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Abstract

Among the hardest Mixed-Integer Linear Programming (MILP)
problems, the ones that exhibit a symmetric nature are particularly
important in practice, as they arise in both theoretical and practical
combinatorial optimization problems. A theoretical concept that gen-
eralizes the notion of symmetry is that of dominance. This concept,
although known since a long time, is typically not used in general-
purpose MILP codes, due to the intrinsic difficulties arising when using
the classical definitions in a completely general context.

In this paper we study a general-purpose dominance procedure pro-
posed in the 80’s by Fischetti and Toth, that overcomes some of the
main drawbacks of the classical dominance criteria. Both theoreti-
cal and practical issues concerning this procedure are considered, and
important improvements are proposed. Computational results on a
test-bed made of hard (single and multiple) knapsack problems are
reported, showing that the proposed method can lead to considerable
speedup when embedded in a general-purpose MILP solver.

Keywords: integer programming, constraint programming, dominance
procedure, nogoods, knapsack problem

1 Introduction

The Mixed-Integer Linear Programming (MILP, for short) paradigm is among
the most powerful and most used methods for modeling and solving both
real-life and theoretical combinatorial optimization problems; see, e.g., [7,
19,23]. Almost fifty years of active research in the field have produced huge
improvements in the solving capability of the MILP codes, as reported e.g.
in [2]. However, there are still important problems of even small size that
are not solved to proven optimality in a reasonable amount of time by the
current state-of-the-art commercial MILP solvers. Among these problems,
the ones that exhibit a symmetric nature are particularly important in prac-
tice as they arise, e.g., in scheduling, routing, packing, and network design
problems. For these problems the usual Branch & Bound (B&B) and Branch
& Cut (B&C) methods are not effective, as the implicit symmetry implies

1



that it is not possible to prune large subtrees of the enumeration tree by
using bounding criteria.

A technique for handling highly-symmetric problems called isomorphic
pruning has been proposed recently by François Margot [15,16]. This tech-
nique exploits the symmetry group of an Integer Linear Programming (ILP)
problem to prune nodes of the search tree and to generate cuts. Although
remarkably effective on some classes of problems, this method has two main
drawbacks, namely: (1) one needs to compute a priori the symmetry group
of the ILP problem at hand; and (2) one is no longer free to choose the
branching strategy within the ILP solver. Possible remedies have been pro-
posed very recently in [11] and [18].

A theoretical concept that generalizes the notion of symmetry is that of
dominance. This concept seems to have been studied first by Kohler and
Steiglitz [14], and has been developed in the subsequent years, most notably
by Ibaraki [9]. However, although known since a long time, dominance cri-
teria are not fully exploited in general-purpose MILP codes, due to number
of important limitations of the classical definition. In particular, it is not
easy to compute a dominance relationship for a generic MILP problem, and
the näıve application of the classical concept requires the storage of huge
“state” information that makes it impractical.

In this paper we study a general-purpose dominance procedure proposed
in the late 80’s by Fischetti and Toth [6], that overcomes some of the draw-
backs of the classical dominance definition. The approach is local in nature,
and works as follows. Given the current node α of the search tree, let Jα

be the set of variables fixed to some value. We build up an auxiliary prob-
lem XPα that looks for a new partial assignment involving the variables
in Jα such that (i) the objective function value is not worse than the one
associated with the original assignment, and (ii) every completion of the old
partial assignment is also a valid completion of the new one. If such a new
partial assignment is found (and a certain tie-break rule is satisfied), one is
allowed to fathom node α.

The present paper is organized as follows. In Section 2 we describe the
Fischetti-Toth technique in more details, and address some issues related to
the tie-break rule to be used in order to get a mathematically correct overall
method. In Section 3 we introduce the concept of nogood, borrowed from
Constraint Programming (CP), that turns out to be of crucial importance
for the practical effectiveness of the overall dominance procedure. Briefly
speaking, a nogood is a partial assignment of the variables such that every
completion is either infeasible (for constraint satisfaction problems) or non-
optimal (for constraint optimization problems). Though widely used in the
CP context, the concept of nogood is quite new in mathematical program-
ming. One of the the first uses of nogoods in ILP was to solve verification
problems [8] and fixed-charge network flow problems [13]. Further applica-
tions can be found in [3], where nogoods are used to generate cuts for a MILP
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problem. In the context of dominance, a nogood configuration is available,
as a byproduct, whenever the auxiliary problem is solved successfully. These
nogoods are stored in a pool, that is checked before constructing and solving
the auxiliary problem at a given node, with a typically substantial com-
putational saving. In Section 4 we deal with some extensions of the basic
scheme. Implementation issues are described in Section 5. Computational
results obtained on hard knapsack instances are given in Section 6, showing
that the proposed method can lead to a significant speedup when embedded
within a general-purpose MILP solver. Some conclusions are finally drawn
in Section 7.

2 The Fischetti-Toth dominance procedure

In the standard B&B (or B&C) framework, a node is fathomed in two situ-
ations:

1. the LP relaxation of the node is infeasible; or

2. the LP relaxation optimum is not better than the value of the incum-
bent optimal solution.

There is however a third way of pruning a node, by using the concept of
dominance. According to [19], a dominance relation is defined as follows: if
we can show that a descendant of a node β is at least as good as the best
descendant of a node α, then we say that node β dominates node α, meaning
that the latter can be fathomed (in case of ties, an appropriate rule has to
be taken into account in order to avoid fathoming cycles). Unfortunately,
this definition may become useless in the context of general MILPs, where
we do not actually know how to perform the dominance test without storing
huge amounts of information for all the previously-generated nodes—which
is often impractical.

Fischetti and Toth [6] proposed a different (and more “local”) dominance
procedure which overcomes many of the drawbacks of the classical defini-
tion, and resembles somehow the isomorphic-pruning introduced recently
by Margot [15]. Here is how the procedure works.

Let P be the MILP problem

P : min{cT x : x ∈ F (P )}

whose feasible solution set is defined as

F (P ) := {x ∈ <n : Ax ≤ b, xj integer for all j ∈ J} (1)

where J ⊆ N := {1, · · · , n} is the index-set of the integer variables. For any
J ′ ⊆ J and for any x′ ∈ <n, let

c(J ′, x′) :=
∑
j∈J ′

cjx
′
j
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denote the contribution of the variables in J ′ to the overall cost cT x′. Now,
let us suppose to solve P by an enumerative (B&B or B&C) algorithm whose
branching rule fixes some of the integer-constrained variables to certain val-
ues. For every node k of the search tree, let Jk ⊆ J denote the set of indices
of the variables xj fixed to a certain value xk

j (say). Every solution x ∈ F (P )
such that xj = xk

j for all j ∈ Jk (i.e., belonging to the subtree rooted at
node k) is called a completion of the partial solution associated at node k.

Definition 1. Let α and β be two nodes of the search tree. Node β dominates
node α if:

1. Jβ = Jα

2. c(Jβ, xβ) ≤ c(Jα, xα), i.e., the cost of the partial solution at node β is
not worse than that at node α

3. every completion of the partial solution associated with node α is also
a completion of the partial solution associated with node β.

Clearly, according to the classical dominance theory, the existence of
a node β unfathomed that dominates node α is a sufficient condition to
fathom node α. A key question at this point is: Given the current node
α, how can we check the existence of a dominating node β? Fischetti and
Toth answered this question by modeling the search of dominating nodes as
a structured optimization problem, to be solved exactly or heuristically. For
generic MILP models, this leads to the following auxiliary problem:

XPα : min
∑

j∈Jα cjxj

s.t.
∑

j∈Jα Ajxj ≤ bα :=
∑

j∈Jα Ajx
α
j

xj integer for all j ∈ Jα

(2)

If a solution xβ (say) of the auxiliary problem having a cost strictly smaller
than c(Jα, xα) is found, then it defines a dominating node β and the current
node α can be fathomed.

It is worth noting that the auxiliary problem is of the same nature as the
original MILP problem, but with a smaller size and thus it is often easily
solved (possibly in a heuristic way) by a general-purpose MILP solver. In
a sense, we are using here the approach of “MIPping the dominance test”
(i.e., of modeling it as a MILP), in a vein similar to the recent approaches
of Fischetti and Lodi [4] (the so-called local-branching heuristic, where a
suitable MILP model is used to improve the incumbent solution) and of
Fischetti and Lodi [5] (where an ad-hoc MILP model is used to generate
violated Chvátal-Gomory cuts). Also note that, as discussed in Section 4,
the auxiliary problem gives a sufficient but not necessary condition for the
existence of a dominating node, in the sense that some of its constraints
could be relaxed without affecting the validity of the approach.
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The Fischetti-Toth dominance procedure, called Local Dominance (LD)
procedure in the sequel to stress its local nature, has several useful proper-
ties:

• there is no need to store any information about the set of previously-
generated nodes;

• there is no need to make any time-consuming comparison of the current
node with other nodes;

• a node can be fathomed even if the corresponding dominating one has
not been generated yet;

• the correctness of the enumerative algorithm does not depend on the
branching rule; this is a valuable property since it imposes no con-
straints on the B&B parameters (though an inappropriate branching
strategy could prevent several dominated nodes to be fathomed);

• the LD test needs not be applied at every node; this is crucial from
the practical point of view, as the dominance test introduces some
overhead and it would make the algorithm too slow if applied at every
node.

An important issue to be addressed when implementing the LD test is
to avoid fathoming cycles arising when the auxiliary problem actually has
a solution xβ different from xα but of the same cost, in which case one is
allowed to fathom node α only if a tie-break rule is used to guarantee that
node β itself is not fathomed for the same reason. In order to prevent these
“tautological” fathoming cycles the following criterion (among others) has
been proposed in [6]: In case of cost equivalence, define as unfathomed the
node β corresponding to the solution found by a deterministic1 exact or
heuristic algorithm used to solve the auxiliary problem. Unfortunately, this
criterion can be misleading for two important reasons. First of all, it is
not easy to define a “deterministic” algorithm for MILP. In fact, besides the
possible effects of randomized steps, the output of the MILP solver typically
depends, e.g., on the order in which the variables are listed on input, that can
affect the choice of the branching variables as well as the internal heuristics.
Moreover, even very simple “deterministic” algorithms may lead to wrong
result, as shown in the following example.

1In this context, an algorithm is said to be deterministic if it always provides the same
output solution for the same input set.
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x1 = 0 x1 = 1

x2 = 1 x2 = 0

x3 = 1

x4 = 0

x5 = 1

α

α′
β′

β

x3 = 1

x4 = 0

x5 = 1

Figure 1: A nasty situation for LD test

Let P be the problem:

min−x1 − x2 − x3 − x4 − 99x5

s.t. x1 + x2 ≤ 1
x3 + x4 ≤ 1
x4 + x5 ≤ 1
x ∈ {0, 1}5

whose optimal solutions are [1, 0, 1, 0, 1] and [0, 1, 1, 0, 1], and let us consider
the enumeration tree depicted in Figure 1. The deterministic algorithm
used to perform the LD test is as follows: If the number of variables in
the auxiliary problem is smaller than 3, use a greedy heuristic trying to
fix variables to 1 in decreasing index order; otherwise use the same greedy
heuristic, but in increasing index order.

When node α (that corresponds to the partial solution x1 = 1, x2 = 0
with cost -1) is processed, the following auxiliary model is constructed

min−x1 − x2

s.t. x1 + x2 ≤ 1
x1, x2 ∈ {0, 1}
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and the deterministic heuristic returns the partial solution x2 = 1, x1 = 0 of
cost -1 associated with node β, so node α is declared to be dominated by β
and node α is fathomed assuming (correctly) that node β will survive the
fathoming test. However, when the descendant node α′ (that corresponds to
the partial solution x1 = 0, x2 = 1, x3 = 1, x4 = 0 with cost -2) is processed,
the following auxiliary model is constructed

min−x1 − x2 − x3 − x4

s.t. x1 + x2 ≤ 1
x3 + x4 ≤ 1
x4 ≤ 1
x1, x2, x3, x4 ∈ {0, 1}

and our deterministic heuristic returns the partial solution x1 = 1, x2 =
0, x3 = 1, x4 = 0 of cost -2 associated with node β′, so node α′ is declared to
be dominated by β′ and node α′ is fathomed as well. Therefore, in this case
the enumerative algorithm cannot find any of the two optimal solutions, i.e.,
the LD tests produced a wrong answer.

In view of the considerations above, in our implementation we used a
different tie-break rule, also described in [6], that consists in ranking cost-
equivalent solutions in lexicographical order (≺). To be more specific, in
case of cost ties we fathom node α if and only if xβ ≺ xα, meaning that the
partial solution xβ associated with the dominating node β is lexicographi-
cally smaller2 than xα. Using this tie-break rule, it is possible to prove the
correctness of the overall enumerative method.

Proposition 1. Assuming that the projection of the feasible set F (P ) on
the integer variable space is a bounded set, the B&B algorithm exploiting LD
with the lexicographical tie-break rule returns the same optimal value as the
classical B&B algorithm.

Proof. Let x∗ be the lexicographically minimal optimal solution, whose ex-
istence is guaranteed by the boundedness assumption and by the fact that
≺ is a well order. We need to show that no node α having x∗ among its
descendants (i.e. such that x∗

j = xα
j for all j ∈ Jα) can be fathomed by the

LD test. Assume by contradiction that a node β dominating α exists, and
define

zj :=

{
xβ

j j ∈ J∗

x∗
j j 6∈ J∗

where J∗ := Jβ (= Jα). In other words, z is a new solution obtained from
x∗ by replacing its dominated part with the dominating one. Two cases can
arise:

2We use the standard definition of lexicographic order on vectors of fixed size over a
totally order set.
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1. c(J∗, xβ) < c(J∗, xα): we have

cT z =
∑
j∈J∗

cjx
β
j +

∑
j 6∈J∗

cjx
∗
j <

∑
j∈J∗

cjx
α
j +

∑
j 6∈J∗

cjx
∗
j = cT x∗

and
n∑

j=1

Ajzj =
∑
j∈J∗

Ajx
β
j +

∑
j 6∈J∗

Ajx
∗
j ≤

∑
j∈J∗

Ajx
α
j +

∑
j 6∈J∗

Ajx
∗
j ≤ b

so z is a feasible solution with a cost strictly smaller than x∗, which is
impossible.

2. c(J∗, xβ) = c(J∗, xα): using the same argument as in the previous
case, one can easily show that z is an alternative optimal solution
with z ≺ x∗, also impossible.

It is important to notice that the above proof of correctness uses just
two properties of the lexicographic order, namely:

well order : required for the existence of a minimum optimal solution;

inheritance: if xα and xβ are two partial assignments such that xα ≺
xβ, then the lexicographic order is not changed if we apply the same
completion to both of them.

This observation will be used in section 4 to derive a more efficient tie-break
rule.

3 Borrowing nogoods from Constraint Program-
ming

The computational overhead related to the LD test can be reduced consider-
ably if we exploit the notion of nogoods taken from Constraint Programming
(CP). A nogood is a partial assignment of the problem variables such that
every completion is either infeasible (for constraint satisfaction problems)
or non-optimal (for constraint optimization problems). The key observa-
tion here is that whenever we discover (through the solution of the auxiliary
problem) that the current node α is dominated, we have in fact found a no-
good configuration [Jα, xα] that we want to exclude from being re-analyzed
at a later time.

There are two possible ways of exploiting nogoods in the context of MILP
solvers:
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• Generate a constraint cutting the nogood configuration off, so as to
prevent it appears again in later solutions. This is always possible (at
least for binary variables) through a local branching constraint [4], and
leads to the so-called combinatorial Benders’ cuts studied by Codato
and Fischetti [3].

• Maintain explicitly a pool of previously-found nogood configurations
and solve the following problem (akin to separation) at each node α
to be tested: Find, if any, a nogood configuration [J ′, x′] stored in
the pool, such that J ′ ⊆ Jα and x′

j = xα
j for all j ∈ J ′. If the test

is successful, we can of course fathom node α without the need of
constructing and solving the auxiliary problem XPα. This method
can cope very easily with general-integer variables.

In our implementation we use the nogood pool option, that according
to our computational experience outperforms the cut options. It is worth
noting that we are interested in minimal (with respect to set inclusion)
nogoods, so as to improve both for efficiency and effectiveness of the method.
Indeed, if node α dominates node β and J ′ := {j ∈ Jα : xα

j 6= xβ
j }, then

clearly the restriction of xα onto J ′ dominates the restriction of xβ onto J ′.
As a result, if the auxiliary problem produces a dominating assignment xα,
we can safely remove from the nogood configuration all components j such
that xα = xβ.

If applied at every node, our procedure guarantees automatically the
minimality of the nogood configurations found. If this is not the case, in-
stead, minimality is no longer guaranteed, and can be enforced by a simple
post-processing step before storing any new nogood in the pool.

At first glance, the use of a nogood pool can resembles classical state-
based dominance tests, but this is really not the case since the amount of
information stored is much smaller—actually, it could even be limited to
be of polynomial size, by exploiting techniques such as relevance or length
bounded nogood recording (see [10]).

4 Improving the auxiliary problem

The effectiveness of the dominance test presented in the previous section
heavily depends on the auxiliary problem that is constructed at a given
node α. In particular, it is crucial that its solution set is as large as possi-
ble, so as to increase the chances of finding a dominating partial solution.
Moreover, we aim at finding a partial solution different from (and hopefully
lexicographically better than) the one associated with the current node—
finding the same solution xα is of no use within the LD context. For these
reasons, we implemented a number of improvements over the original aux-
iliary problem formulation.
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Objective function

The choice of the lexicographic order as a mean to resolve ties, although
natural and simple, is not well suited for an effective solution of the auxiliary
problems.

In the most näıve implementation, there is a good chance of not find-
ing a lex-better solution even if it exists, because we are not telling the
solver in any way that we are interested in a lex-minimal solution. This is
unfortunate, since we risk to spoil a great computational effort.

Moreover, the lexicographic order cannot be expressed as a linear ob-
jective without resorting to huge coefficients: the only way to enforce the
discovery of lex-better solutions is through ad-hoc branching and node selec-
tion strategies, which greatly degrades the efficiency of the solution process
(and are quite intrusive).

The solution we propose is to use a randomly generated second-level
objective function and use the lexicographic order only as a last resort, in
the unlikely case where both the objectives (original and random) yield the
same value.

It is worth noting that:

• if we generate the random function at the beginning and keep it fixed
for the whole search, then this function satisfies the two properties
needed for the correctness of the algorithm;

• in order to guarantee that the optimal solution of the auxiliary problem
will be not worse than the original partial assignment, we add the
following optimality constraint (for a minimization problem):∑

j∈Jα

cjxj ≤
∑
j∈Jα

cjx
α
j

Local Search

As the depth of the nodes in the B&B increases, the auxiliary problem
grows in size and becomes heavier to solve. Moreover, we are interested in
detecting nogood configurations involving only a few variables, since these
are more likely to help pruning the tree and are more efficient to search. For
these reasons one can heuristically limit the search space of the auxiliary
problem to alternative assignments not too far from the current one. To
this end, we use a local branching [4] constraint defined as follows.

For a given node α, let Bα ⊆ Jα be the (possibly empty) set of fixed
binary variables, and define

U = {j ∈ Bα | xα
j = 1} and L = {j ∈ Bα | xα

j = 0}
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Then we can guarantee a solution x of the auxiliary problem to be different
from xα in at most k binary variables through the following constraint∑

j∈U

(1− xj) +
∑
j∈L

xj ≤ k

A similar reasoning could be extended to deal with general integer variables
as well, although in this case the constraint is not as simple as before and
requires the addition of some auxiliary variables [4].

Right-hand-side improvement

In the construction of the auxiliary problem XPα we have been quite conser-
vative in the definition of the constraints. In particular, as noticed already
in [6], condition ∑

j∈Jα

Ajxj ≤ bα

is a very restrictive requirement that can often be relaxed without affecting
the correctness of the method.

To illustrate this possibility, consider a simple knapsack constraint 4x1+
5x2 + 3x3 + 2x4 ≤ 10 and suppose we are given the partial assignment
[1, 0, 1, ∗]. The corresponding constraint in the auxiliary problem then reads
4x1 + 5x2 + 3x3 ≤ 7. However, since the maximum load achievable with the
free variables is 2, one can safely consider the relaxed requirement 4x1 +
5x2 +3x3 ≤ 10− 2 = 8. Notice that the feasible partial solution [0, 1, 1, ∗] is
forbidden by the original constraint but allowed by the relaxed one, i.e., the
relaxation does improve the chances of finding a dominating node. Another
example arises for set covering problems, where the constraints are of the
form

∑
j∈Qi

xj ≥ 1. Suppose we have a partial assignment x∗
j (j ∈ J ′),

such that k :=
∑

j∈J ′ x∗
j > 1. In this case, the corresponding constraint in

the auxiliary problem would be
∑

j∈J ′ xj ≥ k, although its relaxed version∑
j∈J ′ xj ≥ 1 is obviously valid as well.
The examples above suggest that the improvement of the auxiliary prob-

lem requires some knowledge of the particular structure of its constraints
and can be time consuming for the general linear constraint. For this rea-
son, we propose the following very simple rule, which is fast and does not
require the analysis of the constraint structure: If all variables involved in
a constraint have been fixed, use the right hand side value of the original
problem in the auxiliary one.

Although simple, this rule proved quite effective in practice and it is used
by default in our implementation.
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5 Implementation

The enhanced dominance procedure presented in the previous sections was
implemented in C++ on a Linux platform, and applied within a simple B&B
scheme. We decided not to use a more elaborated B&C scheme because
our primary interest was to test the impact of the LD procedure within a
“clean” environment without unpredictable and uncontrollable side effects—
as is often the case when using more sophisticated MILP solvers. A similar
design decision was taken, e.g., in [12] when testing the effectiveness of
branching on general disjunctions. Here are some implementation issues
that deserve further description.

Framework

We have implemented three different branching strategies:

maximum integrality violation: choose the fractional variable closer to 0.5
(take the one with the smallest index in case of ties).

minimum index branching : branch on the fractional variable with smallest
index.

pseudocosts: standard pseudocosts branching as described in [1].

The simple minimum index branching strategy proved the most effective on
the classes of problems on which we tested the dominance procedure, so it
was the one chosen for the benchmarks.

As to node selection, we use a mix of plunging/best bound strategies [1].
In particular, we choose a child or sibling of the current node whenever
possible (plunging), and revert to the best bound strategy on backtracking.

At each node, the linear programming relaxation of the original MILP is
solved by a commercial LP solver; primal simplex is used on the root node,
dual simplex on all other nodes.

No specific primal heuristic was implemented; however, at the beginning
of the root node we simply run a commercial MILP solver with a short time
limit to hopefully gather a first incumbent solution.

We did not perform preprocessing (bound strengthening, variable ag-
gregation/substition, etc.) before starting our B&B algorithm. Rather, we
apply the so-called AC-3 constraint propagation [?] scheme at every node of
the tree; this propagation consists of bound strengthening on the variables
as described in [22].

Finally we apply reduced cost fixing at each node.

LD parameters

One of the main drawbacks of LD tests is that their use can postpone the
finding of a better incumbent solution, thus increasing the number of nodes
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needed to solve the problem. This behavior is quite undesirable, particularly
in the first phase of the algorithm, when we have no incumbent and no
nodes can be fathomed through bounding criteria. A practical solution to
this problem is to skip the dominance test until the first feasible solution is
found.

The definition and solution of the auxiliary problem at every node of the
search tree can become too expensive in practice. We face here a situation
similar to that arising in B&C methods where new cuts are typically not
generated at every node–though the generated cuts are exploited at each
node. A specific LD consideration is that we better skip the auxiliary prob-
lem on nodes close to the top or the bottom of the search tree. Indeed,
in the first case only a few variables have been fixed, hence there are little
chances to find dominating partial assignments. In the latter case, instead,
it is likely that the node would be pruned anyway by standard bounding
tests. Moreover, at the bottom of the tree the number of fixed variables is
quite large and the auxiliary problem may be quite heavy to solve. In our
implementation, we provide two thresholds on the tree depth of the nodes,
namely depthmin and depthmax, and a node α is tested for dominance only
if depthmin ≤ depth(α) ≤ depthmax.

In addition, as it undesirable to spend a large computing time on the
auxiliary problem for a node that would have been pruned anyway by the
standard B&B rules, we decided to apply our technique only just before
branching—applying the LD test before the LP relaxation is solved is not
worthwhile in practice.

Finally, we decided to solve the auxiliary problem at every k-th node (k
being a fixed skip factor parameter), and we set a limit on the computing
time spent by the black-box MILP solver used for solving it.

It is important to stress that, although the auxiliary problem is solved
only at certain nodes, we check the current partial assignment against the
nogood pool at every node, since this check is relatively cheap.

6 Computational Results

In our computational experiments we used the commercial code ILOG Cplex
10.0 [21] to solve the linear relaxations and the auxiliary problems, with
default options. All runs were performed on a AMD Athlon64 X2 4200+
PC with 4GB of RAM, under Linux, with a node limit of 2,000,000 nodes.

As to the LD procedure, we used the following parameters:

• depth min = 0.2 times the total number of integer variables;

• depth max = 0.7 times the total number of integer variables;

• k = 5 (skip factor)
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• neighboorhood size = 0.2 times the total number of binary variables,
used in the local branching constraint.

The first class of problems we tested was the one used by Margot in
[15,16] to prove the effectiveness of his isomorphic pruning technique. How-
ever, our computational results showed a disappointing “zero dominated
nodes” result on these instances, which is easily explained by the fact that
the symmetry there is inherently global, while LD is a local procedure. Thus
we looked for classes of problems where equivalent/dominated partial solu-
tions are as independent as possible of the rest of the assignment. Single and
multiple knapsack problems [17] are among these problems. We therefore
generated hard single knapsack instances according to the so-called spanner
instances method in combination with the almost strongly correlated profit
generation technique; see Pisinger [20] for details. Multiple knapsack in-
stances were generated in a similar way, by choosing a same capacity for all
the containers.

The results on hard single knapsack instances with 60 to 90 items are
given in Table 1, where labels “Dominance” and “Standard” refer to the
performance of our B&B scheme with and without the LD tests, and label
“Ratio” refers to the ratios Standard/Dominance. The performance figures
used in the comparison are the number of nodes of the resulting search tree
and the computing time (in CPU seconds). For these problems, the standard
B&B scheme could not solve any instance within the imposed node limit. On
the other side, the LD tests enabled us to solve all the instances to proven
optimality, with an average speedup of 8 times and with substantially fewer
nodes (the ratio being 1/40). Note that the ratios reported in the table
are just lower bounds on the real ones, because the standard algorithm was
stopped before completion.

As to hard multiple knapsack problems, we have generated instances
with a number of items ranging from 20 to 25 and a number of knapsacks
ranging form 3 to 6. The LD parameters were unchanged. The results on
multiple knapsack problems are given in Table 2.

In the multiple knapsack case, the LD procedure was not as effective as
in the single case, yet worthwhile to apply, yielding improvements both in
the number of nodes processed (75% drop) and in the solution time (average
speedup of 3 times).

Finally, we tested the effectiveness of the main improvements we pro-
posed to the original Fischetti-Toth LD scheme. Results on a subset of
single and multiple knapsack problems are reported in Table 3, where we
compared our final code (Dominance) against a code obtained by disabling
just one of the main LD features. According to the table, the following
comments can be drawn.

• The nogood pool was really crucial for the effectiveness of the method—

14



Standard Dominance Ratio

Problem Nodes Time (s) Nodes Time (s) Nodes Time

kp60 1.lp 2,000,000 304 5,453 3 366.77 101.33

kp60 2.lp 2,000,000 292 29,271 32 68.33 9.13

kp60 3.lp 2,000,000 292 14,439 12 138.51 24.33

kp60 4.lp 2,000,000 294 20,207 22 98.98 13.36

kp60 5.lp 2,000,000 293 10,467 7 191.08 41.86

kp70 1.lp 2,000,000 293 443,323 121 4.51 2.42

kp70 2.lp 2,000,000 313 24,061 28 83.12 11.18

kp70 3.lp 2,000,000 304 13,007 8 153.76 38.00

kp70 4.lp 2,000,000 311 42,403 40 47.17 7.78

kp70 5.lp 2,000,000 298 6,057 4 330.20 74.50

kp80 1.lp 2,000,000 309 9,983 5 200.34 61.80

kp80 2.lp 2,000,000 315 11,293 6 177.10 52.50

kp80 3.lp 2,000,000 318 5,145 2 388.73 159.00

kp80 4.lp 2,000,000 317 12,751 7 156.85 45.29

kp80 5.lp 2,000,000 311 19,793 16 101.05 19.44

kp90 1.lp 2,000,000 319 96,257 220 20.78 1.45

kp90 2.lp 2,000,000 326 17,527 15 114.11 21.73

kp90 3.lp 2,000,000 307 27,853 34 71.81 9.03

kp90 4.lp 2,000,000 326 29,987 30 66.70 10.87

kp90 5.lp 2,000,000 340 101,927 159 19.62 2.14

Total 40,000,000 6,182 941,204 771 42.50 8.02

Table 1: Computational results for hard single knapsack instances

Standard Dominance Ratio

Problem Nodes Time (s) Nodes Time (s) Nodes Time

mkp 20 4 1.lp 359,447 46 100,895 34 3.56 1.35

mkp 20 4 3.lp 140,215 18 51,681 15 2.71 1.20

mkp 20 5 2.lp 2,000,000 555 445,411 162 4.49 3.43

mkp 20 5 3.lp 1,957,569 628 419,003 180 4.67 3.49

mkp 20 6 1.lp 1,926,067 645 499,765 289 3.85 2.23

mkp 25 3 1.lp 62,519 13 19,817 6 3.15 2.17

mkp 25 3 2.lp 67,631 18 25,813 6 2.62 3.00

mkp 25 4 1.lp 171,199 51 63,043 21 2.72 2.43

mkp 25 4 2.lp 2,000,000 520 547,367 131 3.65 3.97

Total 8,684,647 2,494 2,172,795 844 4.00 2.95

Table 2: Computational results for hard multiple knapsack problems

15



without it, the considerable saving in the number of nodes would ac-
tually increase the overall solution time.

• The use of the random objective function was very effective on the
single knapsack instances, and slightly worse on the multiple ones.

• The right-hand-side strengthening was very effective on multiple knap-
sack instances, and obviously useless on the single knapsack instances
where fixing every variable in a constraint means actually solving the
problem (the slight differences in running times and nodes being due
to the random nature of the objective function).

• The local branching constraint added to the auxiliary problem does
not appear to play a role for the problems in our test-bed, where the
solution of the auxiliary problem is in any case very fast—we expect
however that these constraints can turn out to be useful for different
classes of problems.
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7 Conclusions

In this paper we have presented a local dominance procedure for general
MILPs. The technique is an elaboration of an earlier proposal of Fischetti
and Toth [6], with important improvements aimed at making the approach
computationally more attractive in the general MILP context. In particular,
the use of nogoods we propose in this paper turned out to be crucial for an
effective use of dominance test within a general-purpose MILP code.

Promising computational results on single and multiple knapsack prob-
lems have been presented. Further developments, mainly in the directions
of adaptive parameter tuning and a tighter CP integration, are likely to
make this technique even more appealing and practically worthwhile in a
general-purpose MILP or CP solver.
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