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ABSTRACT
Privacy is critical when dealing with user-generated text, as com-
mon in Natural Language Processing (NLP) and Information Re-
trieval (IR) tasks. Documents, queries, posts, and reviews might
pose a risk of inadvertently disclosing sensitive information. Such
exposure of private data is a significant threat to user privacy, as it
may reveal information that users prefer to keep confidential. The
leading framework to protect user privacy when handling textual
information is represented by the 𝜀-Differential Privacy (DP). How-
ever, the research community lacks a unified framework for compar-
ing different DP mechanisms. This study introduces pyPANTERA,
an open-source Python package developed for text obfuscation. The
package is designed to incorporate State-of-the-Art DP mechanisms
within a unified framework for obfuscating data. pyPANTERA is
not only designed as a modular and extensible library for enriching
DP techniques, thereby enabling the integration of new DP mecha-
nisms in future research, but also to allow reproducible comparison
of the current State-of-the-Art mechanisms. Through extensive
evaluation, we demonstrate the effectiveness of pyPANTERA, mak-
ing it an essential resource for privacy researchers and practitioners.
The source code of the library and for the experiments is available
at: https://github.com/Kekkodf/pypantera.
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1 INTRODUCTION
Natural Language Processing (NLP) and Information Retrieval (IR)
systems are commonly trained on and applied to pieces of text
(e.g., queries, documents, reviews, posts) that contain sensitive
and personal user information and pose privacy risks. Consider,
for example, the queries a user submits to a search engine or the
textual content they post on a social network. Such pieces of text
might contain personally identifiable information (e.g., the name or
address of the searcher) or details about the user’s personal sphere
(e.g., political views, sexual orientation) that might expose them to
blackmailing and cyberbullying [8] or even endanger their safety
in illiberal countries [21, 23]. Therefore, privacy literature [4, 11,
14, 15, 37] has stressed the importance of privacy for textual data
analysis proposing new methods for text obfuscation. In such a
context, Differential Privacy (DP) represents the leading framework
to provide user-level privacy guarantees. The DP framework was
designed to provide the “Plausible Deniability” property, i.e., the
outcome of any analysis is statistically indistinguishable within a
given privacy budget. A current state-of-the-art limitation is that
such approaches have been tested on different tasks and datasets,
and never organized in a unified framework for text obfuscation in
NLP and IR. For this reason, privacy practitioners can benefit from
a unified, modular and flexible framework to enable a rapid design
of new DP approaches and allow a uniform and fast evaluation
with the state-of-the-art on multiple tasks.

In this work, we present pyPANTERA, an open-source unified,
flexible and user-friendly framework for DP mechanisms imple-
mentation and comparison. Moreover, we bring together state-of-
the-art mechanisms [5, 7, 12, 32, 33, 35] used for NLP and IR tasks.
pyPANTERA is organized into modules that implement different
families of obfuscation mechanisms, namely sampling and embed-
ding perturbation approaches, and a module for evaluation. The
former provides different interfaces for families of mechanisms and
ensures consistent implementation of new algorithms alongside
existing ones. On the other hand, the latter allows the practitioner
to evaluate the privacy of the resulting obfuscated text, measuring
the similarity between original and obfuscated sentences.

Finally, to showcase the library’s potential, we extensively com-
pare the implemented mechanisms, enforcing their use in real NLP
and IR tasks, showing that the results achieved are comparable to
those found in the original mechanism studies. This underscores
the capability of pyPANTERA as an essential tool for privacy prac-
titioners to implement future obfuscation techniques and replicate
previous study results effectively. The code is open source under
the GNU GPL 3.0 license.

The study is structured as follows: Section 2 describes other re-
lated works related to pyPANTERA; moreover, Section 3 describes
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the design of the Python package, providing technical information
about the resource, and finally Section 4 describes the results ob-
tained from the tasks performed to evaluate the overall framework.

2 RELATEDWORKS
Background and DP approaches. The gold-standard definition

of formal privacy is represented by the notion of 𝜀-DP [10]. A DP
mechanism M, i.e., an algorithm that takes an input and produces
a noisy output, is designed to ensure sensitive data privacy depend-
ing on a privacy budget 𝜀. Formally, a mechanismM satisfies 𝜀-DP
if, for any pair of neighbouring datasets 𝐷, 𝐷′, i.e., datasets that
differ at most for only one record, and a privacy budget 𝜀 ∈ R+, the
condition Pr{M(𝐷) ∈ S} ≤ 𝑒𝜀Pr{M(𝐷′) ∈ S}, ∀S ⊆ Image(M)
is verified. This provides the property of “plausible deniability” for a
user: the adversary cannot determine with absolute certainty which
input, i.e., the user’s original data, corresponds to a given output.
Metric-DP, introduced in [6], represents a DP relaxation of the ini-
tial definition applied to metric spaces. Metric-DP ensures that a
randomized mechanism M : R𝑝 → R𝑝 defined over a geometric
space with distance function 𝑑 : R𝑝 × R𝑝 → R+ respects the defi-
nition of DP, iff, for any three points𝑤,𝑤 ′, 𝑤̂ ∈ R𝑝 , the inequality
Pr{M(𝑤) = 𝑤̂} ≤ 𝑒𝜀𝑑 (𝑤,𝑤′ )Pr{M(𝑤 ′) = 𝑤̂} is respected.

In recent years [20, 37], obfuscation mechanisms for natural lan-
guage texts have received significant attention, particularly through
adopting 𝜀-DP [10] as a formal framework for designing these mech-
anisms. Specifically for these kinds of obfuscation mechanisms, it is
possible to differentiate the mechanisms based on the type of obfus-
cation perturbation that is performed on the texts: on the one hand,
mechanisms proposed in [12, 32, 33], obfuscates the embeddings of
the terms in the sentence by adding statistical noise based on the
privacy budget 𝜀. On the other hand, the mechanisms introduced
in [5, 7, 35] are based on the initial computation of a score between
word embeddings to rank similar terms, followed by the use of 𝜀 to
adjust the probability of sampling the new obfuscated words.

DP tools. Although unified libraries for obfuscating texts do not
exist currently, several endeavours are available for structured tabu-
lar data. Such libraries primarily facilitate the implementation of pri-
vate statistical interrogation and private Machine Learning pipeline,
e.g., computing the Differentially Private Stochastic Gradient De-
scent [1, 3]. Accordingly to the evaluation proposed in [24, 36], ex-
amples of such libraries are represented by the IBM Diffprivlib [17],
the Meta PyTorch Opacus [34], and Google TensorFlow DP [29]
toolkit. Moreover, built as a forked project of the Google TensorFlow
DP and OpenDP [13] projects, OpenMined released PyDP [26], a
wrapper version library in Python, that can be used for aggregating
sensitive statistics over numeric datasets.

Text sanitization and anonymization are another important pri-
vacy aspect in NLP. Microsoft Presidio [22] is designed upon the
SpaCy [18] library and comprises an Analyzer and an Anonymizer
to identify and mask personally identifiable information within
a given sentence. The analyzer employs regex rules and Named
Entity Recognition Machine Learning models provided by SpaCy
to identify sensitive terms within the context provided. Afterwards,
Presidio utilizes the anonymization module to obfuscate by redact-
ing, hashing, or replacing the identified sensitive information, pro-
ducing an obfuscated rendition of the original text. Despite both

Presidio and pyPANTERA work on textual data, they consider dif-
ferent privacy aspects, i.e., data sanitization and obfuscation. There-
fore, the two resources are complementary. As a future direction,
we plan to combine Presidio and pyPANTERA: the intention is to
integrate Presidio data sanitization with the semantic obfuscation
capabilities of pyPANTERA in the sentence obfuscation pipeline.

3 PYPANTERA
3.1 Pipeline

Document
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Figure 1: Pipeline of the pyPANTERA library.

Figure 1 reports the pipeline of how the text obfuscation is per-
formed in pyPANTERA. Initially, the input data are tokenized and
parsed to remove punctuations. Upon receiving the necessary pa-
rameters from the practitioner, the mechanism is initialized, and
thus, it incorporates methods for obfuscation based on the family of
DP methods. This defines the techniques involving noisy perturba-
tion of the embeddings or noisy sampling of the obfuscated terms.
The tokenized text is finally obfuscated, generating the required
number of obfuscation variants within a single text or a suitable
data frame. With these new sentences, the NLP and IR tasks can be
performed. In addition, pyPANTERA provides a module to perform
privacy measurements to assess the level of privacy obtained.

3.2 Development Workflow
pyPANTERA iswritten in Python (version 3.10) and requires Python
≥ 3.7 to run. The Python language was selected due to its accessibil-
ity, fast prototyping and active user community. Furthermore, as the
tasks for which the obfuscation mechanisms are implemented rely
on deep learning methods, ensuring rapid interoperability between
obfuscation and the overall pipeline significantly enhances the ef-
ficiency of conducting experiments. The library can be installed
and used in two ways: by cloning the repository of the resource
available in GitHub1, the README provides detailed instructions
for setting up the virtual environment for conducting obfuscation
and analysis. Otherwise, pyPANTERA can be installed using pip to
download the package from PyPI2, using pip install pypantera.

A fundamental characteristic of pyPANTERA is that it is ac-
cessible to privacy practitioners of all expertise. To achieve this,
pyPANTERA constructs upon popular data science libraries, i.e.,
Numpy [16], Pandas [31], and SciPy [30]. In addition, to optimize

1https://github.com/Kekkodf/pypantera
2https://pypi.org/
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large amounts of text obfuscation, the library supports parallel
computing with the Python library multiprocessing3.

Mechanisms Overview. The flexibility for newmechanisms imple-
mentation relies on the abstract classes offered in pyPANTERA. The
library implements one parent abstract DP mechanism class that
handles the initialization of new mechanisms. Furthermore, each
specific obfuscation process is defined by each child abstract class
of the embedding and sampling perturbation. We make the UML
diagram available on the project repository. Here we report a list of
the state-of-the-art mechanisms that have been implemented. For
detailed information regarding the obfuscation of each mechanism,
we recommend referring to the original studies.

• CumulativeMultivariate PerturbationMechanism (CMP) [12]:
Noise sampled from an 𝑛 - dimensional Laplace distribution.

• Mahalanobis (Mhl) [32]: Noise sampled from an 𝑛 - dimen-
sional Normal distribution proportional to the 𝜆 regularized
Mahalanobis norm of the term embedding.

• Vickrey CMP Mechanism (VickreyCMP) and Vickrey Maha-
lanobis Mechanism (VickreyMhl) [33]: The noise is sampled
as defined by the parent method (CMP or Mhl) and the ob-
fuscation term is selected based on a free parameter 𝑡 .

• Custumized Text Mechansim (CusText) [7]: Sampling new
terms is bounded to𝑘 possible terms selected using the scores
computed using the distances among word embeddings.

• Sanitization Text Mechanism (SanText) [35]: Sampling of the
new term is computed with a score based on the distances
among embeddings, with terms closer to the word being
obfuscated having a higher probability of selection.

• Truncated Exponential Mechanism (TEM) [5]: Noise sam-
pled from an 𝑛 - dimensional Gumbel distribution is added
to the score computed based on the distances between the
vector embeddings and the final obfuscation term is sampled
accordingly to the maximum noisy score. The truncation is
computed using the free parameter 𝛽 provided.

The mechanisms have been categorized into Embedding (CMP, Mhl,
VickreyCMP, VickreyMhl) and Sampling (CusText, SanText, TEM)
perturbation groups to delineate the type of obfuscation process
they perform. More details can be found in the repository.

Functionalities. pyPANTERA implements several utility func-
tions to help the practitioner get a comprehensive view of all the
pipeline steps. pyPANTERA offers an appropriate class to speed up
the initialization of the embedding vocabulary that uses paralleliza-
tion to read the embeddings from the provided file. Moreover, using
the logging python library4 the method creates a folder containing
a logger to report all the information of the steps performed in the
pipeline. Finally, to evaluate the similarities between the original
and obfuscated texts, pyPANTERA implements the Jaccard Index
to compute the overlapping terms (the lexical similarity) and a co-
sine similarity among the contextual embeddings of the sentences
(the sentence similarity). Even in this case, pyPANTERA offers the
possibility of designing and implementing new metric functions to
evaluate the similarity between original and privatized texts.

3https://docs.python.org/3/library/multiprocessing.html
4https://docs.python.org/3/library/logging.html

4 EXPERIMENTAL EVALUATION
To assess the pyPANTERA effectiveness, we enforced the tasks
employed in the original studies of the mechanisms, i.e., sentiment
analysis classification, and document retrieval. Finally, we used the
metrics methods implemented in the library to estimate the levels
of privacy provided by the pyPANTERA library mechanisms.

4.1 Dataset and Experimental Setup
For the experiments performed to assess the correctness and the
effectiveness of the pyPANTERA library, we propose similar NLP
tasks performed in the original state-of-the-art mechanisms papers,
i.e., sentiment analysis. Moreover, as the study in [11] suggested,
we also tested the robustness of the library in implementing the
obfuscation pipeline for an IR task while protecting user privacy.
As datasets, we tested the sentiment analysis on the Kaggle Twitter
sentiment analysis5 test set, and the document retrieval from the
TREC Deep Learning (DL’19) [9], based on the MSMARCO [25]
passage corpus. In conclusion, we measure the privacy levels of
the former query collection using the metrics module in pyPAN-
TERA. To avoid encumbering, the details about the systems used to
perform the sentiment analysis and the document retrieval are pro-
vided in the respective sections, and the parameters configuration
of the mechanisms used during the obfuscation process is reported
in the GitHub repository of the project. As per the embeddings used
for all the tasks, we adopted the pre-trained vector embeddings6 of
GloVe [27], from Wikipedia 2014 and Gigaword 5.

4.2 Natural Language Processing
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Figure 2:MeanAccuracy of the SentimentAnalysis task using
the TweetNLP model [2], varying the privacy budget 𝜀 for
the different mechanisms implemented in pyPANTERA.

To showcase the potentiality of pyPANTERA, we performed
a traditional NLP task, i.e., sentiment analysis on posts obtained
from Twitter. For the analysis of tweet sentiment, we employed
the Twitter-roBERTa-base for sentiment analysis, also known as
TweetNLP [2], as the model to extract sentiment from the parsed
version of tweets in the dataset. As a performance measure, we cal-
culated the accuracy in identifying the correct labels of the tweets,

5https://www.kaggle.com/datasets/jp797498e/twitter-entity-sentiment-analysis/data
6https://nlp.stanford.edu/projects/glove/
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Table 1: Average Recall and nDCG@10 on the MSMARCO dl’19 collection [9] using the obfuscated queries for the searching
process, and the original version for the reranking. The searching and the reranking process was performed using Contriver [19].

Recall nDCG@10

𝜀 - Privacy Budget 𝜀 - Privacy Budget

Perturbation Mechanism 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0

Embedding

CMP 0.000 0.000 0.028 0.174 0.292 0.403 0.430 0.444 0.000 0.000 0.052 0.277 0.544 0.546 0.535 0.564
Mahalanobis 0.000 0.000 0.001 0.077 0.134 0.290 0.368 0.447 0.000 0.000 0.003 0.103 0.262 0.455 0.494 0.565
VickreyCMP 0.000 0.000 0.020 0.016 0.048 0.053 0.165 0.235 0.000 0.000 0.031 0.016 0.166 0.159 0.221 0.372
VickreyMhl 0.000 0.001 0.002 0.002 0.029 0.042 0.122 0.191 0.000 0.005 0.007 0.004 0.062 0.097 0.158 0.293

Sampling
CusText 0.053 0.245 0.430 0.442 0.444 0.443 0.443 0.443 0.143 0.439 0.576 0.571 0.569 0.569 0.569 0.569
SanText 0.000 0.444 0.447 0.448 0.444 0.450 0.447 0.444 0.000 0.564 0.569 0.570 0.568 0.559 0.568 0.562
TEM 0.000 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.000 0.636 0.636 0.636 0.636 0.636 0.636 0.636

None Original - - - - - - - - 0.498 - - - - - - - - 0.636

Table 2: Average Lexical and Sentence similarity between the original and obfuscated queries of the MSMARCO dl’19 collec-
tion [9]. Lexical and Semantic similarity are computed using the implemented metricsmodule in pyPANTERA.

Lexical Similarity (Jaccard Similarity) Semantic Similarity (MiniLM [28])

𝜀 - Privacy Budget 𝜀 - Privacy Budget

Perturbation Mechanism 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0 1.0 5.0 10.0 12.5 15.0 17.5 20.0 50.0

Embedding

CMP 0.000 0.000 0.119 0.274 0.460 0.735 0.785 0.935 0.025 0.037 0.225 0.429 0.628 0.836 0.847 0.902
Mahalanobis 0.000 0.002 0.047 0.140 0.302 0.457 0.590 0.935 0.016 0.027 0.088 0.242 0.435 0.587 0.730 0.908
VickreyCMP 0.000 0.000 0.039 0.061 0.180 0.191 0.164 0.212 0.018 0.045 0.103 0.169 0.348 0.382 0.435 0.596
VickreyMhl 0.000 0.013 0.028 0.038 0.098 0.134 0.117 0.151 0.037 0.030 0.078 0.109 0.202 0.264 0.303 0.498

Sampling
CusText 0.089 0.374 0.816 0.880 0.925 0.929 0.929 0.935 0.357 0.627 0.881 0.900 0.908 0.908 0.909 0.910
SanText 0.000 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.031 0.902 0.906 0.910 0.917 0.900 0.902 0.907
TEM 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.037 1.000 1.000 1.000 1.000 1.000 1.000 1.000

replicating the task conducted by other obfuscation mechanisms
studies [5, 7, 35]. The objective of the task was to show how the
results of the obfuscation obtained by pyPANTERA, once obtained,
can be easily used in a simple NLP task to compare how differ-
ent obfuscation techniques influence the performance of a model.
Figure 2 shows the results of the Accuracy vs. 𝜀 - Privacy Budget
for different mechanisms. The results obtained are consistent with
those reported in the proposed papers [5, 7, 35]. For instance, the
TEM mechanism outperforms the CMP mechanism in sentiment
classification, verifying the results obtained by Carvalho et al. [5].
Additionally, CusText demonstrates higher performance than San-
Text, as reported by Chen et al. [7].

4.3 Information Retrieval and Privacy Analysis
Following the experimental pipeline proposed by Faggioli and Ferro
[11], to protect user privacy during document retrieval, we em-
ployed the obfuscated MSMARCO DL’19 queries to search for rel-
evant documents within the collection. After that, we re-ranked
the search results using the original version. As a retrieval system
and re-ranker, we used the Meta Contriever system [19]. Table 1
reports the Recall and nDCG@10 of the retrieval pipeline.

On the other hand, Table 2 reports the results of the similarity
computed to assess the similarities between original and obfuscated
DL’19 queries. Specifically, we analyzed two types of similarities
using the metric functions in pyPANTERA: the lexical similarity,
using the Jaccard function, and the sentence similarity, shown as

the cosine similarity computed using the contextual embeddings of
the queries calculated by the Sentence-BERT model MiniLM [28].

As observed by Faggioli and Ferro [11], and in line with the
expectations of a DP mechanism, an increase in the privacy budget
𝜀 corresponds to improved performance of themechanism but lower
privacy guarantees, cf. Table 1 and Table 2. In addition, the Sampling
Perturbationmechanisms tend to exhibit greater similarity for lower
values of 𝜀 in comparison to the Embedding perturbation family of
mechanisms. We leave this as an open issue for further analysis.

5 CONCLUSIONS
Privacy remains an important research area for NLP and IR tasks.
In this study, we presented pyPANTERA, a flexible framework to
compare different DP mechanisms designed to protect user privacy
during textual analysis. pyPANTERA contributes to the privacy-
preserving community by enforcing a clear and user-friendly text
obfuscation pipeline that helps other practitioners design and im-
plement new obfuscation mechanisms. The library offers different
functionalities for monitoring the process status and different met-
ric functions to evaluate the text privacy provided. Moreover, a
comprehensive analysis of standard NLP and IR showcased the
general obfuscation process, enlightening the effectiveness of py-
PANTERA to compare different obfuscation approaches in a unified
and extensible framework. As a future direction, we plan to increase
the number of obfuscation mechanisms available and expand the
privacy evaluation module with new metric functions for assessing
the privacy level provided.
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