for. For fine-grained programs, this intuition is substantiated by the

following proposition.

104 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

Proposition 5.6.2 Any T -time program P for D-BSP(v, 1, log x) can be simulated

in time O (vT) on f(x)-BT with f(x) = O (xα), 0 ≤ α < 1.

Proof Our aim is to use the advanced scheme for the simulation. Such scheme

needs P to be G(v, 1, f(x))-smooth: in the general case, this hypothesis can be

satisfied only by a transformation that increases the running time of P by more

than a constant factor. To solve this issue, we slightly alter both the program P
and the simulation scheme. As far as the program is concerned, P is augmented by

inserting the minimum number of dummy supersteps to enforce the property that

any two consecutive supersteps j and j + 1, with ij+1 < ij, satisfy the inequality

f(v/2ij+1) ≤ v/2ij . (5.16)

Consider now two “original” supersteps s and s + 1 of P with is+1 < is which do

not satisfy Inequality (5.16). The number k of dummy supersteps to be inserted is

such that f (k)(v/2is+1) ≤ v/2is , whence k ≤ f ∗(v/2is+1) = O (log log(v/2is+1)).

With regard to the simulation, the advanced scheme is modified to treat dummy

and normal supersteps differently: to be precise, when the simulation algorithm real-

izes that the topmost ij-cluster needs to execute a dummy superstep, it immediately

passes to Superstep j + 1. As a consequence, the only cost incurred in simulating a

dummy ij-superstep is due to the need of moving a certain number of ij-clusters to

the top of memory (Step 7); this cost is given by Equation (5.13) and is

O
(
2ij−ij+1f(v/2ij+1) + v/2ij+1

)
,

where ij+1 < ij is the index of the superstep which triggers the cluster movements.

Since ij and ij+1 satisfy Inequality (5.16), the cost for the simulation of the dummy

ij-superstep is O (v/2ij+1). Based on this result, we can say that for every is+1-

cluster, the extra cost for dealing with the O (log log(v/2is+1)) dummy supersteps

which are placed between non-dummy superstep indices is and is+1 is

O
(v

2is+1
log log(v/2is+1)

)
,

which is clearly amortized by the cost of the simulation of the is+1-superstep.

Having proved that the program transformation applied to P does not asymp-

totically increase the simulation time, we can now see how the transformation helps

5.6. DISCUSSION AND APPLICATIONS 105

us overcome the fact that P is not G(v, 1, f(x))-smooth. The simulation scheme of

Subsection 5.5.2 relies on the smoothness of P in the upper bound on the cost of

cluster movements, as given by Equation (5.13). The transformation ensures that

f(v/2is) = O (v/2is+1) for any two consecutive indices is, is+1 in P , is < is+1; it is

straightforward to see that this property can be used to confirm the conclusions we

reached in Subsection 5.5.2.

To conclude the proof, we note that the simulation slows down local computation

by a factor vf(µ)/ log µ, where µ is the size of the local memory that is available to

each D-BSP processor. Since µ = O (1), the slowdown is proportional to v. �

Since the running times of a program for D-BSP(v, 1, log x) and of the corresponding

simulation on f(x)-BT are related according to a fixed multiplicative factor v, the

effectiveness of D-BSP(v, 1, log x) is ensured: if algorithmA1 is faster than algorithm

A2 on D-BSP, the inequality is certainly preserved if the two algorithms are simu-

lated on f(x)-BT. Furthermore, for the purposes of this simulation no cost function

suggests faster sequential algorithms than log x. Let C be a computational problem,

g(x) 6= log x a polynomially bounded function, and Pg, Plog two optimal programs

for C on D-BSP(v, 1, g(x)) and D-BSP(v, 1, log x), respectively. Note that Pg is also

a valid program for D-BSP(v, 1, log x): on this model it is therefore possible to eval-

uate the running times Tg, Tlog of Pg and Plog, respectively. Now, suppose that Pg

yields, once simulated, a sequential algorithm that is asymptotically faster than the

one given by Plog; by Proposition 5.6.2, the running times of the two simulations

are vTg and vTlog, respectively. The first quantity is asymptotically smaller than the

second one, so we can immediately conclude that Tg = o (Tlog): this is a contradic-

tion, since we defined Tlog to be the optimal time for C on D-BSP(v, 1, log x). The

contradiction proves that our claim is true.

By relying on Proposition 5.6.2, we have therefore shown that D-BSP(v, 1, log x)

is the model of choice for the development of sequential algorithms for a whole

class of BT machines, namely those in which the cost to access the hierarchical

memory is bounded by a polynomial xα, 0 ≤ α < 1. The argument extends to an

arbitrary memory size µ, but only if the D-BSPB (v, µ, f(x)) program is full and

f(x) = Ω (log x).

106 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

Problem D-BSP(n, 1, log x) f(x)-BT Simulation loss

n-MM O
(
n1/2

)
O
(
n3/2

)
1

n-DFT O (log n log log n) O (n log n) [ACS87] log log n

n-sorting O
(
log2 n

)
O (n log n) [ACS87] log n

Broadcast O (log n log log n) O (n) log n log log n

Table 5.1: execution times of some common primitives on the D-BSP(n, 1, log x)

and f(x)-BT models, with f(x) = O (xα), 0 ≤ α < 1. The last column shows

the simulation loss, that is, the inefficiency incurred when simulating the parallel

algorithms on BT, with respect to the best algorithms known for BT.

Note that a single cost function, namely log x, fits the f(x)-BT model for all

the values of f(x) encompassed by the advanced simulation scheme. This is due

to the fact that (5.15) does not depend on f(x), which, in turn, is an effect of

block transfer: in fact, the availability of block transfer reduces the average cost of

memory accesses enough to make the overhead of the simulation insensitive to f(x).

Concerning the parallel model, observe that the logarithmic function describes a

network hierarchy in which the cost of communication increases very slowly with

the size of the machine. With a tolerable degree of approximation, we can say

that the communication subsystem is “fast” and exhibits almost no hierarchy, thus

encouraging a massive use of parallelism. Since we use the parallel model that gives

the best match with f(x)-BT, this is a hint that our simulation scheme operates an

effective transformation of parallelism into both temporal and spatial locality.

In the light of Proposition 5.6.2, we now examine the matrix multiplication, DFT,

sorting and broadcast problems to determine the running times that are obtained by

the simulation on f(x)-BT of the best algorithms for the D-BSP(n, 1, log x) model;

the results of the analysis are summarized in Table 5.1.

n-MM By Proposition 4.5.1, the matrix multiplication algorithm we have already

described yields a running time of O
(
n1/2

)
on the D-BSP(n, 1, log x) model: the

execution time on f(x)-BT is therefore O
(
n3/2

)
. A trivial, work-based argument

shows that both the parallel and the sequential running times are optimal in the

5.6. DISCUSSION AND APPLICATIONS 107

respective computational models.

n-DFT The standard implementation of the n-input FFT dag yields a running

time of

O

(
log n−1∑

i=0

log
(
n/2i

))
= O

(
log2 n

)
.

For the recursive decomposition of the FFT dag into
√

n independent subdags, the

running time is

O

(
log log n−1∑

i=0

2i log(n1/2i

)

)
= O (log n log log n) .

When the advanced scheme is adopted, the simulation times of these two algorithms

on f(x)-BT are O
(
n log2 n

)
and O (n log n log log n), respectively. Note that the D-

BSP(n, 1, log x) model is effective, since it favors the second algorithm (which is

more efficient on BT) over the first. We further remark that the simulation of the

second algorithm, which yields the best known running time on D-BSP(n, 1, log x),

does give a suboptimal algorithm for the f(x)-BT model, which can solve the DFT

problem in time Θ (n log n) for f(x) = O (xα), α < 1 [ACS87].

n-sorting To date, the best sorting algorithm for the D-BSP(n, 1, log x) model is a

straightforward implementation of the AKS sorting network [AKS83]: the depth of

this network is O (log n), hence it can be implemented with O (log n) 0-supersteps;

the corresponding running time is O
(
log2 n

)
on D-BSP(n, 1, log x), and O

(
n log2 n

)
on f(x)-BT. Note that the parallel algorithm does not exploit any temporal, spatial

or network locality.

Broadcast As explained in Section 2.4, a broadcast is a communication operation

that delivers a constant-sized item, which is initially stored in a single processor, to

every processor of a parallel machine. On D-BSP(n, 1, log x), we can use a recur-

sive algorithm; when invoked on a problem of size n, the algorithm performs the

operations explained below.

1. If n = 1, then the call returns without performing any computation.

108 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

2. If n > 1, then broadcast is recursively solved for the first (log n)/2-cluster of

the parallel machine, i.e. for cluster C
(log n/2)
0 . Then, for 0 < j <

√
n, processor

Pj sends a copy of the item to processor Pj
√

n: when this message exchange

is over, every (log n/2)-cluster owns a copy of the item. Finally, broadcast is

solved in parallel for submachines C
(log n/2)
1 , . . . , C

(log n/2)√
n

.

As a whole, this algorithm requires two recursive calls on subproblems of size
√

n

and a 0-superstep in which every processor exchanges O (1) messages. The execution

time TBCAST of the algorithm is therefore given by the recurrence equation

TBCAST(n) =

 2TBCAST(n1/2) + O (log n) for n > 1,

O (1) for n = 1,

which evaluates to O (log n log log n).

On the sequential BT model, broadcast can be considered equivalent to the

following Memory Fill problem: given a value x stored in memory location 0, the

value must be copied into the first n memory cells. If f(x) = O (xα), 0 ≤ α < 1,

an optimal solution to this problem is organized into log n steps: during Step j,

0 ≤ j < log n, the interval of memory cells [0, 2j − 1] is copied onto the interval

[2j, 2j+1 − 1] in a single block transfer operation. It is straightforward to prove

inductively that, at the beginning of Step j, the value x has been copied into the

first 2j memory cells. The running time of this sequential algorithm is

log n−1∑
j=0

(
f(2j+1 − 1) + 2j

)
= O (n) ,

which is asymptotically optimal. Instead, the simulation of the parallel algorithm on

f(x)-BT yields an O (n log n log log n)-time program: this is a log n log log n factor

away from optimum.

We remark that, although the advanced scheme does not always offer optimal

algorithms for the sequential BT model, it cannot be further improved in the gen-

eral case, since the lower bound proved in [ACS87, Corollary 5.9] on the execution

of random permutations on f(x)-BT can be employed to design a D-BSP program

for which the time of the advanced scheme is the least possible. However, an im-

proved simulation can be obtained when the communication patterns generated by

5.6. DISCUSSION AND APPLICATIONS 109

the parallel algorithm are known a priori and exhibit certain regularities. As an

example, consider again the O (log n log log n)-time DFT algorithm designed for D-

BSP(n, 1, log x). By simulating the transpose permutation at each superstep by the

rational permutation algorithm in [ACS87], rather than through sorting, the running

time of the simulation becomes O (n log n), which is optimal on f(x)-BT for both

f(x) = xα and f(x) = log x. This shows that, in this case, the algorithmic strategy

indicated by D-BSP is indeed the optimal one for BT and that non-optimalities are

due to the generality of the simulation that must deal with worst case scenarios

(e.g., by the use of sorting to cope with random permutations).

110 CHAPTER 5. PARALLELISM AND SPATIAL LOCALITY

Chapter 6

Conclusions

One of the main reasons that makes parallelism difficult to exploit is the lack of

a widely accepted model of parallel computation. Countless models are described

in the literature, but nearly all of them are focused on some specific aspect of the

computation or on specific aspects of the hardware platforms, thus failing to reach

a satisfactory balance among usability, portability and effectiveness. This problem

has been acknowledged in recent years, and bridging models have been recognized

as a viable solution; however, there is still no consensus on the characteristics that

must be included in such models. With this thesis we have made a contribution to

the growing literature on bridging models, while trying to learn on past mistakes:

for this reason, we have focused our attention on what we consider fundamental

characteristics of parallel computations, that is, characteristics that are deemed to

last even when current technological issues have been solved. This intention has

led us to advocate D-BSP [dK96] as a bridging model of parallel computation. The

model is characterized by

• a distributed memory architecture;

• a powerful yet easy-to-use communication/synchronization primitive, inherited

from the standard BSP;

• a recursive, binary decomposition into independent clusters, which allows the

model to capture network locality to an excellent degree without getting in-

volved with the fine details of the network’s topology.

111

112 CHAPTER 6. CONCLUSIONS

In Chapter 2 we have presented some results that demonstrate the higher effective-

ness of D-BSP over the popular BSP model according to the quantitative definition

of effectiveness introduced in [BPP99]. Although more effective than BSP, D-BSP

retains a fair degree of usability, as demonstrated by the simple yet optimal algo-

rithms obtained for the prefix, sorting and routing problems. In the same chapter

we have also shown that many processor networks can support the D-BSP abstrac-

tion with constant slowdown, provided that the D-BSP parameters are tuned to

reflect the bandwidth and latency characteristics of the network under consider-

ation. This fact provides evidence of the virtues of D-BSP as a bridging model,

because it shows that D-BSP incorporates the relevant characteristics of intercon-

nection networks. We regard this as a highly desirable feature, because the ultimate

goal of a computational model is to incorporate all the architectural issues that are

fundamental to the development of parallel applications, hopefully to the point that

parallel machines can be designed according to the primitives of the model.

In the remaining chapters of the thesis, we have presented original results which

are applications of structured parallelism as modeled by D-BSP. In Chapter 3 we

have shown how to leverage on network locality to obtain an efficient implementa-

tion of a shared memory abstraction. The deterministic scheme we have devised

generalizes the one in [PPS00] by making nontrivial modifications to the memory

organization and by expressing the access protocol in terms of a few general prim-

itives, so that it can adapt to the hierarchical structure of different architectures.

As a result, the scheme can be immediately ported to any architecture supporting

D-BSP. For the sake of concreteness, in the chapter we have analyzed the slowdown

for a spectrum of D-BSP parameters, showing that close to optimal performance

can be obtained for machines characterized by moderate bandwidth, such as mul-

tidimensional arrays. As a corollary, the instantiation of the scheme on the mesh

yields the results in [PPS00]. Moreover, we have shown that optimality can be

achieved on machines where delays due to latency dominate over those due to band-

width limitations: none of the schemes previously developed in the literature for

specific networks had revealed this fact. Common to all previous works on deter-

ministic PRAM simulation, a challenging open problem is the explicit construction

113

of expanding bipartite graphs that could make the scheme fully constructive for

any number m of shared variables. As argued in the chapter, explicit constructions

are known only to deal with the case m = O
(
n3/2

)
, which however is sufficient to

simulate any NC algorithm [JáJ92].

In Chapter 4, we have proved that temporal locality and network locality as

modeled by D-BSP can be described in a unified framework and can be exploited

through common strategies; the result is based on cross simulations of D-BSP ma-

chines. More precisely, we have shown how a guest D-BSP machine with v processors

can be simulated on a v′-processor host configuration, v′ ≤ v, with slowdown pro-

portional to v/v′. Since the original D-BSP does not model temporal locality, as a

prerequisite towards our result we have extended D-BSP by making each node an

HMM machine [AACS87]; furthermore, we regarded the cost of a network access in

a cluster equal to the cost of a memory access to the farthest cell in the cluster. This

choice is completely reasonable, since it indicates that the network is considered as

the slowest level of the memory hierarchy. The significance of our result stems from

the observation that, if v′ < v, the local memories of the host machine are bigger

(thus slower) than those of the guest machine, hence a superlinear slowdown could

be likely. Although this expectation comes up to be true for highly local computa-

tions on point-to-point interconnection topologies [BP99], our result proves that it is

not the case for bulk parallel computations. This is a remarkable finding, since bulk

computations can be used to efficiently solve many prominent problems. To give ev-

idence of this fact, our cross-simulation strategy has been applied to obtain optimal,

sequential solutions for matrix multiplication, FFT and sorting: this application of

our result shows that algorithmic techniques developed in the realm of parallelism

can be easily applied to the development of hierarchy-conscious algorithms, a further

evidence of a fundamental connection between network and temporal locality. In

this context, D-BSP shifts its role and becomes a “virtual” model whose parameters

are set to match the memory hierarchy of the host machine.

We remark that not all problems are expected to interact with the memory

hierarchy in the same way. As a matter of fact, some problems (among which the

ones analyzed by ourselves and by other authors in the literature) are known to be

114 CHAPTER 6. CONCLUSIONS

solvable on different hierarchies with the same sequential algorithm [FLPR99], but

computations exist that require different algorithms on different hierarchies [BP01].

As a whole, the fundamental question of which properties make a problem efficiently

solvable in a hierarchical setting is still open and far to be solved. With respect to the

framework we have introduced in Chapter 4, it would therefore be useful to evaluate

the performance of the simulation on a wider set of problems. Indeed, it would

be interesting to identify classes of problems which require different algorithms on

different hierarchies, or even problems for which no hierarchy-efficient algorithms

exist, since they could give insight on the features connected to such ill behavior.

Our framework makes it natural to start the search by considering the class of P -

complete problems [Joh90], that is, the class of polynomial-time problems for which

no efficient parallel solution is known. Note also that, by our framework, finding a

hierarchy-inefficient problem P immediately gives a significant lower bound on the

parallel execution time for P .

Building on the promising results of Chapter 4, in Chapter 5 we have made an

effort to incorporate spatial locality of reference into our framework. In doing so,

we have been pushed to develop a further extension of D-BSP which is capable of

modeling temporal, spatial and network locality according to a single cost function

f(x); our extension minimizes the burden connected with a new model by resorting

to block transfer facilities as described in the previous literature [ACS87, BDP99].

Through cross-simulations, we have proved that a Brent-like lemma still holds for

the new model: in other words, a v-processor machine can be simulated on a v′-

processor one having the same cost function and aggregate memory size with slow-

down proportional to v/v′. This result, which may lead to think of a transformation

of parallelism into spatial locality, gives only a limited view on the effects of spatial

locality itself. In fact, by taking maximum advantage of block transfer we have been

able to develop a more sophisticated simulation scheme that translates a D-BSP

program into a sequential f(x)-BT program whose running time is independent of

f(x). This simulation scheme uncovers phenomena we did not observe before, which

take us a step ahead of the seamless integration setting. Indeed, both our findings

and results in the literature [ACS87] show that the main effect of spatial locality is

115

to make algorithms mostly insensitive to f(x), thus “flattening” the memory and

network hierarchies. This is the true nature of the block transfer mechanism: since

the cost of transferring a block of l data is f(x) + l, if l is big enough (viz., if

l ≥ f(x) in this cost model) then the average cost per datum is O (1). Therefore,

an algorithm works as if run on a flat hierarchy if it is able to move sufficiently

big chunks of data: on such a hierarchy, the exploitation of network and temporal

locality becomes much less critical.

We remark that these optimal conditions are difficult to be met, because the

problem at hand may not expose a sufficient degree of spatial locality: in fact, some

algorithmic test cases in this chapter demonstrate that the presence of other forms

of locality still improves the running time. Furthermore, it must be noticed that

the considerations stated above crucially relies on the availability of unlimited block

transfer, that is, a block transfer mechanism which is capable of transferring blocks

of arbitrary size. Such a powerful device is justified by the nature of our study in the

chapter, which aims at evaluating the maximum benefit which can be reaped from

block transfer, but is in contrast with the vast body of work on 2-level memories

where the block size B is a parameter of the model. Unlimited block transfer is not

present in current memory implementations, although its feasibility has recently

been advocated [BEP02], while it is available in high-performance networks in the

form of wormhole routing.

As a whole, it is not clear whether unlimited block transfer is a reasonable

candidate for inclusion in a bridging model. For instance, consider a “crippled”

f(x)-BT machine where the block size depends on the memory hierarchy level to be

accessed: to be precise, the crippled model is able to copy a memory region [x− l, x]

into a non-overlapping region [y− l, y] in chunks of at most max{f(x), f(y)} cells. It

can be easily seen that such a restricted model is able to simulate an arbitrary f(x)-

BT program with constant slowdown, hence unlimited block transfer is not strictly

necessary to attain maximum performance. This observation suggests that more

work on models needs to be done: for instance, it would be interesting to investigate

more limited forms of block transfer within our framework. With respect to models,

we also feel that seamless integration is not to be abandoned altogether, since a

116 CHAPTER 6. CONCLUSIONS

model which deals with the different manifestations of locality in a uniform fashion

would be undoubtedly useful.

List of Figures

2.1 Communication in a D-BSP(n, g, `) with n = 8 processors 15

2.2 Execution of a small program on a D-BSP(n, g, `) with n = 8 processors 16

3.1 A sample HMOS built upon |V | = m = 8 variables, with k = 2

levels of i-modules, |U0| = 8 0-modules, |U1| = 4 1-modules, |U2| = 3

2-modules and r = 5 . 31

3.2 Contents of i-modules, 0 ≤ i ≤ 2, according to the HMOS of Figure 3.1 32

3.3 Contents of the aggregate memory of the D-BSP according to the

HMOS of Figure 3.1 . 33

4.1 Snapshots of the HMM memory showing cluster movements during a

cycle involving an is+1-cluster containing b = 8 is-clusters 63

4.2 Assignment of submatrices to the four D-BSP 2-clusters during the

execution of the matrix multiplication algorithm 68

5.1 Snapshots of the BT memory layout during an UNPACK(0) operation 87

5.2 The COMPUTE subroutine . 90

117

List of Tables

3.1 Execution times on D-BSP(n, g(α), `(β)) of some common primitives . 30

5.1 Execution times of some common primitives on the D-BSP(n, 1, log x)

and f(x)-BT models, with f(x) = O (xα), 0 ≤ α < 1 106

118

Bibliography

[AACS87] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir.

A model for hierarchical memory. In Proceedings of the 19th Annual

ACM Symposium on the Theory of Computing, pages 305–314, 1987.

[ACF93] Bowen Alpern, Larry Carter, and Jeanne Ferrante. Modeling parallel

computers as memory hierarchies. In W. K. Gilio, S. Jähnichen, and

B. D. Shriver, editors, Programming Models for Massively Parallel

Computers, pages 116–123. IEEE Computer Society Press, 1993.

[ACS87] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Hierarchical

memory with block transfer. In Proceedings of 28th Annual IEEE

Symposium on Foundations of Computer Science, pages 204–216, Los

Angeles, USA, October 1987.

[ACS89] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. On communi-

cation latency in PRAM computations. In Proceedings of the 1st

Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 11–21, Santa Fe, New Mexico, USA, June 1989. ACM Press.

[AHMP87] Helmut Alt, Torben Hagerup, Kurt Mehlhorn, and Franco P.

Preparata. Deterministic simulation of idealized parallel computers

on more realistic ones. SIAM Journal on Computing, 16(5):808–835,

1987.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design

and Analysis of Computer Algorithms. Addison-Wesley, 1974.

119

120 BIBLIOGRAPHY

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n)

sorting network. In Proceedings of the 15th Annual ACM Symposium

on the Theory of Computing, pages 1–9, Boston, Massachusetts, USA,

April 1983.

[APM+00] Nancy M. Amato, Jack Perdue, Mark M. Mathis, Andrea Pietraca-

prina, and Geppino Pucci. Predicting performance on SMPs. a case

study: The SGI Power Challenge. In Proceedings of the 14th Interna-

tional Parallel and Distributed Processing Symposium, pages 729–737,

Cancun, Mexico, May 2000. IEEE Computer Society.

[BDMadH98] Armin Bäumker, Wolfgang Dittrich, and Friedhelm Meyer auf der

Heide. Truly efficient parallel algorithms: 1-optimal multisearch for an

extension of the BSP model. Theoretical Computer Science, 203:175–

203, 1998.

[BDP99] Armin Bäumker, Wolfgang Dittrich, and Andrea Pietracaprina. The

complexity of parallel multisearch on coarse-grained machines. Algo-

rithmica, 24:209–242, 1999.

[BEP02] Gianfranco Bilardi, Kattamuri Ekanadham, and Pratap Pattnaik.

Optimal organizations for pipelined hierarchical memories. In Pro-

ceedings of the 14th Annual ACM Symposium on Parallel Algorithms

and Architectures, pages 109–116, Winnipeg, Manitoba, Canada, Au-

gust 2002. ACM Press.

[BFPP01] Gianfranco Bilardi, Carlo Fantozzi, Andrea Pietracaprina, and Gep-

pino Pucci. On the effectiveness of D-BSP as a bridging model of par-

allel computation. In Proceedings of ICCS 2001, LNCS 2074, pages

579–588, San Francisco, California, USA, May 2001.

[BGMZ97] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Marco Zagha.

Accounting for memory bank contention and delay in high-bandwidth

multiprocessors. IEEE Transactions on Parallel and Distributed Sys-

tems, 8(9):943–958, 1997.

BIBLIOGRAPHY 121

[BHP+96] Gianfranco Bilardi, Kieran T. Herley, Andrea Pietracaprina, Geppino

Pucci, and Paul G. Spirakis. BSP vs LogP. In Proceedings of the 8th

Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 25–32, Padova, Italy, June 1996. ACM Press.

[BHPP00] Gianfranco Bilardi, Kieran T. Herley, Andrea Pietracaprina, and Gep-

pino Pucci. On stalling in LogP. In Proceedings of IPDPS 2000 Work-

shops, pages 109–115, Cancun, Mexico, May 2000. Springer Verlag.

[BP97] Gianfranco Bilardi and Franco P. Preparata. Processor-time tradeoffs

under bounded-speed message propagation: Part I, upper bounds.

Theory of Computing Systems, 30:523–546, 1997.

[BP99] Gianfranco Bilardi and Franco P. Preparata. Processor-time tradeoffs

under bounded-speed message propagation: Part II, lower bounds.

Theory of Computing Systems, 32:531–559, 1999.

[BP00] Mauro Bianco and Geppino Pucci. On the predictive quality of BSP-

like cost functions for NOWs. In Proceedings of Euro-Par 2000, LNCS

1900, pages 638–646, Munich, Germany, August 2000. Springer Ver-

lag.

[BP01] Gianfranco Bilardi and Enoch Peserico. A characterization of tempo-

ral locality and its portability across memory hierarchies. In Proceed-

ings of ICALP 2001, LNCS 2076, pages 128–139, 2001.

[BPP99] Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci. A

quantitative measure of portability with application to bandwidth-

latency models for parallel computing. In Proceedings of Euro-Par

99, LNCS 1685, pages 543–551, Toulouse, France, August 1999.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic ex-

pressions. Journal of the ACM, 21(2):201–206, 1974.

[CGG+95] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto

Tamassia, Darren Erik Vengroff, and Jeffrey Scott Vitter. External

122 BIBLIOGRAPHY

memory graph algorithms. In Proceedings of the 6th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 139–149, San Fran-

cisco, California, USA, January 1995.

[CKP+96] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sa-

hay, Eunice E. Santos, Klaus E. Schauser, Ramesh Subramonian, and

Thorsten von Eicken. LogP: A practical model of parallel computa-

tion. Communications of the ACM, 39(11):78–85, 1996.

[CMadHS00] Artur Czumaj, Friedhelm Meyer auf der Heide, and Volker Stemann.

Contention resolution in hashing based shared memory simulations.

SIAM Journal on Computing, 29(5):1703–1739, 2000.

[CT65] James C. Cooley and John W. Tukey. An algorithm for the machine

computation of the complex Fourier series. Mathematics of Compu-

tation, 19:297–301, April 1965.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash func-

tions. Journal of Computer and System Sciences, 18(2):143–154, April

1979.

[DDH03] Frank Dehne, Wolfgang Dittrich, and David Hutchinson. Efficient

external memory algorithms by simulating coarse-grained parallel al-

gorithms. Algorithmica, 36(2):97–122, April 2003.

[DDHM99] Frank Dehne, Wolfgang Dittrich, David Hutchinson, and Anil Ma-

heshwari. Reducing I/O complexity by simulating coarse grained

parallel algorithms. In Proceedings of the 13th International Parallel

Processing Symposium, pages 14–20, 1999.

[DFRC96] Frank Dehne, Andreas Fabri, and Andrew Rau-Chaplin. Scalable

parallel geometric algorithms for coarse grained multicomputers. In-

ternational Journal on Computational Geometry, 6(3):379–400, 1996.

BIBLIOGRAPHY 123

[dK96] Pilar de la Torre and Clyde P. Kruskal. Submachine locality in the

bulk synchronous setting. In Proceedings of Euro-Par 96, LNCS 1124,

pages 352–358, Lyon, France, August 1996.

[FLPR99] Matteo Frigo, Charles Leiserson, Harald Prokop, and Sridhar Ra-

machandran. Cache-oblivious algorithms. In Proceedings of the 40th

Annual IEEE Symposium on Foundations of Computer Science, pages

285–297, October 1999.

[FPP] Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. Trans-

lating submachine locality into locality of reference. Submitted to

IPDPS 2004.

[FPP01] Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. Imple-

menting shared memory on clustered machines. In Proceedings of

the 15th International Parallel and Distributed Processing Symposium,

San Francisco, California, USA, April 2001. IEEE Computer Society.

[FPP02] Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. Seam-

less integration of parallelism and memory hierarchy. In Proceedings

of the 29th International Colloquium on Automata, Languages and

Programming, LNCS 2380, pages 856–867, Malaga, Spain, July 2002.

Springer Verlag.

[FPP03] Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. A gen-

eral PRAM simulation scheme for clustered machines. International

Journal on Foundations of Computer Science, 2003. To appear.

[FW78] Steve Fortune and James Wyllie. Parallelism in random access ma-

chines. In Conference Record of the 10th Annual ACM Symposium

on Theory of Computing, pages 114–118, San Diego, California, USA,

May 1978.

[GLR+96] Mark Goudreau, Kevin Lang, Satish Rao, Torsten Suel, and Thanasis

Tsantilas. Towards efficiency and portability: Programming with the

124 BIBLIOGRAPHY

BSP model. In Proceedings of the 8th ACM Symposium on Parallel

Algorithms and Architectures, pages 1–12, Padova, Italy, June 1996.

ACM Press.

[GMR99] Leslie Ann Goldberg, Yossi Matias, and Satish Rao. An optical sim-

ulation of shared memory. SIAM Journal on Computing, 28(5):1829–

1847, 1999.

[Goo93] Michael T. Goodrich. Parallel algorithms column I: Models of com-

putation. SIGACT News, 24(4):16–21, December 1993.

[Goo96] Michael T. Goodrich. Communication-efficient parallel sorting. In

Proceedings of the 28th Annual ACM Symposium on the Theory of

Computing, pages 247–256, Philadelphia, Pennsylvania, USA, May

1996. ACM Press.

[HB94] Kieran T. Herley and Gianfranco Bilardi. Deterministic simulations of

PRAMs on bounded-degree networks. SIAM Journal on Computing,

23(2):276–292, 1994.

[Her96] Kieran T. Herley. Representing shared data in distributed-memory

parallel computers. Mathematical Systems Theory, 29(2):111–156,

1996.

[HJ86] Marshall Hall Jr. Combinatorial Theory. John Wiley & Sons, New

York, NY, second edition, 1986.

[HL95] Todd Heywood and Claudia Leopold. Models of Parallelism, chapter

1-16. Oxford University Press, 1995.

[HPP01] Kieran T. Herley, Andrea Pietracaprina, and Geppino Pucci. Imple-

menting shared memory on mesh-connected computers and on the

fat-tree. Information and Computation, 165(2):123–143, 2001.

[HR92] Todd Heywood and Sanjay Ranka. A practical hierarchical model of

parallel computation. I. the model. Journal of Parallel and Distributed

Computing, 16(3):212–232, 1992.

BIBLIOGRAPHY 125

[JáJ92] Joseph F. JáJá. An Introduction to Parallel Algorithms. Addison

Wesley, Reading, MA, 1992.

[Joh90] David S. Johnson. Handbook of Theoretical Computer Science, Vol-

ume A: Algorithms and Complexity, chapter “A Catalog of Complex-

ity Classes”, pages 67–161. Elsevier and MIT Press, 1990.

[JW94] Ben H. H. Juurlink and Harry A. G. Wijshoff. The parallel hierarchical

memory model. In Proceedings of the 4th Scandinavian Workshop on

Algorithm Theory, LNCS 824, pages 240–251, Aarhus, Denmark, July

1994. Springer Verlag.

[JW96] Ben H. H. Juurlink and Harry A. G. Wijshoff. The E-BSP model:

Incorporating general locality and unbalanced communication into

the BSP model. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte,

and Yves Robert, editors, Proceedings of Euro-Par 96, Volume II,

pages 339–347, Lyon, France, August 1996. Springer Verlag.

[JW98] Ben H. H. Juurlink and Harry A. G. Wijshoff. A quantitative compar-

ison of parallel computation models. ACM Transactions on Computer

Systems, 16(3):271–318, August 1998.

[Lei85] Charles E. Leiserson. Fat-trees: Universal networks for hardware-

efficient supercomputing. IEEE Transactions on Computers,

34(10):892–901, October 1985.

[Lei92] Frank Thomson Leighton. Introduction to Parallel Algorithms and

Architectures: Arrays • Trees • Hypercubes. Morgan Kaufmann, San

Mateo, CA, 1992.

[LMR99] Frank Thomson Leighton, Bruce M. Maggs, and Andréa W. Richa.

Fast algorithms for finding O(congestion + dilation) packet routing

schedules. Combinatorica, 19(3):375–401, 1999.

126 BIBLIOGRAPHY

[LMRR94] Frank Thomson Leighton, Bruce M. Maggs, Abhiram G. Ranade,

and Satish Rao. Randomized routing and sorting on fixed-connection

networks. Journal of Algorithms, 17(1):157–205, July 1994.

[LP93] Fabrizio Luccio and Linda Pagli. A model of sequential computa-

tion with pipelined access to memory. Mathematical Systems Theory,

26(4):343–356, 1993.

[LPP90] Fabrizio Luccio, Andrea Pietracaprina, and Geppino Pucci. A new

scheme for the deterministic simulation of PRAM in VLSI. Algorith-

mica, 5:529–544, 1990.

[LR99] Frank Thomson Leighton and Satish Rao. Multicommodity max-

flow min-cut theorems and their use in designing approximation al-

gorithms. Journal of the ACM, 46(6):787–832, 1999.

[Mil94] R. Miller. Two approaches to architecture-independent parallel com-

putation. PhD thesis, Oxford University, 1994.

[MMT95] Bruce M. Maggs, Lesley R. Matheson, and Robert Endre Tarjan.

Models of parallel computation: a survey and synthesis. In Proc-

cedings of the 28th Annual Hawaii International Conference on Sys-

tem Sciences, pages 61–72, Kihei, Maui, Hawaii, USA, January 1995.

IEEE Computer Society Press.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.

Cambridge University Press, 1995.

[MV84] Kurt Mehlhorn and Uzi Vishkin. Randomized and deterministic sim-

ulations of PRAMs by parallel machines with restricted granularity

of parallel memories. Acta Informatica, 21:339–374, 1984.

[PP97] Andrea Pietracaprina and Franco P. Preparata. Practical constructive

schemes for deterministic shared-memory access. Theory of Comput-

ing Systems, 33:3–37, 1997.

BIBLIOGRAPHY 127

[PPA+98] Andrea Pietracaprina, Geppino Pucci, Nancy M. Amato, Lucia K.

Dale, and Jack Perdue. A cost model for communication on a symmet-

ric multiprocessor. In 10th ACM Symposium on Parallel Algorithms

and Architectures, Revue Session, Puerto Vallarta, Mexico, June-July

1998.

[PPS00] Andrea Pietracaprina, Geppino Pucci, and Jop F. Sibeyn. Con-

structive, deterministic implementation of shared memory on meshes.

SIAM Journal on Computing, 30(2):625–648, 2000.

[Ran91] Abhiram G. Ranade. How to emulate shared memory. Journal of

Computer and System Sciences, 42:307–326, 1991.

[Reg96] Kenneth W. Regan. Linear time and memory-efficient computation.

SIAM Journal on Computing, 25(1):133–168, February 1996.

[SA+92] H. J. Siegel, S. Abraham, et al. The Purdue workshop on grand

challenges in computer architecture for the support of high perfor-

mance computing. Journal of Parallel and Distributed Computing,

16(3):199–211, November 1992.

[SK94] Jop F. Sibeyn and Michael Kaufmann. Deterministic 1-k routing on

meshes. In Proceedings of the 11th Annual Symposium on Theoret-

ical Aspects of Computer Science, LNCS 775, pages 237–248, Caen,

France, February 1994. Springer Verlag.

[SK97] Jop F. Sibeyn and Michael Kaufmann. BSP-like external-memory

computation. In Proceedings of the 3rd Italian Conference on Algo-

rithms and Complexity, LNCS 1203, pages 229–240, 1997.

[UW87] Eli Upfal and Avi Widgerson. How to share memory in a distributed

system. Journal of the ACM, 34(1):116–127, 1987.

[Val90a] Leslie G. Valiant. A bridging model for parallel computation. Com-

munications of the ACM, 33(8):103–111, 1990.

128 BIBLIOGRAPHY

[Val90b] Leslie G. Valiant. Handbook of Theoretical Computer Science, Volume

A: Algorithms and Complexity, chapter “General Purpose Parallel

Architectures”, pages 943–972. Elsevier and MIT Press, 1990.

[Vis96] Uzi Vishkin. Can parallel algorithms enhance serial implementation?

Communications of the ACM, 39(9):88–91, 1996.

[Vit91] Jeffrey Scott Vitter. Efficient memory access in large-scale compu-

tation. In Proceedings of the 8th Annual Symposium on Theoretical

Aspects of Computer Science, LNCS 480, pages 26–41, Hamburg, Ger-

many, February 1991. Springer Verlag.

[VS94a] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for

parallel memory I: Two-level memories. Algorithmica, 12(2-3):110–

147, 1994.

[VS94b] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for

parallel memory II: Hierarchical multilevel memories. Algorithmica,

12(2-3):148–169, 1994.

	Introduction
	The D-BSP Model
	Bandwidth-Latency Models
	The D-BSP Model
	D-BSP and Processor Networks
	Effectiveness of D-BSP: Examples

	Simulation of Shared Memory
	Previous Work
	Original Contributions
	Memory Organization
	Access Protocol
	Copy Selection
	Access to the Selected Copies

	Constructivity Issues
	An Optimal Randomized Scheme

	Parallelism and Temporal Locality
	Previous Work
	Original Contributions
	Machine Models
	HMM
	D-BSP with Hierarchical Memory

	The General Simulation Algorithm
	Simulation of D-BSP(v,,x) on x-HMM
	General Simulation of D-BSP(v,,f(x)) on f(x)-HMM
	Analogue of Brent's Lemma

	Application to Case Study Problems

	Parallelism and Spatial Locality
	Previous Work
	Original Contributions
	Machine Models
	BT
	D-BSP with Block Transfer

	The Plain Simulation Scheme
	Simulation of D-BSPB (v,,f(x)) on f(x)-BT
	Analogue of Brent's Lemma

	An Advanced Simulation Scheme
	Memory Organization
	The Simulation Algorithm
	Partial Loss of Parallelism

	Discussion and Applications

	Conclusions

