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Abstract

Bilevel optimization problems are very challenging optimization models arising in many important
practical contexts, including pricing mechanisms in the energy sector, airline and telecommunication
industry, transportation networks, optimal expansion of gas networks, critical infrastructure defense,
and machine learning.

In this paper, we present a new general purpose branch-and-cut framework for the exact solution of
mixed-integer bilevel linear programs (MIBLP), which constitute a very significant subfamily of bilevel
optimization problems. Our framework introduces several new classes of valid inequalities to speed-up
the solver, along with a very effective bilevel-specific preprocessing procedure.

A very extensive computational study is presented, where we evaluate the performance of various
solution methods on a common testbed of more than 800 instances from the literature—this is by far
the most extensive computational analysis ever performed for exact MIBLP solvers. Our new algorithm
consistently outperforms (often by a large margin) all alternative state-of-the-art methods from the
literature, including methods which exploit problem specific information for special instance classes. In
particular, it allows to solve to optimality more than 300 previously unsolved instances from literature.

1 Introduction

In bilevel optimization, there are two decision makers, commonly denoted as the leader and the follower,
and decisions are made in a hierarchical manner: first the leader makes a decision, and then the follower
optimizes its objective, affected by the decisions of the leader. It is assumed that the leader can anticipate
the decisions of the follower, hence the leader optimization task is a nested optimization problem that takes
into consideration the follower’s response. Bilevel optimization problems, together with their generalization
to multilevel optimization, play a fundamental role in many real-life applications, when competitive agents
operate in a hierarchical way with conflicting objectives. As such, they can be interpreted as a static
Stackelberg game, and find applications in many economic models. For example, it is well known that
bilevel optimization is an inevitable tool for modeling pricing mechanisms in the energy sector (Zugno
et al. 2013), airline and telecommunication industry (Brotcorne et al. 2008), or in transportation networks
(Gilbert et al. 2015, Labbé et al. 1998). Similarly, bilevel optimization is the model of choice for capacity
planning decisions made in a competitive environment; see, e.g., Garcia-Herreros et al. (2016) for an optimal
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expansion of gas networks. Infrastructure planning that takes into consideration deliberate disruptions (due
to sabotage or terrorist attacks) is another important example of bilevel optimization (Brown et al. 2006,
Scaparra and Church 2008, Wood 2010). Recently, bilevel optimization has been used even in machine
learning applications, see Kunisch and Pock (2013).

Despite this increasing interest for bilevel optimization and the fact that the seminal formulation of bilevel
programs dates back to the 70’s (Bracken and McGill 1973), implementation of generic bilevel optimization
solvers has only started in recent years. This can be explained by the inherent complexity of the bilevel
optimization, which is known to be NP-hard even when both leader and follower problems are linear programs
(Jeroslow 1985). In the present article we propose a novel generic solver that covers a large family of bilevel
optimization problems in which decisions of both, the leader and the follower, are modeled as mixed-integer
linear programs.

More precisely, in this paper we address a generic Mixed-Integer Bilevel Linear Program (MIBLP), i.e., a
bilevel optimization problem where all objective functions and constraints are linear, and some/all variables
are required to take integer values. Note that MIBLPs are Σ2-hard (DeNegre 2011, Jeroslow 1985). A
MIBLP is defined as follows:

min cTx x+ cTy y (1)

Gxx+Gyy ≤ q (2)

xj integer, ∀j ∈ Jx (3)

y ∈ arg min
y′∈Rn2

{dT y′ : Ax+By′ ≤ b, l ≤ y′ ≤ u, y′j integer ∀j ∈ Jy} (4)

where x ∈ Rn1 , y ∈ Rn2 , while cx, cy, Gx, Gy, q, d, A, B, b, l and u are given rational matrices/vectors of
appropriate size, and sets

Jx ⊆ Nx := {1, · · · , n1} and Jy ⊆ Ny := {1, · · · , n2}

identify the (possibly empty) indices of the integer-constrained variables in x and y, respectively. We will
refer to (1) and (2)–(3) as the leader objective function and constraints, respectively, and to (4) as the
follower subproblem. In case the follower subproblem has multiple optimal solutions, we assume that one
with minimum leader cost among those satisfying the leader constraints is chosen—i.e., we consider the
optimistic version of bilevel optimization; see, e.g., Loridan and Morgan (1996).

For the leader, we assume that explicit lower/upper bounds (if any) on the variables x and y are included
in constraints (2). Whenever needed, however, we will refer to this subset of constraints using notation

x− ≤ x ≤ x+ (5)

y− ≤ y ≤ y+ (6)

where, as customary, some entries in x+, x−, y−, y− are allowed to be ±∞.
MIBLP can conveniently be restated in its value function formulation as:

min cTx x+ cTy y (7)

Gxx+Gyy ≤ q (8)

Ax+By ≤ b (9)

l ≤ y ≤ u (10)

xj integer, ∀j ∈ Jx (11)

yj integer, ∀j ∈ Jy (12)

dT y ≤ Φ(x) (13)
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where the follower value function for a given x∗ ∈ Rn1 is computed by solving the following follower Mixed-
Integer Linear Program (MILP)

Φ(x∗) := min
y∈Rn2

{dT y : By ≤ b−Ax∗, l ≤ y ≤ u, yj integer ∀j ∈ Jy}. (14)

Dropping condition (13) from model (7)-(13) leads to the so-called High Point Relaxation (HPR). The
latter one is a Mixed-Integer Linear Program (MILP), whose Linear Programming (LP) relaxation will be
denoted by HPR.

An HPR solution (x, y) will be called bilevel infeasible if it violates (13). A point (x, y) ∈ Rn, where
n = n1 + n2, will be called bilevel feasible if it satisfies all constraints (8)–(13).

Let Aj be the j-th column of matrix A, and Aij its generic entry. In what follows we will use notation

JF := {j ∈ Nx : Aj 6= 0} (15)

to denote the index set of the leader variables xj (not necessarily integer-constrained) appearing in the
follower problem.

Fischetti et al. (2016a) recently proposed a proof-of-concept exact MIBLP solver which was in fact a
Branch-and-Cut (B&C) MILP approach with non-invasive supplements needed to correctly handle bilevel
optimization. An important feature of that work which distinguished it from those in previous literature, is
that the MIBLP solver was built on top of a stable and powerful MILP solver taking care of all non-bilevel
specific issues—including cuts, heuristics, propagations, numerical stability, effective LP parametrization,
multi-threading support, etc.

In the present work, we considerably extend the results in (Fischetti et al. 2016a) and develop a more
versatile and effective solver for MIBLPs. The main novel contributions of the present paper can be stated
as follows.

• A new family of cuts based on formulation (7)-(13) is introduced.

• A new bilevel-specific preprocessing procedure is proposed, and its very significant impact on the
performance of the MIBLP solver is demonstrated.

• New families of Intersection Cuts (ICs) for bilevel programs are presented. ICs were originally proposed
by Balas (1971) for integer programs, and were exploited in the context of bilevel optimization in
(Fischetti et al. 2016a) for the first time. However, in the latter approach, their application was
limited to the cases where Ax + Byb is integer for all HPR solutions (x, y). In the present article we
present an additional class of such inequalities, based on the recent work of Xu (2012), as well as a
new family of “hypercube” ICs that can be applied even when the above assumption does not hold.
For all cuts, sound separation procedures are described.

• A detailed description on how the ICs can be implemented in a numerically stable way is given.

• A very extensive computational study is reported—different classes of test problems from the literature
are considered, including those proposed by DeNegre and Ralphs (2009), Xu and Wang (2014), Tang
et al. (2015) and Fischetti et al. (2016a). Our analysis shows that the new approach outperforms by a
large margin alternative state-of-the-art methods from the literature—including the most recent ones,
namely those proposed in (Xu and Wang 2014, Tang et al. 2015) and Fischetti et al. (2016a).

• The optimal solution values for hundreds of open instances from the recent literature are provided; see
the on-line Appendix (Fischetti et al. 2016b) for details.

The paper is organized as follows. In the remainder of this section, we review the most relevant approaches
to MIBLP from the literature. Section 2 introduces a family of cutting planes called follower upper bound
cuts along with a new bilevel-specific preprocessing. In Section 3 we derive two new families of MIBLP
intersection cuts. In Section 4 we introduce separation algorithms and their numerically safe implementation
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within a B&C solver. Section 5 gives some details about the implementation of our B&C algorithm. The
performance of our solver is evaluated in Section 6 by means of computational experiments on a very large
set of instances from the literature. Finally, Section 7 draws some conclusions.

To simplify our treatment, in what follows we assume that the HPR feasible set is compact, that MIBLP
has a finite optimal solution, and that the follower MILP (14) has a finite optimal solution for every HPR
solution (x, ·). The reader is referred to Fischetti et al. (2016a) for a discussion on how to deal with an
unbounded HPR feasible set, and how to detect and handle unbounded/infeasible cases.

1.1 Literature Overview on MIBLP

Even though there exists a large body of literature devoted to bilevel optimization, there are relatively few
generic bilevel approaches that allow for integer decision variables both in the leader and in the follower. The
first generic branch-and-bound approach to MIBLP was given by Moore and Bard (1990). Their algorithm
was shown to converge in two cases: either when all leader variables are integer, or when the follower
subproblem is an LP. About 20 years later, building upon the ideas from Moore and Bard (1990), a MILP-
based branch-and-cut algorithm was introduced by DeNegre and Ralphs (2009), DeNegre (2011). The latter
approach, publicly available as MibS solver (Ralphs 2015), requires that both the leader and the follower are
purely integer problems, as it exploits integer slacks to cut off bilevel-infeasible solutions.

Only very recently, one could observe a growing number of attempts to develop generic bilevel solvers, but
also specialized algorithms that address particular bilevel problem variants. In the following, we summarize
these approaches. A Benders-like decomposition scheme for general MIBLPs has been proposed by Saharidis
and Ierapetritou (2009). An iterative MILP approach based on multi-way branching on the slack variables
on the follower constraints has been given by Xu and Wang (2014), and another multi-level branching idea
has been exploited in the scheme called “the watermelon algorithm” (Xu 2012). Both approaches require the
leader variables to be integer, the main difference being that the former allows the follower to be a MILP,
whereas in the latter the follower contains integer variables only. Another branch-and-cut method that works
for integer leader and follower variables only has been recently proposed by Caramia and Mari (2015).

For the special family of zero-sum bilevel problems, i.e., when the leader and the follower share the same
objective but with the opposite signs, three generic solution algorithms have recently been proposed by Tang
et al. (2015). Their algorithms require leader variables to be binary, whereas the follower can be a general
MILP. Interdiction problems are a special family of zero-sum bilevel problems in which the leader is given
a limited budget to “interdict” the action of the follower. For interdiction problems, specialized schemes
have been developed, see for example, a cutting plane approach by Wood (2010), and a more recent list of
references in (Tang et al. 2015).

It is also worth mentioning that, to the best of our knowledge, very few solution schemes (and almost no
extensive computational studies) for more general bilevel mixed nonlinear programs have been proposed so
far—see, e.g., the exact approaches by Gümüs and Floudas (2005), Mitsos (2010), and Kleniati and Adjiman
(2015).

In (Fischetti et al. 2016a), the first branch-and-cut approach for MIBLP that uses intersection cuts as
driving force has been given. Compared to the existing literature, this algorithm requires much less restric-
tions for its convergence, and allows for both mixed-integer leader and follower subproblems. An important
assumption is that the leader variables that influence the follower decision are all integer. Computational
results reported in (Fischetti et al. 2016a) demonstrated that this generic solver significantly outperforms the
methods by DeNegre and Ralphs (2009), DeNegre (2011) and Caramia and Mari (2015). It will be therefore
considered in the remainder of this article as the state-of-the-art approach and an important reference for
comparing the new features of the exact MIBLP solver presented in this article.

2 An Improved Branch-and-Cut Approach

It is well known that the HPR relaxation may provide arbitrarily weak lower bounds. Hence, for enumerative
methods relying on this relaxation, it is crucial to consider deep cuts that cut off infeasible solutions early
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in the Branch-and-Bound (B&B) tree, so as to improve the tightness of its lower and upper bounds.
Building on the approach proposed in (Fischetti et al. 2016a), we next introduce two new features that

have a significant impact on the solver performance: in Section 2.1 we introduce locally valid cuts, denoted
as Follower Upper-Bound (FUB) cuts, that are based on an estimation of an upper bound on the optimal
solution value of the follower subproblem. In Section 2.2 we describe a new preprocessing rule that allows
fixing of some y values in HPR using information from the follower MILP.

2.1 Follower Upper-Bound (FUB) Cuts

Observe that valid lower bounds for a bilevel problem can be obtained by restricting the follower subproblem
and, consequently, overestimating the value of Φ(x) for an arbitrary leader solution x. In the following, we
exploit this fact inside of a branch-and-bound procedure, to derive valid cuts for the HPR relaxation.

Indeed, the value function reformulation (7)-(13) introduced in Section 1 is nonconvex due to the presence
of constraint (13). A valid lower bound on the optimal solution value at each B&B node can be obtained
by relaxing this constraint, and replacing Φ(x) with some constant overestimator for the current node.
This operation, which is the basis of the branch-and-sandwich approach proposed by Kleniati and Adjiman
(2015), is just trivial for the B&B nodes where all the xj variables appearing in the follower MILP have been
already fixed by branching. However, for the remaining B&B nodes, one can exploit the local bounds on
the x variables (x−, x+) at the current node, to strengthen the HPR relaxation. We consider the following
restriction of the follower subproblem: in each follower constraint, x variables are replaced by the worst
possible outcome for the follower, thus resulting in an MILP on y variables only. The optimal solution of
the latter MILP gives a valid overestimation of Φ(x). We have the following result.

Theorem 1. Let (x−, x+) denote the bounds for the x variables at the current B&B node. Then the following
Follower Upper Bound (FUB) cut is locally valid for the current node:

dT y ≤ FUB(x−, x+) (16)

where FUB(x−, x+) is the optimal solution value of the following restricted follower MILP

FUB(x−, x+) := min dT y (17)∑
j∈Nx

max{Aijx−j , Aijx
+
j }+

∑
j∈Ny

Bijyj ≤ bi, i = 1, . . . ,m (18)

l ≤ y ≤ u (19)

yj integer, ∀j ∈ Jy, (20)

and m denotes the number of rows of matrices A and B, and FUB(x−, x+) = +∞ in case the problem is
infeasible.

Proof. It is enough to observe that, by construction, the above MILP is a restriction of the follower MILP
for any x with x− ≤ x ≤ x+, which implies Φ(x) ≤ FUB(x−, x+) for any such x. The claim then follows as
the FUB cut is just a relaxation of the value-function constraint (13) at the current node.

2.2 Follower Preprocessing

Preprocessing is a very important tool in modern MILP solvers, that for many problems has a considerable
impact on computing time. By design, our approach automatically exploits standard MILP-based prepro-
cessing whenever the follower MILPs are solved. There is however a bilevel-specific preprocessing operation
that is potentially very useful, in that it conveys relevant information from the follower to the HPR. In
particular, any y variables that can be fixed (for whatever reason) in the follower MILP independently of x,
can be fixed at the HPR level as well, thus potentially improving the quality of the associated lower bound.
We have the following result (recall that the explicit constraints in the follower MILP (14) are in ≤ form,
namely, Ax+By ≤ b):
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Theorem 2. For every follower variable yj (j ∈ Ny), the following fixing is correct:

(a) if dj > 0 and Bj ≥ 0, fix yj to its lower bound lj by setting y+j := y−j := uj := lj;

(b) if dj < 0 and Bj ≤ 0, fix yj to its upper bound uj by setting y+j := y−j := lj := uj;

Proof. Given an x∗ ∈ Rn1 and a follower solution y that is feasible for (14), a follower feasible solution
of better cost can possibly be obtained by decreasing each variable yj with positive cost and non-negative
coefficients in all constraints, and/or by increasing each variable yj with dj < 0 and non-positive coefficients.
Thus, any bilevel feasible solution will have yj = lj and yj = uj for each variable j in cases (a) and (b),
respectively.

Note that in optimistic bilevel setting, the leader is free to choose among equivalent follower solutions
the one it prefers. Thus, we require the statement of Theorem 2 be valid for any optimal solution of the
follower, yielding strict inequalities in cases (a) and (b). In case dj = 0 we must preserve all equivalent
optimal solutions, hence variable yj cannot be fixed.

As shown in the computational Section 6, the simple fixing of Theorem 2 can lead to a very significant
speedup when solving certain classes of instances.

3 New Families of Intersection Cuts

Intersection cuts were introduced by Balas (1971) and are widely used in the context of MILPs. As customary
in a B&C context, given a bilevel-infeasible (possibly fractional) HPR point (x∗, y∗), one aims at deriving a
cutting plane that will cut off this point, while keeping the bilevel-feasible points intact. For an IC to serve
this purpose, one requires the definition of two sets:

(1) a cone pointed at (x∗, y∗) that contains all the bilevel feasible solutions, and

(2) a convex set S that contains (x∗, y∗) but no bilevel feasible solutions in its interior.

Typically, for a vertex (x∗, y∗) of HPR, a suitable cone is the corner polyhedron associated with the cor-
responding optimal basis. In that case, the strength of the derived IC only depends on the choice of the
underlying convex set S. In (Fischetti et al. 2016a) we proposed the use of the bilevel-free set:

S(ŷ) = {(x, y) ∈ Rn : dT y > dT ŷ, Ax+Bŷ ≤ b} (21)

defined for an arbitrary point ŷ ∈ Rn2 that satisfies (10) and (12).
In order to derive a valid IC from this set, one has to make sure that its interior does not contain any

bilevel-feasible solution. To this end, the following assumption plays an important role:

Assumption 1. Ax+By − b are integer for all HPR solutions (x, y).

Under Assumption 1, one is able to extend the set S(ŷ) by “moving apart” its facets by a non-negligible
amount, resulting into the following extended polyhedron (let 1 = (1, · · · , 1) denote a vector of all ones):

S+(ŷ) = {(x, y) ∈ Rn : dT y ≥ dT ŷ, Ax+Bŷ ≤ b+ 1} (22)

that can safely be used to derive ICs.
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3.1 Alternative Bilevel-Free Polyhedra

As indicated above, by varying the definition of the bilevel-free convex set, different families of valid ICs
can be derived. Given the weak bounds of the HPR relaxation, the broader the family of ICs the better the
performance of the underlying B&C solver. This was the main motivation for us to focus in this work on
alternative ways for deriving and extending bilevel-free polyhedra. We also show possible ways of enlarging
these convex sets that may result in much stronger ICs.

With a little abuse of notation, in what follows we will call “facet” an inequality appearing in the outer
description of a polyhedron. The bilevel-free polyhedron in Theorem 3 below was introduced by Xu (2012),
where it has been used to determine branching rules in a B&B setting—while we use it derive hopefully deep
ICs. As our theorem is stated in a slightly modified form, and for the sake of completeness, we also provide
a short proof.

Theorem 3. (Xu 2012) For any ∆ŷ ∈ Rn2 such that dT∆ŷ < 0 and ∆ŷj integer for all j ∈ Jy, the following
polyhedron

X(∆ŷ) = {(x, y) ∈ Rn : Ax+By +B∆ŷ ≤ b, l ≤ y + ∆ŷ ≤ u} (23)

does not contain any bilevel feasible point (not even on its frontier).

Proof. Assume by contradiction that (x, y) is bilevel feasible and that it belongs to X(∆ŷ). Then the
point (x, y + ∆ŷ) is a feasible solution of the follower with a strictly smaller objective value, i.e., Φ(x) ≤
dT (y + ∆ŷ) < dT y, hence (x, y) does not satisfy (13) and cannot be bilevel feasible.

Note that, contrarily to what happens with set S(ŷ) defined in (21), some facets of X(∆ŷ) correspond
to bound constraints on the y variables.

Also in case of this polyhedron, it may happen that a bilevel-infeasible HPR solution (x∗, y∗) to be cut
off does not belong to its interior. Therefore, we need to extend this set as follows:

Theorem 4. Under Assumption 1, for any ∆ŷ ∈ Rn2 such that dT∆ŷ < 0 and ∆ŷj integer for all j ∈ Jy,
the following polyhedron does not contain any bilevel feasible point in its interior.

X+(∆ŷ) = {(x, y) ∈ Rn : Ax+By +B∆ŷ ≤ b+ 1, l − 1 ≤ y + ∆ŷ ≤ u+ 1} (24)

Proof. To be in the interior of X+(∆ŷ), a bilevel feasible (x, y) should satisfy Ax+By +B∆ŷ < b+ 1 and
l−1 < y+∆ŷ < u+1. Because of Assumption 1, the latter condition can be replaced by Ax+By+B∆ŷ ≤ b
and l ≤ y + ∆ŷ ≤ u, hence the claim follows from Theorem 3.

Observe that the extended bilevel-free polyhedra X+(∆ŷ) and S+(ŷ) are not directly comparable, i.e.,
typically it is not possible to find a ŷ and a corresponding ∆ŷ such that one of the two polyhedra is a
proper subset of the other—meaning that they are both of interest in our context; see Figure 1 for an
illustration. Indeed, the facets of X+(∆ŷ) span the whole (x, y) space, while those S+(ŷ) only span the y
space (dT y ≥ dT ŷ) or the x space (Ax + Bŷ ≤ b + 1). In addition, S+(ŷ) contains the facet dT y ≥ dT ŷ
that directly involves the follower objective function, while the role of the latter function in X+(∆ŷ) is just
implicit. As a matter of fact, the computational experience reported in Section 6 shows that there is no
dominance between the two polyhedra in terms of IC quality.

3.2 Enlarged Bilevel-Free Polyhedra

The choice of the bilevel-free polyhedron is crucial for the computational effectiveness of the derived IC,
the larger the polyhedron the better. The following arguments can be applied to any bilevel-free polyhedron
to remove as many facets as possible from it, thus enlarging it and producing deeper cuts.
Theorem 5. (Fischetti et al. 2016a) Let S = {(x, y) ∈ Rn : αTi x+βTi y ≤ γi, i = 1, . . . , k} be any polyhedron
not containing bilevel-feasible points in its interior. Then one can remove from S all its facets i ∈ {1, . . . , k}
such that the half-space {(x, y) ∈ Rn : αTi x+ βTi y ≥ γi} does not contain any bilevel-feasible solution.
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Figure 1: Intersection cuts for a notorious example from Moore and Bard (1990): the LP vertex A is cut by
an IC (in red) obtained from the bilevel-free polyhedron S+(ŷ) (left) or X+(∆ŷ) (right), drawn in shaded
line. No dominance exists between the two cuts.

Concerning the set S+(ŷ) defined by (22), the above property can possibly be used to remove the
facet dT y ≥ dT ŷ if a valid lower bound of the follower problem, say FLB, is known. Indeed, if condition
dT ŷ < FLB holds, then the facet dT y ≥ dT ŷ can be removed from S+(ŷ). This property is particularly
important and efficient for “zero-sum” bilevel instances where the leader and follower objective functions
satisfy cx = 0 and cy = −d in (1). In that case, at every B&B node, the incumbent value z∗ (say) is an
upper bound for the leader objective function, hence FLB = −z∗ is a lower bound for the follower one.

Theorem 5 implies the following result:

Corollary 1. (Fischetti et al. 2016a) Let S = {(x, y) ∈ Rn : αTi x+βTi y ≤ γi, i = 1, . . . , k} be any polyhedron
not containing bilevel-feasible points in its interior. Then one can remove from S all its facets i ∈ {1, . . . , k}
such that

n1∑
j=1

max{αijx+j , αijx
−
j }+

n2∑
j=1

max{βijy+j , βijy
−
j } < γi. (25)

The above condition is exploited in Section 4.1 to derive large bilevel-free sets by solving an auxiliary
MILP that maximizes the number of facets satisfying it.

Concerning the extended bilevel-free polyhedron X+(∆ŷ), Theorem 5 implies that, for a given ∆ŷ,
detection of redundant facets is immediate:

Corollary 2. Let X+(∆ŷ) be the bilevel-free polyhedron of Theorem 4. Then one can remove from its
definition all the facets (Ax+By+B∆ŷ)i ≤ bi+1 such that (B∆ŷ)i ≤ 0, along with all its facets (y+∆ŷ)i ≤
ui + 1 with ∆ŷi ≤ 0, and all its facets li − 1 ≤ (y + ∆ŷ)i with ∆ŷi ≥ 0.

We observe that the above condition was also exploited in (Xu 2012) to reduce the number of children
of each B&B node.

3.3 Hypercube Intersection Cuts

We finally present a very simple polyhedron (actually, a hypercube) that can be used to generate ICs even
when Assumption 1 does not hold.

Theorem 6. Assume JF ⊆ Jx. For any given HPR solution (x∗, y∗), let (x̂, ŷ) be an optimal bilevel-feasible
solution with x̂j = x∗j for all j ∈ JF computed as follows:
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1. solve the follower MILP (14) for x = x∗ to compute Φ(x∗);

2. build a restricted HPR by adding the following constraints to HPR: xj = x∗j for all j ∈ JF , and

dT y ≤ Φ(x∗);

3. solve the restricted HPR, and let (x̂, ŷ) be the optimal solution found (if any).

Then the following hypercube does not contain any bilevel-feasible solution strictly better than (x̂, ŷ) in its
interior.

HC+(x∗) = {(x, y) ∈ Rn : x∗j − 1 ≤ xj ≤ x∗j + 1, ∀j ∈ JF } (26)

Proof. Observe that the interior of HC+(x∗) only contains bilevel-feasible solutions (x, y) with xj = x∗j = x̂j
for all j ∈ JF . By construction, among these solutions, (x̂, ŷ) is a best bilevel-feasible one, hence the claim.

Compared to the other two bilevel-free polyhedra, namely S+(ŷ) and X+(∆ŷ), this set spans only the x
space. Hypercube ICs play an important role for two classes of MIBLPs for which S+(ŷ) and X+(∆ŷ) are
not valid:

• if the follower subproblem is purely continuous (namely, for Jy = ∅), or

• if Assumption 1 does not hold.

In both cases, valid hypercube intersection cuts can still be derived from the polyhedron defined by (26).

4 Separation Algorithms

We now address the question of how to cut a given (integer or fractional) vertex (x∗, y∗) of HPR by using an
IC. Given for granted that we use the cone associated with the current LP basis, as explained in Section 3,
what remains is the choice of the bilevel-free set to be used.

Note that we accept that our separation fails in case (x∗, y∗) is not a feasible HPR solution, i.e., when
(x∗, y∗) do not satisfy the integrality requirements (11)–(12). Indeed, in that case the IC is not instrumental
for the correctness of our B&C, that is able to handle HPR infeasibility by standard MILP tools, namely,
by cutting planes or branching.

4.1 Separation of Intersection Cuts

For hypercube ICs, the choice of the bilevel-free set is uniquely defined by the coordinates of the point
(x∗, y∗). However, this is not the case for the sets S(ŷ), S+(ŷ), X(∆ŷ), and X+(∆ŷ) defined above. Given
that for deriving a violated IC the point (x∗, y∗) has to belong to the interior of the bilevel-free set, we
focus on the creation of the extended polyhedra S+(ŷ) and X+(∆ŷ). Recall that these extended polyhedra
are well-defined only under Assumption 1. Without loss of generality, we also assume that (possibly after
scaling) d is an integer vector so that the bilevel-infeasibility conditions of the type dT y < dT y∗ can be
replaced by dT y ≤ dT y∗ − 1.

Bilevel-Free Polyhedron S+(ŷ).
Given x∗, two options to define S+(ŷ) have been proposed in (Fischetti et al. 2016a), along with the

MILP models for their detection. For the sake of completeness, we briefly recall here the basic ideas behind
these bilevel-free sets.

• SEP1: For the given HPR vertex (x∗, y∗), one solves the follower MILP to obtain its optimal solution
ŷ, which eventually determines the set S+(ŷ) according to (22). This approach aims at maximizing
the distance of (x∗, y∗) from the facet dT y ≥ dT ŷ of S(ŷ). By construction, the point (x∗, y∗) belongs
to S(ŷ), and hence to the interior of S+(ŷ).
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• SEP2: This is an alternative procedure that constructs ŷ so as to have a large number of “removable
facets” according to Corollary 1, i.e., of facets of the type (Ax+Bŷ)i ≤ bi + 1 with∑

j∈Nx

max{Aijx−j , Aijx
+
j }+ (Bŷ)i ≤ bi. (27)

When designing a separation MILP to choose such a ŷ, one has to ensure that S+(ŷ) does not contain
bilevel-feasible points in its interior, whereas (x∗, y∗) does, and that the number of removable facets is
maximized.

Bilevel-Free Polyhedron X+(∆ŷ).
We now address the bilevel-free polyhedron X+(∆ŷ) defined in Theorem 4. Following the recipe of Xu

(2012), for the given (x∗, y∗), ∆ŷ is defined by solving an additional “‘scoop” MILP intended to produce a
large number of removable facets in accordance with Corollary 2. To simplify notation, let the system

Ãx+ B̃y ≤ b̃

contain all the follower constraints (including the bounds on the y variables) except integrality, and let m̃
denote the number of rows of Ã. The scoop MILP then reads:

SCOOP : ∆ŷ ∈ arg min

m̃∑
i=1

ti (28)

dT∆y ≤ −1 (29)

B̃∆y ≤ b̃− Ãx∗ − B̃y∗ (30)

∆yj integer, ∀j ∈ Jy (31)

B̃∆y ≤ t and t ≥ 0. (32)

In model above, each continuous variable ti has value 0 in case (B̃∆y)i ≤ 0, meaning that (Ãx∗ + B̃y∗ +
B̃∆ŷ)i ≤ b̃i + 1 is a removable facet according to Corollary 2. On the contrary, if (B̃∆y)i > 0, variable ti
measures the slack of solution (x∗, y∗) with respect to constraint i. So, the objective function in (28) goes
into the direction of maximizing the size of the bilevel-feasible set associated with ∆ŷ; see Xu (2012) for
more details. Note that one is not allowed to increase by 1 the right-hand side of (30) as this would allow
the point (x∗, y∗) to be on the frontier of the extended polyhedron X+(∆ŷ).

4.2 Numerically Safe Intersection Cuts

In this section we describe how ICs can be derived from the optimal LP basis in a numerically reliable
way. We follow the “disjunctive interpretation” of ICs (Glover 1974, Glover and Klingman 1976), which also
reflects our actual implementation. This is a slightly more general—and numerically more stable—variant
compared to those typically considered in the literature.

To ease exposition, in the remaining part of this subsection we will denote by ξ = (x, y) ∈ Rn the whole
variable vector, while the HPR at the given B&B node will be formulated in its standard form as

min{ĉT ξ : Âξ = b̂, ξ ≥ 0}.

Now let ξ∗ be an optimal vertex of the above LP, associated with a certain basis B̂ (say) of Â, and let the
bilevel-free polyhedron S of interest be defined as

S = {ξ : gTi ξ ≤ g0i, i = 1, . . . , k}.
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Our order of business is to derive a valid inequality, violated by ξ∗, from the feasibility condition “ξ cannot
belong to the interior of S”. To this end, we observe that the latter condition can be restated as the following
k-term disjunction:

k∨
i=1

(gTi ξ ≥ gi0) (33)

where we write ≥ instead of >, as a feasible ξ can in fact belong to the frontier of S.

Algorithm 1: Intersection cut separation

Input : An LP vertex ξ∗ along with its a associated LP basis B̂;
the feasible-free polyhedron S = {ξ : gTi ξ ≤ g0i, i = 1, . . . , k} and the associated

valid disjunction
∨k
i=1(gTi ξ ≥ gi0) whose members are violated by ξ∗;

Output: A valid intersection cut violated by ξ∗;

1 for i := 1 to k do

2 (gTi , gi0) := (gTi , gi0)− uTi (Â, b̂), where uTi = (gi)
T
B̂
B̂−1

3 end

4 for j := 1 to n do γj := max{ gijgi0 : i ∈ {1, . . . , k} } ;

5 if γ ≥ 0 then
6 for j := 1 to n do
7 if ξj is integer constrained then γj := min{γj , 1} ;
8 end

9 end

10 return the violated cut γT ξ ≥ 1

ICs are then obtained as in Algorithm 1. At Step 2, each violated inequality gTi ξ ≥ gi0 is restated in its
equivalent reduced form gTi ξ ≥ gi0 where all basic variables ξj ’s are projected away—this is the standard
operation that is applied to the objective function when computing LP reduced costs. Observe that gi0 > 0
as the inequality is violated by ξ∗ whereas, by construction, gTi ξ

∗ = 0. Therefore, one can normalize it to
1
gi0
gTi ξ ≥ 1 to get a same right-hand side of 1 for all inequalities.

Step 4 relaxes each inequality so as to get a same left-hand-side coefficient for each variable in all
inequalities (through the max operation), meaning that the resulting relaxed cut γT ξ ≥ 1 is valid for each
term of the disjunction and hence for the overall problem. As the max operation does not change the
coefficient of each basic variable ξj (which is zero in all reduced-form inequalities), the resulting cut is still
violated by 1 by ξ∗.

Finally, at Step 4 a simple “coefficient clipping” operation is applied in case γ ≥ 0, that consists of
replacing γj by min{γj , 1} whenever ξj is an integer-constrained variable. Validity of the resulting inequality
follows from the fact that either ξj = 0 (in which case its coefficient γj is immaterial) or ξj ≥ 1 (hence
validity follows from assumptions γ ≥ 0 and ξ ≥ 0).

It is important to observe that the validity of the final IC does not require the vectors uTi = (gi)
T
B̂
B̂−1

used at Step 2 be computed with a very high numerical precision, as the cut coefficients are computed by
using the original data (Â, b̂) and not the (possibly inaccurate) tableau information. This property is very
important for the correctness of the method—numerical issues in computing uTi can reduce cut violation as
some basic variables can have a small nonzero coefficient, but they do not have an impact on validity.

We conclude this subsection by warning the reader about the fact that, in practical cases, the LP contains
bounds on the variables that are treated implicitly by the LP solver—while the above theory refers to an
LP in standard form with unbounded nonnegative variables. This means that, before generating the IC, a
preprocessing is required that (1) adds explicit slacks to inequality constraints, (2) complements all nonbasic
variables at their upper bound, and (3) shifts all variables with nonzero lower bound. Needless to say, the
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final IC needs to be post-processed to undo all the above complement-and-shift operations above and to
bring the cut back in the original variable space, projecting all slack variables away.

5 Implementation

In this section we describe some implementation details that play an important role in the design of an
effective code. Indeed, we strongly believe that these details are worth addressing for the sake of result
reproducibility.

Our description is based on the actual MILP solver we used (IBM ILOG Cplex 12.6.3), but it extends
easily to other solvers.

5.1 Branch-and-Cut scheme

The basic MILP model on which B&C is applied is HPR. Cplex’s preprocessing is disabled on this model,
as we need to retrieve LP bases at the various nodes (to derive ICs) and preprocessing would change the
variable space by aggregating/changing variables and constraints, requiring cumbersome (if not impossible)
bookkeeping mechanisms. Instead, we do apply our bilevel-specific preprocessing variable fixing described
in Theorem 2.

Internal numerical-precision thresholds for integrality/cut validity tests are set to a very small value
(10−9) so as to guarantee a very precise overall computation.

Multi-threading opportunistic parallel mode is selected when solving HPR, so as to fully exploit the
architecture in use. For thread safety, each thread works on its own copy of the follower MILP (needed to
check bilevel feasibility at B&B nodes).

Internal Cplex’s cuts are active in their default setting (level 0), as our approach does not require to
deactivate them—contrarily to, e.g., DeNegre (2011). Similarly, our approach could handle correctly solutions
produced by Cplex’s internal heuristics (as shown below). Note however that each solution found by internal
Cplex’s heuristics requires a significant extra computation effort to determine its bilevel feasibility. Thus, in
our experiments, we deactivated all Cplex’s heuristics.

We implemented a bilevel-oriented branching strategy by using Cplex’s branching priorities. To be
specific, priority for integer-constrained variables is set to 2 (maximum) for all xj ’s with j ∈ Jx ∩ JF (i.e.,
appearing in the follower MILP), to 1 for xj ’s with j ∈ Jx \ JF , and to 0 for all other variables (i.e., for
all yj ’s with j ∈ Jy). Within the same priority level, Cplex is left free to choose the branching variable
according to its internal “strong branching” criterion.

Each time a new integer solution (x∗, y∗) is found and is going to update the incumbent, a specific
“lazyconstraint callback” function is automatically invoked by Cplex to let the user possibly discard this
solution for whatever reason, and possibly add a cut that makes this solution infeasible. In this callback
function, we first determine whether the solution is in fact bilevel-feasible by solving the MILP follower for
x = x∗, thus obtaining an alternative point (x∗, ŷ) with dT ŷ = Φ(x∗). If dT y∗ > Φ(x∗), the solution (x∗, y∗)
is not bilevel feasible and we cut it using a suitable IC. In case heuristics were enabled and produced an
infeasible candidate solution without an associated LP basis, we could just discard it. In any case, point
(x∗, ŷ) is passed to an hoc-hoc feasibility-check procedure that quickly verifies its HPR feasibility (with
respect to (2)) and cost, and possibly updates the incumbent. This approach is very useful as it typically
produces very good heuristic solutions at the very beginning of the computation.

Immediately before branching, at each node Cplex automatically invokes a “usercut callback” function
where the user can generate problem-specific (in our case, locally valid) cuts for fractional HPR solutions.
Within this function, we implemented separation procedures for both FUB cuts and ICs, as described in
Sections 2.1 and 4.1, respectively. Separation of FUB cuts is invoked only at the first callback call at a given
node, as it does not depend on (x∗, y∗) but only on the variable bounds at the current node. Separation of ICs
is instead active at each callback call, with a maximum number (say, max node cuts) of consecutive calls at
the same B&B node. This is due to two considerations: first, separation procedures can be time-consuming,
as they require the solution of an auxiliary MILP. Second, a known issue of ICs is that their effectiveness
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quickly deteriorate when applied iteratively to a same LP. In any case, in our implementation, for fractional
HPR solutions we discard ICs with a too large dynamic (ratio between the largest and smallest nonzero
coefficient, both in absolute value, greater than 106) as they are not considered numerically reliable. A cut is
also discarded when its relative violation is very small, i.e., in case violation is small than 10−6 ·(|cut rhs|+1).

6 Computational Results

To evaluate the performance of our improved B&C solution method, we implemented it (in C language) and
run it on a large set of instances from the literature. All computational experiments are conducted on an
Intel Xeon E5-2670v2 with 2.5GHz and 12GB of RAM. Computing times reported in what follows are in
wall-clock seconds and refer to 4-thread runs. The time limit for each run was set to 3 600 wall-clock seconds.

6.1 Testbed

Table 1 summarizes details about the data sets that have been considered in our computational study.
The considered instance sets can be divided into two groups: general bilevel, and interdiction. While the
former includes problems with no special structure, interdiction problems represent a relevant case of bilevel
programs where the follower typically is a clean combinatorial optimization problem (e.g., a knapsack or an
assignment problem). The leader can “interdict” a subset of elements of the follower problem (e.g., knapsack
items, or edges in the assignment problem), subject to a given budget constraint. The objective of the leader
is the opposite of that of the follower, which results into min-max or max-min problems. Note that, by
exploiting their special structure, one can design sound methods for general interdiction problems (DeNegre
2011, Tang et al. 2015). In our computational study, instead, we treat interdiction problems as standard
bilevel problems, without taking advantage of their structure.

The total number of general bilevel instances considered is 247, and the total number of interdiction
instances is 567. Thus, with experiments conducted on more than 800 instances of various types and from
different sources, our computational study is by far the most extensive ever reported in the MIBLP literature.

General Bilevel Instances

• Instances of class DENEGRE have been proposed in DeNegre (2011). They involve n1 ∈ {5, 10, 15} integer
leader variables, while the number of integer follower variables n2 is such that n1+n2 = 15 or 20. There
are m = 20 follower constraints and no constraints at the leader level. All coefficients are integers in
the range [−50, 50].

• Class MIPLIB has been introduced in Fischetti et al. (2016a). They are based on instances of MILPLIB
3.0 (Bixby et al. 1998) containing only binary variables. These instances have been transformed
into bilevel problems by considering the first Y% (rounded up) variables as follower variables, with
Y ∈ {10, 50, 90} and the remaining ones as leader variables. The objective function is used as the leader
objective cTx x + cTy y and the follower objective is set to dT y = −cTy y. All constraints in the instances
are defined to be follower constraints. The class contains 57 instances with up to about 80 000 HPR
variables and 5 000 follower constraints, making them much larger (and often also much more difficult)
than instances of the other classes.

• Class XUWANG has been proposed by Xu and Wang (2014). In these instances, we have n1 = n2 ∈
{1, 60, 110, . . . , 460}. The leader variables are constrained to be integer, while some of the follower
variables are continuous. The number of leader constraints, as well as follower constraints, is 0.4n1.
All input values are integers uniformly distributed from given ranges: Gx, Gy, A,B are in [0, 10], cx, cy, d
are in [−50, 50], q is in [30, 130], and b is in [10, 110]. There are ten instances for every value of n1.
For n1 ∈ {110, 160}, four additional sets of instances were created: q is increased by 10 in the first two
sets, while b in increased by 10 in the last two sets. Note that all these instances have some continuous
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follower variables, hence Assumption (1) does not hold and only the hypercube ICs of Section 3.3 can
be used by our B&C solver.

Interdiction Instances

• Class INTER-KP has been introduced in DeNegre (2011). The follower problem is a knapsack problem.
The instances are based on bicriteria knapsack instances from the multiple criteria decision making
library : the first objective of the bicriteria problem is used to the define the follower objective function,
while the second objective defines the interdiction budget constraint of the leader. The instances have
n1 = n2 ∈ {10, 20, . . . 50}, with two additional sets with 11 and 12 items. The interdiction budget of
an instance is d

∑n1

i=1 ai/2e, where ai is the cost of interdicting item i. For every number of items there
are 20 instances, except for 10 items where there are 40 instances.

• Class INTER-KP2 has been proposed by Tang et al. (2015) and also consists of knapsack interdiction
instances. Instances with number of items n1 = n2 ∈ {20, 22, 25, 28, 30} have been constructed and
the interdiction budget is a cardinality constraint allowing k (say) items to be interdicted. For each
value of n1, three different values of k have been considered and, for each (n1, k) pair, ten instances
have been defined generating item weights and profits as random integers in [1, 100].

• Instances of class INTER-ASSIG have also been introduced in DeNegre (2011). The follower problem
is an assignment problem. The instances are derived from bicriteria assignment instances from the
multiple criteria decision making library in a similar way as in class INTER-KP. Each instance has 25
edges (i.e., n1 = n2 = 25) and 20 follower constraints—plus the interdiction constraints stipulating that
interdicted edges cannot be used by the follower. The interdiction budget was chosen as a percentage
of the sum of interdiction costs.

• Class INTER-RANDOM are random interdiction problems proposed by DeNegre (2011). They are based
on random ILPs with integer coefficients in [−50, 50] of size (rows × columns) 10×10, 15×10, 20×20,
and 25 × 20. These ILPs are transformed to interdiction instances by introducing interdiction costs
for each variable. Two strategies are considered: in the first strategy, a unit cost is given, together
with an interdiction budget of 3. In the second one, interdiction costs and budget are taken randomly.
Instances obtained by applying the first and second strategy are denoted as symmetric and asymmetric,
respectively. For each strategy, 10 instances are generated for each size.

• Class INTER-CLIQUE are clique interdiction problems introduced in Tang et al. (2015). The follower
problem is a maximum cardinality clique problem, and the leader can interdict edges. Graphs with
ν = {8, 10, 12, 15} nodes and edge densities d ∈ {0.7, 0.9} have been used to define the instances. The
interdiction budget is a cardinality constraint, and the leader can interdict at most dm/4e edges, where
m is the number of edges in the graph. For each combination of ν and d, ten instances have been
constructed, resulting in 80 instances of this class.

• Instances of class INTER-FIRE have been recently introduced in Baggio et al. (2016). These are ran-
domly generated problems arising from a trilevel context in which one has to defend a given network
against possible cascade failures or malicious viral attacks. This benchmark includes instances in which
the network is a tree or a general graph. In both cases, the number of nodes is in {25, 50, 80}.

6.2 Computational Analysis of the Proposed Improvements

In this subsection we computationally analyze the effect of the newly presented ingredients on the perfor-
mance of our bilevel B&C solver. We first consider FUB cuts, as described in Section 2.1, and then follower
preprocessing (cf. Section 2.2). Afterwards, we investigate the influence of new bilevel-free sets introduced
in Section 3. In this experiment, the following solver settings are considered:

– SEP1: our B&C solver using SEP1 formulation for separating ICs (see Section 4.1),
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Table 1: Our testbed. The first three classes are of general bilevel type, and the latter five of interdiction
type. Column #Inst reports the total number of instances in each class, column Type indicates whether the
instances are binary (B), integer (I) or continuous (C), column #OptB gives the number of instances solved
to optimality by previous approaches from literature, and #Opt gives the number of instances solved to
optimality by the solver presented in this paper. The symbols in the column #OptB give the source of the
previous best approach: † is (Fischetti et al. 2016a); + is (Xu and Wang 2014); ∗ is (Tang et al. 2015). Note
that class INTER-FIRE has not been tested computationally before. For class INTER-RANDOM some results are
reported in (DeNegre 2011), but for different instances.

Class Source Type #Inst #OptB #Opt

DENEGRE (DeNegre 2011),(Ralphs and Adams 2016) I 50 45† 50
MIPLIB (Fischetti et al. 2016a) B 57 20† 27
XUWANG (Xu and Wang 2014) I,C 140 140+ 140

INTER-KP (DeNegre 2011),(Ralphs and Adams 2016) B 160 79† 138
INTER-KP2 (Tang et al. 2015) B 150 53? 150
INTER-ASSIG (DeNegre 2011),(Ralphs and Adams 2016) B 25 25† 25
INTER-RANDOM (DeNegre 2011),(Ralphs and Adams 2016) B 80 - 80
INTER-CLIQUE (Tang et al. 2015) B 80 10? 80
INTER-FIRE (Baggio et al. 2016) B 72 - 72

total 814 372 762

– SEP2: our B&C solver using SEP2 formulation for separating ICs (see Section 4.1),

– XU: our B&C solver with the extended bilevel-free set of Xu (2012) as described in Section 3.1

– MIX: combination of settings SEP2 and XU (both ICs being separated at each separation call).

Observe that settings SEP1 and SEP2 have been proposed and analyzed by Fischetti et al. (2016a), where it
has been shown that SEP2 outperformed alternative approaches from the literature by a large margin. In
the present article, they serve therefore as reference points for measuring the efficacy of the newly proposed
features (notably: FUB cuts, preprocessing, and new ICs) exploited in our new proposals XU and MIX. For
all settings, at most max node cuts=20 ICs are separated at each B&B node (including root). When one
of the four settings is enhanced by FUB cuts, this is denoted by a “+” next to its name. If, in addition,
follower preprocessing is turned on, this is denoted by “++”.

In the following, we first analyze the effects of FUB cuts and the preprocessing, before turning these two
features on for the remainder of the study.

Effect of FUB Cuts.

We illustrate the importance of the FUB cuts introduced in Section 2.1 through the cumulative speed-up
chart of Figure 2a. The chart shows the speed-up values for the two state-of-the-art approaches from Fischetti
et al. (2016a), namely, settings SEP1 and SEP2. To see the effect of FUB cuts, the follower preprocessing

is turned off. The reported speed-up ratio is calculated as ts+t(SEPx)
ts+t(SEPx+) , where t(SEPx+) and t(SEPx) denote

the computing time (in seconds) of a setting SEPx with and without FUB cuts, respectively. The time shift
ts is set to 1 second to reduce the importance of instances that are too easy in the comparison. For a
given setting, each point (x, y) in this chart indicates that y% of all instances have a speed-up ratio of at
least x. Notice that the values on x axis are given in log-scale. We observe that for both SEP1 and SEP2 a
significant speed-up is achieved in the considered dataset (DENEGRE). In some cases, a speed-up of 2-3 orders
of magnitude could be reported, thanks to the usage of FUB cuts. In very few cases, a small slow-down
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is observed—this usually happens for instances that could be solved within a few seconds, in which case
turning FUB cuts on causes an unnecessary overhead.

Figure 2: Speed-ups achieved by FUB cuts and follower preprocessing for the instance set DENEGRE.
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(a) Using FUB cuts.
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(b) Using follower preprocessing.

Effect of Follower Preprocessing.

We now demonstrate the effect of preprocessing, by continuing the above experiment: using the same set of
DENEGRE instances and settings SEP1 and SEP2, we keep the FUB cuts turned on, and consider the additional
speed-up that can be achieved by turning follower preprocessing on. The speed-up ratio is now calculated as
ts+t(SEPx+)
ts+t(SEPx++) , where t(SEPx + +) and t(SEPx+) denote the computing time (in seconds) of a setting SEPx+

with and without the follower preprocessing, respectively. The cumulative chart reporting this speed-up ratio
is given in Figure 2b, where similar effects as for FUB cuts are observed: due to preprocessing, a significant
number of instances could be solved within a much shorter computing time. Indeed, for more than 25% of
all instances we report a speed-up of more than one order of magnitude, and in some cases the speed-up is
even larger than three orders of magnitude.

Speed-ups for other classes of benchmark instances have been also achieved, although not that large as
for DENEGRE, where all instances could now easily be solved to optimality (which was not the case before this
work).

We next illustrate the improvement in performance of SEP2 when combined with both FUB cuts and
follower preprocessing, on the most challenging set of benchmark instances in our study, namely MIPLIB.
Figure 3 shows the cumulative chart for final gaps obtained after the time-limit of one hour for SEP2 and
SEP2++. For each setting, each point (x, y) in this chart indicates that y% of all instances have a residual
percentage gap not larger than x. In particular, the left-most point indicates the percentage of instances
solved to optimality for each of the settings. These results show that a significant performance improvement
could be reported: SEP2 manages to solve about 34% of the instances to optimality, and this number increases
to 42% thanks to the FUB cuts and preprocessing. Furthermore, for 65% of the instances the obtained final
gap is below 12% in case of SEP2++, whereas this is true only for 55% of all instances in case of SEP2.

Effect of Different Intersection Cuts.

We next compare our new approach for separating intersection cuts based on the definition of the bilevel-free
set given in (24) (denoted by XU++) against the recently proposed ICs based on bilevel-free sets defined by
(22) (denoted by SEP2++). In addition, we consider a mixed strategy (denoted by MIX++), in which both
ICs are generated for each separation call. To allow for a fair comparison, FUB cuts and preprocessing are

16



Figure 3: Final gaps for settings SEP2 and SEP2++ (the latter with FUB cuts and preprocessing) for instance
set MIPLIB, obtained when the time-limit of one hour is reached.
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turned on for all three settings (hence the ++ beside the setting names). Computational performance is
compared using performance profiles (PPs). In Figure 4 we report two PPs: one for the class of general
bilevel instances (left plot), and one for the class of interdiction instances (right plot). Both PPs refer to
the subsets of instances that could be solved to optimality by all three settings within the given time-limit
of one hour. PPs are constructed following the procedure of Dolan and Moré (2002): for each setting s ∈ S
and instance p ∈ P , a performance ratio rp,s =

tp,s
mins′∈S{tp,s′}

is calculated, where tp,s is the time setting

s needs to solve instance p. In the profiles, the cumulative distribution function of the performance ratio
ρs(τ) = 100

|P |
∣∣{p ∈ P : rps ≤ τ}

∣∣ is displayed for each setting s ∈ S. The leftmost point of the graph for a

setting s shows the percentage of instances for which s is the fastest setting.

Figure 4: Effect of different ICs on the B&C performance. Performance profiles contain instances that could
be solved to optimality by all three settings. FUB cuts and preprocessing are turned on.
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(a) Instances of type general bilevel.
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(b) Instances of type interdiction.

To compare the settings on the remaining instances (namely, those that were not solved by at least
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one of the three settings) we provide additional charts that report final gaps upon the termination of the
B&C solver. Figures 5a and 5b report cumulative-gap charts for general bilevel and interdiction instances,
respectively, and have the same interpretation as Figure 3.

Comparing the obtained results, we may conclude that the quality and structure of the incorporated
ICs significantly influence the performance of the underlying bilevel B&C solver. It turns out that for two
different instance classes, two different families of ICs seem to play a crucial role. More precisely, setting
XU++ performs better for the general bilevel class, while for interdiction instances SEP2++ is the clear
winner. A noteworthy aspect for the success of both SEP2++ and XU++ are the proposed FUB cuts and
the preprocessing procedure.

Mixing the two families of ICs has merits in its own, but it also has some drawbacks. Indeed, MIX++ is
outperformed by SEP2++ and XU++ in most of the cases when the underlying instances could be solved in
(relatively) short time. This is due to the unnecessary overhead of separating two ICs, when separating one
of them already works very well. On the other hand, for difficult instances, MIX++ provides the smallest
final gaps, which is why we conclude that setting MIX++ qualifies as a robust default setting for our B&C
algorithm.

Figure 5: Cumulative chart for final gaps demonstrating the effect of different ICs on the B&C performance.
FUB cuts and preprocessing are turned on.
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(b) Instances of type interdiction.

6.3 Comparison with Approaches from Literature

In this subsection we compare our default B&C code MIX++ with other approaches from the literature, using
the instance classes originally proposed by the authors of the alternative methods under comparison. When
performing this experiment, we refrained from tuning our solver for the specific instance subclasses, even
though this could produce significantly better results in many cases.

Not all instances listed in Table 1 are considered in this subsection, namely, instances from INTER-ASSIG,
INTER-FIRE and INTER-RANDOM are left out. Instances of class INTER-ASSIG are omitted for the sake of space,
as they turn out to be very easy for both MIX++ and the state-of-the-art solver for these problems—namely,
SEP2 from (Fischetti et al. 2016a). As to INTER-FIRE problems, no computational analysis has been carried
out so far in the literature, while for INTER-RANDOM the only available results are from (DeNegre 2011), but
for different instances.
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Instance Set DENEGRE.

For this class of 50 general bilevel instances introduced by DeNegre (2011), Table 2 compares the performance
of two solvers: SEP1 (in a variant with max node cuts = 0 that produces the best-known results for this class,
as reported by Fischetti et al. (2016a)) and MIX++ (our default B&C solver). For the former we report, for
each instance, the value of the best lower and upper bounds (LB and BestSol, respectively), the associated
percentage gap (%gap), the computing time (in seconds), as well as the total number of branch-and-bound
nodes. As MIX++ is able to solve to proven optimality all the instances, for this solver we only report the
required computing time and number of nodes. The optimal solution value of each instance is given in
column OPT . Prior to the present work, optimal solutions for five instances of this class were unknown.

We point out that with our new B&C solver, optimal solutions for all the 50 instances of this class are
reported for the first time, and that the optimal solution for all but two instances is obtained within only a
few seconds of computing time. Moreover, MIX++ needs much fewer branch-and-bound nodes than SEP1.

Table 2: Results for instance set DENEGRE.

SEP1 MIX++
instance OPT BestSol LB %gap time [s] nodes time [s] nodes

miblp-20-15-50-0110-10-10 -206 -206 -206.0000 0.00 0 628 0 10
miblp-20-15-50-0110-10-1 -388 -388 -388.0000 0.00 0 50 1 21
miblp-20-15-50-0110-10-2 -398 -398 -398.0000 0.00 17 77323 8 279
miblp-20-15-50-0110-10-3 -42 -42 -42.0000 0.00 0 2201 2 54
miblp-20-15-50-0110-10-4 -729 -729 -729.0000 0.00 0 185 1 56
miblp-20-15-50-0110-10-5 -281 -281 -281.0000 0.00 0 83 0 20
miblp-20-15-50-0110-10-6 -246 -246 -246.0000 0.00 0 233 16 205
miblp-20-15-50-0110-10-7 -260 -260 -260.0000 0.00 0 108 0 0
miblp-20-15-50-0110-10-8 -293 -293 -293.0000 0.00 0 114 0 22
miblp-20-15-50-0110-10-9 -635 -635 -635.0000 0.00 0 1061 1 16
miblp-20-20-50-0110-10-10 -441 -441 -441.0000 0.00 73 256927 2927 8068
miblp-20-20-50-0110-10-1 -359 -359 -359.0000 0.00 494 1805080 2 81
miblp-20-20-50-0110-10-2 -659 -659 -659.0000 0.00 0 939 1 17
miblp-20-20-50-0110-10-3 -618 -618 -618.0000 0.00 1 9456 0 52
miblp-20-20-50-0110-10-4 -604 -604 -695.0000 15.07 3600 7479668 1 51
miblp-20-20-50-0110-10-5 -1003 -1003 -1003.0000 0.00 0 20 0 13
miblp-20-20-50-0110-10-6 -731 -707 -858.3704 21.41 3600 6244669 10 511
miblp-20-20-50-0110-10-7 -683 -683 -683.0000 0.00 2788 7420465 0 54
miblp-20-20-50-0110-10-8 -667 -667 -667.0000 0.00 3 8116 15 232
miblp-20-20-50-0110-10-9 -256 -256 -256.0000 0.00 4 42945 0 71
miblp-20-20-50-0110-15-10 -251 -251 -251.0000 0.00 0 400 0 14
miblp-20-20-50-0110-15-1 -450 -420 -511.6744 21.83 3600 4313453 0 16
miblp-20-20-50-0110-15-2 -645 -645 -744.0000 15.35 3600 14175981 0 6
miblp-20-20-50-0110-15-3 -593 -593 -593.0000 0.00 838 1420792 3 43
miblp-20-20-50-0110-15-4 -441 -441 -487.6710 10.58 3600 5448638 5 131
miblp-20-20-50-0110-15-5 -379 -334 -518.0000 55.09 3600 6169959 1392 5466
miblp-20-20-50-0110-15-6 -596 -596 -596.0000 0.00 3260 5955753 50 483
miblp-20-20-50-0110-15-7 -471 -471 -471.0000 0.00 246 787848 0 23
miblp-20-20-50-0110-15-8 -370 -370 -838.3617 126.58 3600 11797237 0 3
miblp-20-20-50-0110-15-9 -584 -584 -584.0000 0.00 1 2027 0 8
miblp-20-20-50-0110-5-10 -340 -340 -340.0000 0.00 0 45 0 38
miblp-20-20-50-0110-5-11 -426 -426 -426.0000 0.00 0 9 0 11
miblp-20-20-50-0110-5-12 -854 -854 -854.0000 0.00 0 43 0 21
miblp-20-20-50-0110-5-13 -519 -519 -519.0000 0.00 116 947138 0 11
miblp-20-20-50-0110-5-14 -923 -923 -923.0000 0.00 0 109 0 58
miblp-20-20-50-0110-5-15 -617 -617 -617.0000 0.00 157 1031098 1 197
miblp-20-20-50-0110-5-16 -833 -833 -833.0000 0.00 0 2535 0 44
miblp-20-20-50-0110-5-17 -944 -944 -944.0000 0.00 0 3580 0 19
miblp-20-20-50-0110-5-18 -386 -386 -386.0000 0.00 0 2 0 0
miblp-20-20-50-0110-5-19 -431 -431 -431.0000 0.00 3 25762 0 95
miblp-20-20-50-0110-5-1 -548 -548 -548.0000 0.00 1 6981 0 21
miblp-20-20-50-0110-5-20 -438 -438 -438.0000 0.00 0 3918 0 32
miblp-20-20-50-0110-5-2 -591 -591 -591.0000 0.00 1558 6053523 0 49
miblp-20-20-50-0110-5-3 -477 -477 -477.0000 0.00 0 53 0 50
miblp-20-20-50-0110-5-4 -753 -753 -753.0000 0.00 0 142 0 71
miblp-20-20-50-0110-5-5 -392 -392 -392.0000 0.00 0 51 0 31
miblp-20-20-50-0110-5-6 -1061 -1061 -1061.0000 0.00 5 79502 0 92
miblp-20-20-50-0110-5-7 -547 -547 -547.0000 0.00 0 80 0 16
miblp-20-20-50-0110-5-8 -936 -936 -936.0000 0.00 0 69 0 91
miblp-20-20-50-0110-5-9 -877 -877 -877.0000 0.00 0 112 0 62
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Instance Set XUWANG.

In Xu and Wang (2014), a generic solver for MIBLPs has been introduced, along with a set of 140 instances,
comprising integer leader variables, and continuous follower variables. In the following, we perform a com-
parison of our B&C solver with the solver of Xu and Wang (2014). As Assumption (1) does not hold for the
follower subproblem, our solver relies on the separation of the hypercube ICs of Subsection 3.3 only. FUB
cuts and preprocessing remain valid in this case, and are turned on in our experiment.

Both approaches solve all 140 instances from this class to optimality. Table 3 reports the required
computing times.

Each table row corresponds to a set of ten instances and computing times of our solver are given per
instance (for i = 1, . . . , 10) and on average (column avg). Column avg-XU gives instead the average com-
puting time as reported in Xu and Wang (2014), and refers to a “desktop computer with 2.4 GHz” which is
therefore 2 to 5 time slower than our hardware. The table shows that, after taking the hardware differences
into account, our approach remains orders of magnitude faster that the one presented in Xu and Wang
(2014), in particular for the largest instances. Indeed, for the instances with n1 = 460 our solver has an
average computing time of 23.1 seconds, against 6 581.4 seconds reported in Xu and Wang (2014). Moreover,
for instances of class B2-160, which seem the hardest in this testbed, the speed-up is even more pronounced
with average computing times of 37.4 versus 22 999.7 seconds.

Table 3: Results for the instance set XUWANG. Computing times (in seconds) given for ten instances (i =
1, . . . , 10) for fixed n1. Column avg-XU gives the average computing times as reported in Xu and Wang
(2014).

n1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 avg avg-XU

10 3 3 3 3 2 3 2 3 2 3 2.6 1.4
60 2 0 0 1 1 1 1 1 2 2 0.9 45.6
110 2 1 2 2 1 2 1 2 2 12 2.8 111.9
160 2 2 3 2 3 1 4 1 1 3 2.1 177.9
210 2 3 1 1 3 3 3 2 5 3 2.6 1224.5
260 3 4 3 6 3 5 6 2 7 11 5.0 1006.7
310 5 10 11 14 7 16 15 8 5 3 9.4 4379.3
360 17 28 11 13 11 15 7 19 9 14 14.4 2972.4
410 19 10 29 8 21 10 9 15 23 42 18.7 4314.2
460 22 10 22 35 21 21 32 22 23 23 23.1 6581.4
B1-110 0 0 0 0 0 1 0 1 0 9 1.3 132.3
B1-160 1 1 3 1 2 1 3 0 0 2 1.3 184.4
B2-110 16 2 2 8 1 25 15 5 1 122 19.7 4379.8
B2-160 8 38 21 91 34 4 40 3 12 123 37.4 22999.7

Instance Sets INTER-KP2 and INTER-CLIQUE.

Another generic solver for zero-sum MIBLPs has been recently proposed in Tang et al. (2015), along with
two families of benchmark instances of interdiction type on which the solver is tested: knapsack-interdiction
and clique-interdiction, denoted by INTER-KP2 and INTER-CLIQUE in the following. We compare our default
setting for the B&C solver, namely MIX++, with the best results reported in Tang et al. (2015), which have
been obtained “on a PC with 3.30 GHz using CPLEX 12.5”. The results of this comparison are summarized
in Table 4. Each row reports average results over a subset of ten instances that share the same (n1, k)
pair (left part of the table, INTER-KP2 instances) or the same graph-parameters (right part, associated with
INTER-CLIQUE instances). For the solver of Tang et al. (2015), we report the average value of the best known
upper bound (BestSol), the average computing time (in seconds), the average final lower bound (obtained
after one hour of computing) and the total number of unsolved instances out of ten (denoted by #unsol).
For MIX++ we only report the average computing time in seconds, as it turns out that our solver manages
to solve all 150 + 80 instances to optimality (compared to 53 + 10 for the best solver from Tang et al.
(2015)). For INTER-KP2 the average computing times of MIX++ vary between a fraction of a second to five
minutes. The set INTER-CLIQUE turns out to be much easier, as in most of the cases, optimal solutions are
found within a fraction of a second. Only for the largest instances with 15 nodes and graph density of 0.9,
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our solver requires about 12 seconds on average. We finally point out that the solver of Tang et al. (2015)
is specifically tailored for problems with binary leader variables and with the zero-sum problem structure,
whereas our solver handles these instances as general bilevel problems and does not explicitly exploit these
properties.

Table 4: Results for the instance sets INTER-KP2 (left) and INTER-CLIQUE (right). Each row contains average
results for ten instances. All instances are solved to proven optimality by MIX++.

Tang et al. (2015) MIX++
n1 k OPT t[s] BestSol LB #unsol t[s]

20 5 388.5 721.4 388.5 388.5 0 5.4
20 10 163.7 2992.6 159.9 104.2 3 1.7
20 15 31.4 129.5 31.4 31.4 0 0.2
22 6 382.7 1281.2 382.7 141.5 6 10.3
22 11 161.0 3601.8 162.4 0.0 10 2.3
22 17 29.2 248.2 29.2 29.2 0 0.2
25 7 436.2 3601.4 437.2 0.0 10 33.6
25 13 191.5 3602.3 195.6 0.0 10 8.0
25 19 41.8 1174.6 41.8 41.8 0 0.4
28 7 516.1 3601.0 516.5 0.0 10 97.9
28 14 223.4 3602.5 226.8 0.0 10 22.6
28 21 46.2 3496.9 46.4 7.0 8 0.5
30 8 536.3 3601.0 537.4 0.0 10 303.0
30 15 230.0 3602.3 230.8 0.0 10 31.8
30 23 47.5 3604.5 48.5 0.0 10 0.6

Tang et al. (2015) MIX++
ν d OPT t[s] BestSol LB #unsol t[s]

8 0.7 2.2 373.0 2.2 2.2 0 0.1
8 0.9 3.0 3600.0 3.0 0.0 10 0.2
10 0.7 2.9 3600.1 3.0 0.0 10 0.3
10 0.9 3.0 3600.2 4.0 0.0 10 0.7
12 0.7 3.0 3600.3 3.6 0.0 10 0.8
12 0.9 3.0 3600.4 5.0 0.0 10 1.9
15 0.7 3.0 3600.3 4.6 0.0 10 2.2
15 0.9 3.0 3600.2 6.3 0.0 10 12.6

Instance Set MIPLIB.

Table 5 compares MIX++ with the previous-best code from the literature (namely, SEP2 by Fischetti et al.
(2016a)) on the very hard MIPLIB class. Recall that this class contains some instances with up to 80 000
HPR variables, hence in many cases the optimal solutions are still unknown. For the two settings and for
each instance, Table 5 reports the best obtained upper bound (BestSol), the best obtained lower bound
(LB), the final percentage gap, the computing time (in seconds), and the number of B&C nodes. Whereas
SEP2 solves 20 instances of this class to optimality, MIX++ manages to provide optimal solutions in 27 cases.
Furthermore, for all but three instances, the final lower bounds is strictly (and, very often, significantly)
better by using our new MIX++ algorithm.

7 Conclusions

Mixed-Integer Bilevel Linear Programs are very important and challenging optimization models arising in
many important practical contexts, including pricing mechanisms in the energy sector, airline and telecom-
munication industry, transportation networks, optimal expansion of gas networks, critical infrastructure
defense, and machine learning.

In the present paper we have presented a new branch-and-cut algorithm for the exact solution of such
problems. We have described an effective bilevel-specific preprocessing procedure. In addition, new classes
of valid linear inequalities have been introduced, along with the corresponding separation procedures.

The computational performance of our method has been evaluated on a very large set of test problems
from the literature—with its 800+ instances of various types, our computational study is by far the most
extensive ever reported in the literature. Our new algorithm consistently outperformed (often by a large
margin) all alternative state-of-the-art methods from the literature, including methods which exploit problem
specific information for special instance classes, and was also able to provide the optimal solution for hundreds
of open instances from the recent literature.

Future work should investigate how our approach can be specialized to better deal with bilevel optimiza-
tion problems with a specific structure—notably, interdiction-type problems. The extension of our solution
scheme to more general (possibly nonlinear) settings is also an interesting topic for future research.
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Table 5: Results for instance set MIPLIB. ∗Instances solved to proven optimality by MIX++ using a more
aggressive setting: air03-0.1 (optimal value 376936), p0201-0.1 (opt. 12225), and p0282-0.5 (opt. 272659).

SEP2 MIX++
instance BestSol LB %gap time [s] nodes BestSol LB %gap time [s] nodes

air03-0.1 ∗ 382822 343658.2857 10.23 3600 146125 379800 344940.6202 9.18 3600 92677
air03-0.5 505172 344292.2835 31.85 3600 85478 512698 360653.0000 29.66 3600 76005
air03-0.9 823130 344977.6032 58.09 3600 44697 770100 358130.7506 53.50 3600 42757
air04-0.1 56563 56150.9887 0.73 3600 55921 56399 56291.5472 0.19 3600 61419
air04-0.5 60131 56152.5000 6.62 3600 35826 60076 56224.6292 6.41 3600 33459
air04-0.9 84993 55961.5987 34.16 3600 3752 73759 56035.8472 24.03 3600 6658
air05-0.1 26801 26472.0000 1.23 3600 101047 26577 26577.0000 0.00 401 10168
air05-0.5 32497 26448.1580 18.61 3600 92234 31290 26469.7692 15.41 3600 75980
air05-0.9 44567 26358.2362 40.86 3600 82050 40558 26350.2340 35.03 3600 63300
cap6000-0.1 - -2451433.7522 - 3600 1980 -1967015 -1967015.0000 0.00 587 48281
cap6000-0.5 - -2451320.1481 - 3600 1481 - -2400881.8508 - 3600 1115
cap6000-0.9 -259599 -2449416.5638 843.54 3600 9709 - -2372513.7387 - 3600 328
enigma-0.1 0 0.0000 0.00 0 990 0 0.0000 0.00 0 739
enigma-0.5 0 0.0000 0.00 4 13842 0 0.0000 0.00 6 10531
enigma-0.9 0 0.0000 0.00 46 2670 0 0.0000 0.00 186 2966
fast0507-0.1 12562 172.3615 98.63 3600 604 12484 12484.0000 0.00 2 0
fast0507-0.5 61516 173.5238 99.72 3600 7767 61439 61439.0000 0.00 2 0
fast0507-0.9 109916 109916.0000 0.00 8 2 109916 109916.0000 0.00 1 0
l152lav-0.1 4722 4722.0000 0.00 2 367 4722 4722.0000 0.00 2 363
l152lav-0.5 4866 4760.4318 2.17 3600 311915 4868 4758.5000 2.25 3600 258223
l152lav-0.9 5090 4789.6571 5.90 3600 211309 5072 4785.3277 5.65 3600 171722
lseu-0.1 1120 1120.0000 0.00 0 15 1120 1120.0000 0.00 0 19
lseu-0.5 2525 1154.0895 54.29 3600 13333 2313 2036.3864 11.96 3600 12840
lseu-0.9 5838 5838.0000 0.00 24 299 5838 5838.0000 0.00 65 357
mitre-0.1 122310 115155.2394 5.85 3600 20791 122235 115310.6145 5.66 3600 41872
mitre-0.5 146730 115155.0000 21.52 3600 15611 - 115492.2852 - 3600 19004
mitre-0.9 168885 115155.9467 31.81 3600 13066 - 115493.3824 - 3600 10099
mod010-0.1 6554 6554.0000 0.00 8 739 6554 6554.0000 0.00 4 9
mod010-0.5 6692 6551.2005 2.10 3600 117241 6618 6573.4891 0.67 3600 164755
mod010-0.9 7448 6554.2000 12.00 3600 158667 7355 6565.6667 10.73 3600 111883
nw04-0.1 17066 17066.0000 0.00 820 2884 17066 17066.0000 0.00 1140 2842
nw04-0.5 23914 16985.0000 28.97 3600 18519 24100 16689.4706 30.75 3600 8472
nw04-0.9 43374 18271.4453 57.87 3600 12282 52290 18241.2202 65.12 3600 6631
p0033-0.1 3089 3089.0000 0.00 0 0 3089 3089.0000 0.00 0 0
p0033-0.5 3095 3095.0000 0.00 0 2 3095 3095.0000 0.00 0 0
p0033-0.9 4679 4679.0000 0.00 0 7 4679 4679.0000 0.00 0 6
p0201-0.1 ∗ 12465 7793.2074 37.48 3600 5092 12555 9724.8337 22.54 3600 5837
p0201-0.5 13650 11615.0000 14.91 3600 649100 13635 13635.0000 0.00 1113 71052
p0201-0.9 15025 15025.0000 0.00 1 150 15025 15025.0000 0.00 1 157
p0282-0.1 260785 258489.8687 0.88 3600 371989 260781 260781.0000 0.00 4 272
p0282-0.5 ∗ 273069 258437.0000 5.36 3600 998732 272659 267014.5318 2.07 3600 120899
p0282-0.9 627411 285137.0000 54.55 3600 2075980 616034 398553.0624 35.30 3600 175290
p0548-0.1 11301 8691.0000 23.10 3600 54071 11051 9115.1458 17.52 3600 102504
p0548-0.5 22197 8701.0000 60.80 3600 5121 - 11358.4606 - 3600 11943
p0548-0.9 49235 16109.8084 67.28 3600 293986 49509 19026.7330 61.57 3600 17003
p2756-0.1 14444 3124.0000 78.37 3600 36718 12862 3338.0000 74.05 3600 37599
p2756-0.5 23565 3124.0000 86.74 3600 58203 25384 4077.6628 83.94 3600 18777
p2756-0.9 35087 3124.0000 91.10 3600 13687 33623 4685.3819 86.06 3600 9263
seymour-0.1 486 413.8447 14.85 3600 231 476 469.9485 1.27 3600 48178
seymour-0.5 836 414.0236 50.48 3600 564 807 807.0000 0.00 2 18
seymour-0.9 1251 1251.0000 0.00 9 2 1251 1251.0000 0.00 1 0
stein27-0.1 18 18.0000 0.00 22 983 18 18.0000 0.00 0 528
stein27-0.5 19 19.0000 0.00 7 336 19 19.0000 0.00 0 5
stein27-0.9 24 24.0000 0.00 0 0 24 24.0000 0.00 0 0
stein45-0.1 30 30.0000 0.00 1899 12549 30 30.0000 0.00 3 2999
stein45-0.5 32 32.0000 0.00 658 18613 32 32.0000 0.00 0 14
stein45-0.9 40 40.0000 0.00 0 0 40 40.0000 0.00 0 0
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