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Abstract
Currently, Deep Learning (DL) is widely used to solve very complex tasks. However, the training of
DL models requires huge datasets and long training times. We introduce a novel quantum Instance
Selection (IS) approach that reduces training dataset sizes by up to 28% while maintaining effectiveness,
enhancing training efficiency and scalability. Our method leverages Quantum Annealing (QA), a specific
Quantum Computing paradigm, that can address optimization problems. This is the first attempt to tackle
the IS problem using QA, and we propose a new Quadratic Unconstrained Binary Optimization (QUBO)
formulation for it. Extensive experiments with several Automatic Text Classification (ATC) datasets show
our solution’s feasibility and competitiveness with current state-of-the-art IS solutions.
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1. Introduction

Deep Learning (DL) models, especially Transformers and Large Language Models (LLMs), excel
in tasks like document ranking, semantic labeling, and sentiment analysis. Models like BERT
[2], RoBERTa [3], and GPT [4] are able to capture word meanings and contexts. However, they
require huge datasets and significant computational resources for both training and fine-tuning.
IS, which involves selecting a subset of relevant data points from a dataset to improve training
efficiency, can be used to mitigate this issue [5]. This work presents Balanced Cosine (BCos) [1],
a novel IS approach leveraging QA, a specific Quantum Computing (QC) paradigm that is based
on special-purpose devices (quantum annealers) able to tackle specific optimization problems.
The basic idea of a quantum annealer is to represent a problem as the energy of a physical
system and then leverage quantum-mechanical phenomena to let the system find a state of
minimal energy, which corresponds to the solution of the original problem.

Our approach formulates the IS problem with a novel QUBO formulation, demonstrating
significant training dataset reduction (up to 28%) and speedups (up to 1.35x) while maintaining
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model effectiveness. This is the first attempt at using QA for IS. Extensive experiments on various
datasets show that BCos is competitive with current State-Of-The-Art (SOTA) IS methods such as
E2SC, CNN, LSSm, and LSBo. E2SC [6] uses weak classifiers to remove redundant data efficiently,
achieving a good balance between effectiveness, training size reduction, and efficiency, with
𝑂(𝑙𝑜𝑔(𝑛)) complexity. CNN [7] focuses on hard-to-classify instances with 𝑂(𝑛3) complexity.
LSSm and LSBo [8] leverage local sets for IS, both with 𝑂(𝑛2) complexity. Furthermore, we
compare our QA approach with Simulated Annealing (SA), a traditional optimization approach
that solves the same QUBO problem but using classical hardware. Despite current QC hardware
limitations, our experiments reveal the potential of QA in practical optimization problems,
showing a glimpse of the future capabilities of quantum technologies.

This work is organized as follows. Section 2 details our approach. Section 3 describes the
experimental setup and the results. Section 4 presents conclusions and potential future work.

2. Methodology

Our BCos approach aims to reduce a training set 𝑇 by a factor 𝑝 ∈]0, 1[, resulting in a subset 𝑡
where |𝑡| = ⌊𝑝 · |𝑇 |⌋. We try to achieve this by removing redundant samples and identifying
difficult instances, such as outliers or samples near class boundaries, using a heuristic method.
Our QUBO formulation follows the general QUBO framework

min 𝑦 = 𝑥𝑇𝑄𝑥 (1)

where 𝑥 ∈ {0, 1} represents whether a document should be removed (0) or kept (1), and the
matrix 𝑄 is defined as follows:

𝑄𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos(𝑑𝑜𝑐𝑖, 𝑑𝑜𝑐𝑗) if 𝑙𝑏𝑙𝑖 = 𝑙𝑏𝑙𝑗 and 𝑖 ̸= 𝑗 (2a)

− cos(𝑑𝑜𝑐𝑖, 𝑑𝑜𝑐𝑗) if 𝑙𝑏𝑙𝑖 ̸= 𝑙𝑏𝑙𝑗 and 𝑖 ̸= 𝑗 (2b)
|𝑇 [𝑙𝑏𝑙𝑖]|
|𝑇 |

if 𝑖 = 𝑗 (2c)

where 𝑑𝑜𝑐𝑖 is the vectorized version of the 𝑖-th document in the training set 𝑇 , 𝑙𝑏𝑙𝑖 is the label
associated with the 𝑖-th document in 𝑇 , |𝑇 [𝑙𝑏𝑙𝑖]| is the number of documents in 𝑇 having the
same label as the 𝑖-th document. Furthermore, cos(𝑑𝑜𝑐𝑖, 𝑑𝑜𝑐𝑗) is the cosine similarity between
two documents. Each element in equations 2a, 2b, and 2c has its own intuitive interpretation,
remembering that we are solving a minimization problem:

• 2a: Highly similar documents within the same class are more likely to be removed from 𝑇 .
They are assigned a positive value in the QUBO matrix based on their cosine similarity;

• 2b: Highly similar documents from different classes are more likely to be retained in 𝑇 .
Therefore, we assign them a negative value in the QUBO matrix corresponding to their
cosine similarity as they likely represent difficult instances near classification boundaries;

• 2c: To avoid worsening class imbalance in 𝑇 , we penalize the removal of documents from
minority classes, which could bias the classification toward majority classes[9].



To complete the QUBO formulation (Equation 1) we added the constraint of selecting a subset
of instances of a predefined size. In this case, we need to set opportune constraints that allow
us to keep only ⌊𝑝 · |𝑇 |⌋ documents out of |𝑇 | documents. This can be achieved as follows:

𝛾 · (
∑︁
𝑖

𝑎𝑖 · 𝑥𝑖 − ⌊𝑝 · |𝑇 |⌋)2 = 0 , (3)

with 𝛾 representing a penalty sufficiently high. These constraints are summed to the original
QUBO formulation. In our case, the percentage of documents that are kept is 75% of the total
collection since a reduction of 20-25% has been shown to be a good trade-off between efficiency
and effectiveness [6].

QC faces hardware limitations, particularly in the size of problems it can handle. Quantum
annealers are restricted by the number of qubits and interconnections available in their Quantum
Processing Unit (QPU), limiting them to problems with 100-150 variables. Since the size of a
training set is typically in the order of thousands of documents, we need to process them in
batches. Thus, we opted for a batch size of 𝐵 = 80 document instances to use most of the
capacity of the QPU. We then split the overall problem into 𝑛 = ⌈|𝑇 |/𝐵⌉ batches; note that the
last batch might contain less than 𝐵 document instances, equal to |𝑇 | mod 𝐵. For each batch,
we extract a subset 𝑠𝑢𝑏𝑖 of the most relevant documents. Their union forms the final subset 𝑆
of documents that should be fed to the Transformer during the training phase:

𝑆 =
𝑛⋃︁

𝑖=1

𝑠𝑢𝑏𝑖 . (4)

To minimize the minor embedding (i.e., mapping the problem to the QPU topology) time, we
compute the minor embedding twice, as the batch graph structure remains unchanged for each
𝐵 apart from the last batch that may differ if it has fewer documents.

3. Results

The experiments were executed on an AMD Ryzen 5 5600X Processor with 6-Core and 12
Threads, running at 3.70GHz, 64Gb RAM, and a NVIDIA RTX 3090 24 GB. The quantum annealer
employed for the experiments is the D-Wave Advantage (≈ 5, 000 qubits). The considered
transformer is the BERT (base) model. We adopted a 5-fold validation technique for each dataset.
E2SC and BCos allow to set fixed reduction rates, thus it was set to 25% as explained in Section
2. However, BCos(QA) often exceeded this, achieving around 28% due to noise and randomness,
slightly lowering its effectiveness. The other baselines use automatic reduction criteria. In Table
1, we see that E2SC is the only IS baseline that maintained the effectiveness of the trained BERT
model across all datasets. LSBo, LSSm, and CNN experienced losses on at least one dataset
and faced scalability issues with large datasets like AG News. Both BCos(SA) and BCos(QA)
maintain effectiveness comparable to E2SC and to the full datasets. However, in Table 2 we can
notice that BCos(QA) offers better overall efficiency for large datasets than BCos(SA). Table 3
shows the BERT training time according to the considered IS approaches. In particular, it can
be seen that by reducing the original datasets’ sizes, it is possible to train BERT much more
efficiently. Overall, it is possible to see that by keeping a reduction rate around 20-25%, ES2C
and BCos represented the best tradeoff between effectiveness and training efficiency.



Table 1
Macro-F1 scores achieved by BERT on different datasets processed using SOTA IS approaches. Elements
marked with ∙ indicate statistical equivalence to the model trained on the original dataset.

Dataset Original Dataset E2SC LSBo LSSm CNN BCos (SA) BCos (QA)
Vader NYT 80.9(1.1) 81.0(2.0) ∙ 79.9(2.4) ∙ 80.5(3.3) ∙ 79.4(3.1) ∙ 80.9(0.8) ∙ 81.7(1.9) ∙
Yelp Reviews 95.8(0.3) 96.0(0.7) ∙ 94.5(0.6) ∙ 94.7(0.9) ∙ 94.2(1.4) ∙ 95.7(0.7) ∙ 95.5(0.6) ∙
WebKB 83.3(2.8) 82.5(2.5) ∙ 77.1(1.4) ▼ 80.1(3.8) ∙ 80.2(1.8) ∙ 82.6(1.8) ∙ 82.5(3.0) ∙
20 Newsgroups 82.3(1.1) 80.4(0.7) ∙ 80.9(0.5) ∙ 82.2(0.7) ∙ 77.4(1.6) ▼ 80.6(0.5) ∙ 80.6(0.6) ∙
OHSUMED 75.5(0.9) 74.4(0.7) ∙ 67.3(2.2) ▼ 72.2(1.5) ▼ 69.8(2.1) ▼ 74.2(0.6) ∙ 73.5(1.6) ∙
AG News 91.7(0.2) 91.5(0.2) ∙ - - - 91.4(0.3) ∙ 91.4(0.2) ∙

Table 2
Time required (seconds) to execute the IS baselines and our BCos approach, considering SA and QA.

Dataset E2SC LSBo LSSm CNN BCos (SA) BCos (QA)
Vader NYT 0.20 18.67 9.89 5.94 13.29 65.78
Yelp Revi. 0.61 16.98 10.36 10.40 13.68 39.38
WebKB 1.07 46.53 29.81 35.75 21.96 94.31
20 NewsG. 3.71 337.07 192.19 159.76 51.40 86.25
OHSUMED 3.50 256.09 161.59 146.27 43.58 92.91
AG News 12.11 - - - 295.88 287.33

Table 3
BERT training time (seconds) on the datasets and extracted subsets according to the IS approaches.

Dataset Original Dataset E2SC LSBo LSSm CNN BCos (SA) BCos (QA)
Vader NYT 2L 204.69 156.56 119.69 202.22 136.14 152.18 143.34
Yelp Reviews 2L 234.11 161.88 76.93 173.07 123.16 166.18 165.96
WebKB 391.20 309.34 138.04 307.58 239.04 306.17 295.97
20 Newsgroups 986.52 745.92 753.28 1002.16 711.30 750.51 723.94
OHSUMED 942.66 774.13 328.42 723.13 517.67 674.02 692.60
AG News 4675.70 3801.80 - - - 3773.78 3800.97

Average Speedup - 1.31x 2.35x 1.18x 1.65x 1.33x 1.35x

4. Conclusions

We proposed a novel IS approach using QA, reducing training datasets while maintaining
transformer effectiveness and speeding up fine-tuning. Our method performs comparably to
SOTA IS approaches, demonstrating QC’s potential. Despite the current limitations of quantum
annealers, advancements in technology can improve results and enable larger problem-handling.
Future work will explore new QUBO formulations and other models including LLMs.
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