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MIPping crucial parts of the MIP solver

• It is well known that the solution of very hard MIPs can take advantage of the solution of a

series of auxiliary LPs intended to guide the main steps of the MIP solver.

E.g.: LP models used to control the branching strategy (strong branching), the cut generation

(lift-and-project), the primal heuristics (reduced costs), etc.

• Also well known is the fact that finding good heuristic MIP solutions often requires a

computing time that is just comparable to that needed to solve the LP relaxation of the

problem at hand.

• This leads to the idea of “translating into a MIP model” (MIPping) some crucial decisions

to be taken within a MIP algorithm (How to improve the incumbent solution? How to branch?

How to cut?), with the aim of bringing the MIP technology well within the MIP solver.

• Very recently, the MIPping approach has been applied by several authors to modeling and

solving (possibly in a heuristic way) the NP-hard separation problems of famous classes of valid

inequalities for mixed integer linear programs.

M. Fischetti, A. Lodi, MIP models for MIP separation 1



MIPping Chvátal-Gomory (fractional) cuts

• Consider first the pure integer linear programming problem

min{cT
x : Ax ≤ b, x ≥ 0, x integral}

where A is an m× n matrix, along with the two associated polyhedra

P := {x ∈ Rn
+ : Ax ≤ b}

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn

)

• A Chvátal-Gomory (CG) cut (also known as Gomory fractional cut) is an inequality of the

form

buT
Acx ≤ buT

bc

where u ∈ Rm
+ is a vector of nonnegative multipliers, and b·c denotes the lower integer part.

• The Chvátal closure of P is defined as

P
1
:= {x ≥ 0 : Ax ≤ b, buT

Acx ≤ buT
bc for all u ∈ Rm

+}. (1)
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• By the well-known equivalence between optimization and separation, optimizing over the first

Chvátal closure is equivalent to solving the following NP-hard (Eisenbrand, 1999) separation

problem:

CG-SEP: Given any point x∗ ∈ P find (if any) a CG cut αTx ≤ α0 that is violated by x∗,

i.e., find u ∈ Rm
+ such that buTAcx∗ > buTbc, or prove that no such u exists.

• CG-SEP can be MIPped as follows (Fischetti and Lodi, 2005): Let α = buTAc and

α0 = buTbc for some (unknown) u ∈ Rm
+ .

max α
T
x
∗ − α0 (2)

α
T ≤ u

T
A, u ≥ 0 (3)

α0 + 0.9999 ≥ u
T
b (4)

α, α0 integer (5)

• Validity of model (2)-(5) follows from the fact that αTx ≤ α0 is a CG cut if and only if

(α, α0) is an integral vector, as stated in (5), and

αTx ≤ α0 + 0.9999 is a valid inequality for P , as stated in (3)-(4) by Farkas’ lemma.
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MIPping projected Chvátal-Gomory cuts

• Bonami, Cornuéjols, Dash, Fischetti and Lodi (2005) addressed the extension of

Chvátal-Gomory cuts to the mixed-integer case:

min{cT
x + f

T
y : Ax + Cy ≤ b, x ≥ 0, x integral, y ≥ 0} (6)

where A and C are m× n and m× r matrices, respectively. Let

P (x, y) := {(x, y) ∈ Rn
+ × Rr

+ : Ax + Cy ≤ b} (7)

PI(x, y) := conv({(x, y) ∈ P (x, y) : x integral}). (8)

• Define the projection of P (x, y) onto the space of the x variables as:

P (x) := {x ∈ Rn
+ : there exists y ∈ Rr

+ s.t. Ax + Cy ≤ b} (9)

= {x ∈ Rn
+ : u

k
A ≤ u

k
b, k = 1, . . . , K} (10)

=: {x ∈ Rn
+ : Āx ≤ b̄} (11)

where u1, . . . , uK are the (finitely many) extreme rays of the projection cone

{u ∈ Rm
+ : uTC ≥ 0T}.
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• We define a projected Chvátal-Gomory (pro-CG) cut as a CG cut derived from the system

Āx ≤ b̄, x ≥ 0, i.e., an inequality of the form bwT Ācx ≤ bwT b̄c for some w ≥ 0.

• Any row of Āx ≤ b̄ can be obtained as a linear combination of the rows of Ax ≤ b with

multipliers ū ≥ 0 such that ūTC ≥ 0T ⇒ a pro-CG cut can equivalently (and more directly)

be defined as an inequality of the form:

buT
Acx ≤ buT

bc for any u ≥ 0 such that u
T
C ≥ 0

T
. (12)

• As a consequence, the associated separation problem can be MIPped as a simple extension of

its CG counterpart (2)-(5):

max α
T
x
∗ − α0 (13)

α
T ≤ u

T
A (14)

0
T ≤ u

T
C (15)

α0 + 0.9999 ≥ u
T
b (16)

u ≥ 0 (17)

α, α0 integer (18)
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MIPping split cuts

• Consider a generic MIP associated with the polyhedra

P (x, y) := {(x, y) ∈ Rn × Rr
: Ax + Cy ≥ b} (19)

PI(x, y) := conv({(x, y) ∈ P (x, y) : x integral}). (20)

where the variable bounds (if any) are included among the explicit constraints.

• For any π ∈ Zn and π0 ∈ Z, the disjunction πTx ≤ π0 or πTx ≥ π0 + 1 is valid for

PI(x, y) ⇒ PI(x, y) ⊆ conv(Π0 ∪ Π1) where

Π0 := P (x, y) ∩ {(x, y) : −π
T
x ≥ −π0} (21)

Π1 := P (x, y) ∩ {(x, y) : π
T
x ≥ π0 + 1}. (22)

• A valid inequality αTx + γTy ≥ β for conv(Π0 ∪ Π1) is called a split cut (Cook, Kannan

and Schrijver, 1990).
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• The convex set obtained by intersecting P (x, y) with all the split cuts is called the split
closure of P (x, y). Optimization over the slit closure in NP-hard (Caprara and Letchford,

2003).

• Balas and Saxena (2005) MIPped the separation problem for the most violated split cut

through the following (nonlinear) MIP:

min α
T
x
∗
+ γ

T
y
∗ − β (23)

α
T

= u
T
A− u0π

T
, γ

T
= u

T
C, β = u

T
b− u0π0, (u, u0) ≥ 0 (24)

α
T

= v
T
A + v0π

T
, γ

T
= v

T
C, β = v

T
b + v0(π0 + 1), (v, v0) ≥ 0 (25)

u0 + v0 = 1 (26)

π, π0 integer (27)

where

(24) ⇒ Farkas’ condition for validity of αTx + γTy ≥ β w.r.t.

Π0 := P (x, y) ∩ {(x, y) : −π
T
x ≥ −π0}

(25) ⇒ Farkas’ condition for validity of αTx + γTy ≥ β w.r.t.

Π1 := P (x, y) ∩ {(x, y) : π
T
x ≥ π0 + 1
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• Normalization constraint u0 + v0 = 1 allows one to simplify the model to:

min u
T
(Ax

∗
+ Cy

∗ − b) − u0(π
T
x
∗ − π0) (28)

u
T
A− v

T
A− π = 0 (29)

u
T
C − v

T
C = 0 (30)

−u
T
b + v

T
b + π0 = u0 − 1 (31)

0 < u0 < 1 , u, v ≥ 0 (32)

π, π0 integer (33)

• Note that the nonlinearity only arises in the objective function ⇒ for any fixed value of

parameter u0 the model becomes a regular MIP (w.l.o.g. u0 ∈ (0, 1/2])

• Balas and Saxena considered a heuristic list of possible values for parameter u0, say

(0.05, 0.1, 0.2, 0.3, 0.4, 0.5) and then enriched it, on the fly, by inserting new heuristic

points.
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MIPping MIR cuts

• Dash, Günlük and Lodi (2005) addressed the optimization over the split closure by looking at

its equivalent definition in terms of MIR inequalities. Let

P (x, y) = {(x, y) ∈ R
n
+ × R

r
+ : Ax + Cy + Is = b, s ≥ 0} (34)

• Find a violated MIR inequality for a given (x∗, y∗, s∗) ⇒ define an “approved by Farkas”
integer vector (ᾱ, β̄) and a nonnegative vector (u+, α̂, γ̂, β̂, ∆) with 0 < β̂ < 1 and

0 < ∆ < 1 such that

u
+
s
∗
+ γ̂

T
y
∗
+ α̂

T
x
∗

< β̂∆ (35)

• The RHS can be linearized (in an approximate way) as follows. We first approximate the

unknown β̂ ∈ (0, 1) by β̂ ≈
∑K

k=1 2−kπk for unknown binary variables πk’s.

• The nonlinear RHS is then approximated by

β̂∆ ≈ ∆

K∑
k=1

2
−k

πk =

K∑
k=1

2
−k

Φk,

where the terms Φk := ∆πk can be linearized easily (because π is binary and 0 ≤ ∆ < 1).
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• Using this approach, Dash, Günlük and Lodi MIPped MIR separation as follows:

min u
+
s
∗
+ γ̂

T
y
∗

+ α̂
T
x
∗ −

K∑
k=1

2
−k

Φk (36)

γ̂ ≥ u
T
C (37)

α̂
T

+ ᾱ
T ≥ u

T
A (38)

β̂ + β̄ ≤ u
T
b (39)

u
+ ≥ u (40)

u
+
, α̂, β̂, γ̂ ≥ 0, (ᾱ, β̄) integer (41)

∆ = (β̄ + 1)− ᾱ
T
x
∗

(42)

β̂ =

K∑
k=1

2
−k

πk (43)

Φk ≤ ∆ for all k = 1, . . . , K (44)

Φk ≤ πk for all k = 1, . . . , K (45)

πk ∈ {0, 1} for all k = 1, . . . , K (46)

(47)
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Strengthen of the closures

• The strengthen of the closures, namely CG, pro-CG and split (or MIR) closures, has been

evaluated by running a cutting plane algorithm for a large (sometimes huge) computing time.

• Goal of the investigation: show the tightness of the closures, rather than investigating the

practical relevance of the separation MIPping idea when used within a practical MIP solver.

• Tightness of the closures for MIPlib 3.0 instances, in terms of “percentage of gap closed”,

computed as

100− 100(opt value(PI)− opt value(P
1
))/(opt value(PI)− opt value(P ))
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Split closure CG closure

% Gap closed Average 71.71 62.59

% Gap closed 98-100 9 instances 9 instances

% Gap closed 75-98 4 instances 2 instances

% Gap closed 25-75 6 instances 7 instances

% Gap closed < 25 6 instances 7 instances

Table 1: Percentage of gap closed for 25 pure integer linear programs in the MIPlib 3.0.

Split closure pro-CG closure

% Gap closed Average 84.34 36.38

% Gap closed 98-100 16 instances 3 instances

% Gap closed 75-98 10 instances 3 instances

% Gap closed 25-75 2 instances 11 instances

% Gap closed < 25 5 instances 17 instances

Table 2: Percentage of gap closed for 33 mixed integer linear programs in the MIPlib 3.0.
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On the practical relevance of rank-1 cuts

• Lesson learned: in most practical cases the inequalities of rank 1 already give a very tight
approximation of the convex hull of integer and mixed-integer programs.

• Nice features of the rank-1 split cuts separated through the MIPping approach: very sparse
disjunctions and numerically stable coefficients (as opposed to, e.g., GMI cuts read from the

tableau)

Figure 1: Disjunction density for split cuts (from Balas and Saxena, 2005)
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Why are rank-1 CG/split cuts so nice?

Note that the notion of rank depends on the formulation: rank-2 cuts are just rank-1 cuts for

a different formulation!

a. The original formulation has a nice structure (sparse constraints, small coefficients, small

basis determinants, etc.) that naturally produces nice rank-1 CG/split cuts—this property

deteriorates as soon as new cuts are added to the formulation...

b. There is nothing special with rank-1 cuts, the nice behavior derives from the MIPping

approach that solves an optimization problem within the separation procedure, i.e., we make

a clever choice of the separated cut within a large family...

c. ...
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MIPing drawbacks

• As implemented, the MIPping approach is exceedingly time consuming ...

• However, one can easily implement a hybrid approach in which the MIP-based separation

procedures are applied (for a fixed amount of time) in a preprocessing phase, resulting in a

tighter MIP formulation to be solved at a later time by a standard MIP solver.

• Using this idea, two unsolved MIPlib-2003 instances, namely nsrand-ipx and arki001, have

been solved to proven optimality for the first time by Fischetti and Lodi (2005) and by Balas

and Saxena (2005)

• For very difficult and challenging problems it does pay to invest a large amount of computing

time to improve the formulation by adding cuts in these closures before switching to either

general- or special-purpose solution algorithms.
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Figure 2: Split cut preprocessing vs. enumeration (from Balas and Saxena, 2005)
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Future directions of work on split cuts

• Read and use information from the optimal tableau rows to have a warm start for the MIP

solver—viewed as sort of “clean up” procedure for standard GMI cuts, potentially stronger than

their lift-and-project and reduce-and-split counterparts...

• Avoid at all the explicit definition of the MIP separation model ⇒ design very fast ad-hoc
heuristics that use the underlying MIP separation model only implicitly...

• Concentrate on a suitable subclass of split cuts...

E.g., one can address the split cuts associated with any binary disjunction πx ≤ π0 or

πx ≥ π0 + 1, (π, π0) ∈ {0, 1}n+1 ⇒ these cuts generalize lift-and-project cuts and are

easily MIPped through a (linear) 0-1 MIP

M. Fischetti, A. Lodi, MIP models for MIP separation 17



Split cuts over cardinality disjunctions

joint work with A. Tramontani (in progress)

• Given the pure ILP

min{cT
x : Ax ≥ A0, x ≥ 0 integer} (48)

and two valid inequalities for the LP relaxation

a
T
x ≥ a0 and b

T
x ≥ b0 with ∆ := b0 − a0 ≥ 0,

the pairing inequality γTx ≥ γ0 := b0 is valid for the integer feasible points (Günlük and

Pochet, 2001), where

γj :=


aj, if aj ≥ bj

bj, if aj ≤ bj and bj ≤ aj + ∆

aj + ∆, if aj ≤ bj and bj ≥ aj + ∆.

(49)
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• Re-writing

γj := max{aj, min{aj + ∆, bj}}, j = 1, . . . , n

the pairing separation problem for a given x∗ can be MIPed as:

max b0 − γ
T
x
∗

(50)

a
T ≥ u

T
A0, a0 ≤ u

T
A0 (51)

b
T ≥ v

T
A0, b0 ≤ v

T
A0 (52)

∆ = b0 − a0 ≥ 0 (53)

γ ≥ a, γ ≥ b−Mθ, γ ≥ a + ∆n −M(1− θ) (54)

a + ∆n ≥ b−Mθ, a + ∆n ≤ b + M(1− θ) (55)

0 ≤ u ≤ 1, 0 ≤ v ≤ 1 (56)

θ ∈ {0, 1}n
(57)

where ∆n := (∆, ∆, . . . , ∆) and M is a large positive value.
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• By elaborating the above model it is not difficult to get rid of the big-M terms and to show that

pairing inequalities are equivalent to split cuts defined over the cardinality disjunctions

θ
T
x ≤ θ0 or θ

T
x ≥ θ0 + 1. (58)

for θ ∈ {0, 1}n and θ0 = 0.

• The pairing inequality separation problem can therefore be reformulated as in Balas and Saxena

(2005) thorough the nonlinear MIP:

max γ0 − γ
T
x
∗

(59)

γ
T ≥ u

T
A− u0θ

T
(60)

γ
T ≥ v

T
A + v0θ

T
(61)

γ0 = u
T
A0 (62)

γ0 = v
T
A0 + v0, (63)

u ≥ 0, v ≥ 0, 0 ≤ u0 ≤ 1, 0 ≤ v0 ≤ 1 (64)

θ ∈ {0, 1}n
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• By imposing w.l.o.g. u0 = 1, γT = uTA− u0θ
T + wT , w ≥ 0, we get

max θ
T
x
∗ − u

T
(Ax

∗ − A0)− w
T
x
∗

(65)

u
T
A− v

T
A− (1 + v0)θ

T
+ w

T ≥ 0 (66)

u
T
A0 − v

T
A0 − v0 = 0 (67)

u ≥ 0, v ≥ 0, w ≥ 0, 0 ≤ v0 ≤ 1 (68)

θ ∈ {0, 1}n

that can be linearized easily by introducing continuous variables αj to replace the nonlinear

terms v0θj. This leads to the following 0-1 MIP:

max θ
T
x
∗ − u

T
(Ax

∗ − A0)− w
T
x
∗

u
T
A− v

T
A− θ

T − α
T

+ w
T ≥ 0 (69)

u
T
A0 − v

T
A0 − v0 = 0

αj ≥ v0 − 1 + θj for all j = 1, . . . , n (70)

u ≥ 0, v ≥ 0, w ≥ 0, α ≥ 0, 0 ≤ v0 ≤ 1 (71)

θ ∈ {0, 1}n
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Heuristic strengthening of cardinality split cuts

• Given a solution (u, v, v0) of the above model, a simple heuristic procedure for
strengthening the cut γTx ≥ γ0 is as follows:

1. compute the optimal disjunction πTx ≤ 0 or πTx ≥ 1 (π ∈ Zn) for the given

multipliers (u, v, v0), by using the Balas-Jeroslow procedure;

2. given the disjunction corresponding to the above π, compute the “optimal” multipliers
(ũ, ũ0, w̃) by solving the LP

max u0π
T
x
∗ − u

T
s
∗ − w

T
t
∗

(72)

u
T
A− v

T
A− u0π

T − v0π
T

+ w
T ≥ 0 (73)

u
T
A0 − v

T
A0 − v0 = 0 (74)∑

ui +
∑

vi +
∑

wj + u0 + v0 = 2m + n + 2 (75)

u ≥ 0, v ≥ 0, w ≥ 0, u0 ≥ 0, v0 ≥ 0 (76)

where s∗ := max{ε, Ax∗ − A0} and t∗ := max{ε, x∗} (ε = 10−6);

3. compute the cut γTx ≥ γ0 as γT := ũTA− ũ0π
T + w̃, γ0 := ũTA0.
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Instance L&P gap-c% CD gap-c% CD++ gap-c% Split gap-c%

air03 100.00 100.00 100.00 100.00
air04 32.61 31.67 45.94 62.42
air05 36.05 29.83 39.06 62.05

cap6000 46.67 63.79 63.79 37.63
fiber 22.40 92.26 98.47 98.50

harp2 4.13 3.38 24.23 17.50
l152lav 34.46 60.34 84.82 92.10

lseu 5.09 20.06 70.70 93.75
misc03 40.21 47.87 48.84 51.47
misc07 11.44 11.46 13.30 19.48

mitre 59.73 10.95 93.64 100.00
mod008 9.02 25.75 26.99 100.00
mod010 52.49 100.00 100.00 100.00

nw04 39.19 100.00 100.00 100.00
p0033 8.19 70.30 70.30 87.42
p0201 46.85 73.62 74.93 74.93
p0282 93.66 96.73 97.32 99.90
p0548 87.11 92.08 96.29 100.00
p2756 86.77 88.06 99.81 92.32

seymour 9.14 2.21 12.06 61.94
stein27 0.00 0.00 0.00 0.00
stein45 0.00 0.00 0.00 0.00

Average gap% 37.51 50.93 61.84 70.52

Table 3: Comparison of the percentage of gap closed (gap-c%) within 1,800 CPU sec.s by Lift
and Project (L&P), Cardinality Disjunction (CD), and Strengthened Cardinality Disjunction
(CD++). Column Split is from Balas and Saxena (2005) and refers to Split cuts (time-limit

for each separation call: 3,600 sec.s). Anomalies for cap6000, harp2 and p2756 due to different

pre-processing.
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Cardinality Disjunction Strength. Cardinality Disjunction
Instance n.iter n.cuts gap-c% time (sec.s) n.iter n.cuts gap-c% time (sec.s)

air03 7 21 100.00 0.9 3 4 100.00 0.2
air04 188 1432 31.67 1800.0 140 864 45.94 1800.0
air05 265 1227 29.83 1800.0 229 1085 39.06 1800.0

cap6000 72 149 63.79 10.6 61 135 63.79 12.9
fiber 668 3260 92.26 1800.0 294 862 98.47 1008.3

harp2 1547 7282 3.38 870.7 17 101 24.23 4.2
l152lav 360 1425 60.34 1800.0 706 1482 84.82 1800.0

lseu 29 96 20.06 2.9 23 65 70.70 1.6
misc03 185 450 47.87 1800.0 212 404 48.84 1800.0
misc07 255 777 11.46 1800.0 311 612 13.30 1800.0

mitre 248 680 10.95 1800.0 212 405 93.64 1800.0
mod008 36 123 25.75 2.3 20 66 26.99 0.7
mod010 89 322 100.00 60.9 13 30 100.00 1.2

nw04 112 731 100.00 254.4 28 129 100.00 11.1
p0033 36 92 70.30 0.9 18 45 70.30 0.6
p0201 412 863 73.62 1800.0 202 357 74.93 441.3
p0282 255 1074 96.73 114.5 182 769 97.32 65.9
p0548 725 1826 92.08 1800.0 616 1560 96.29 1800.0
p2756 327 1548 88.06 444.4 959 9048 99.81 1800.0

seymour 52 177 2.21 1800.0 48 141 12.06 1800.0
stein27 255 933 0.00 124.5 32 86 0.00 8.1
stein45 544 2352 0.00 1230.5 164 487 0.00 201.9

Table 4: Comparison between Cardinality Disjunction (CD) and Strengthened Cardinality
Disjunction (SCD).
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IPCO 2007 meeting at Cornell University (Ithaca), June 25-27, 2007

• Program Committee:

Dimitris Bertsimas

Dan Bienstock

Alberto Caprara

Bill Cook

Gerard Cornuejols

Matteo Fischetti (chair)

Bertrand Guenin

Christoph Helmberg

Tibor Jordn

Tom McCormick

David Williamson (organizer)

Gerhard Woeginger

• Strong MIP papers strongly encouraged!
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A look beyond disjunctive closures: the KP closure

• According to the recent computational analysis reported in

M. Fischetti and M. Monaci, How tight is the corner relaxation?, Technical Report, 2005

the Gomory’s corner relaxation gives a very good approximation of the integer hull for MIPs

with general-integer variables, but...

• ... the approximation is less effective for problems with 0-1 variables only, as observed

already in

E. Balas, A Note on the Group-Theoretic Approach to Integer Programming and the 0-1 Case,

Operations Research 21, 1, 321-322 (1973).

• Explanation: for 0-1 ILPs, even the non-binding variable bound constraints xj ≥ 0 or xj ≤ 1

play an important role, hence their relaxation produces weaker bounds...
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• How can we take the variable bound constraints 0 ≤ xj ≤ 1 into account when
generating Gomory-like cuts?

• We introduce the concept of knapsack closure as a tightening of the classical Chavtal-Gomory

(CG) concept:

for all inequalities wTx ≤ w0 valid for the LP relaxation ...

... add to the original system all the valid inequalities for the knapsack polytope

conv{x ∈ {0, 1}n
: w

T
x ≤ w0}

• Question: Is the knapsack closure significantly tighter than the classical CG closure?

• Answer (work in progress): actually optimize over the KP closure on a significant set of

MIPLIB test instances.
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The basic machinery

• We are interested in the 0-1 ILP

min{cT
x : x ∈ P ∩X} (77)

where

P := {x ∈ <n
: Ax ≤ b, x ≥ 0} (78)

is a given polyhedron and

X ⊆ Z
n

is such that the optimization of every linear function over X is a “practically tractable”

problem, e.g.,

X := {x ∈ Z
n

: 0 ≤ x ≤ 1} (79)
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• Let wTx ≤ w0 be any valid inequality for P , called source KP inequality in the sequel,

and let

KP (w, w0) := {x ∈ X : w
T
x ≤ w0} (80)

define a corresponding KP relaxation of the original ILP problem.

• Given a (fractional) point x∗ ∈ <n, we are interested in the following

Separation problem: Find a linear inequality αTx ≤ α0 that is valid for KP (w, w0)

but violated by x∗ (if any).
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The “easy” case: the source KP inequality is given

• If the source KP inequality is given, the separation problem amounts to the solution of a series

of knapsack problems, i.e., of optimizations of a linear function over the KP relaxation

KP (w, w0).

• Indeed, one can in principle enumerate all the members of KP (w, w0), say x1, . . . , xK, and

write the following LP model for the separation:

max α
T
x
∗ − α0 (81)

α
T
x

i ≤ α0, for all i = 1, . . . , K (82)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (83)

where (83) are just normalization conditions.

• The above LP contains an exponential number of constraints ⇒ standard run-time cut

generation technique, where at each iteration the following steps are performed:
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• consider explicitly just a few solutions in KP (w, w0), say solutions x1, · · · , xh for some

h � K (initially, h := 0)

• compute an optimal solution (α∗, α∗0) of the corresponding restricted LP model

max α
T
x
∗ − α0 (84)

α
T
x

i ≤ α0, for all i = 1, . . . , h (85)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (86)

• if α∗x∗−α∗0 ≤ 0, then the method can be stopped as no violated inequality αTx ≤ α0 exists

• call an oracle to compute an optimal solution y∗ of the KP problem

max{α∗y : y ∈ KP (w, w0)}

• if α∗y∗ ≤ α∗0, then the inequality α∗x ≤ α∗0 is valid for KP (w, w0) and maximally violated,

so stop

• include y∗ in the separation model by setting h := h + 1 and xh := y∗, and repeat.
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The “hard” case: the source KP inequality is not given

• We need to extend the method above to the case where the inequality wTx ≤ w0 is not
given a priori (nor read from the optimal LP tableau etc.), but is completely general and

defined during the separation phase so as to maximize its effectiveness.

• This approach produces a much more powerful separation tool that goes far beyond the
separation over the first Chvátal closure...

... but requires to use Farkas’ Lemma to certify the validity of wTx ≤ w0 for P , and a more

involved MIP model to replace the “easy” LP separation model shown above.
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• Here is how the MIP separation model looks like:

max α
T
x
∗ − α0 (87)

w
T ≤ u

T
A, w0 ≥ u

T
b, u ≥ 0 (88)

α
T
x

i ≤ α0 + Mδi, for all i = 1, . . . , Q (89)

w
T
x

i ≥ w0 + ε−M(1− δi), for all i = 1, . . . , Q (90)

δi ∈ {0, 1}, for all i = 1, . . . , Q (91)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (92)

where X =: {x1, . . . , xQ}, and M and ε are a large and a small positive value, respectively.

Notice that u, w, w0, α, α0, δ are all variables.

• The idea of the model above is to certify the validity of wTx ≤ w0 for P (where w and w0

are now variables) by using Farkas’ characterization (88).

Because of (89), a point xi ∈ X can violated the inequality αTx ≤ α0 only by setting δi = 1

in which case (90) imposes that the valid inequality wTx ≤ w0 cuts it off (hence this point

cannot be feasible for the original ILP model).
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A geometrical interpretation

max α
T
x
∗ − α0 (93)

w
T ≤ u

T
A, w0 ≥ u

T
b, u ≥ 0 (94)

α
T
x

i ≤ α0 + Mδi, for all i = 1, . . . , Q (95)

w
T
x

i ≥ w0 + ε−M(1− δi), for all i = 1, . . . , Q (96)

δi ∈ {0, 1}, for all i = 1, . . . , Q (97)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (98)

M. Fischetti, A. Lodi, MIP models for MIP separation 34



• The solution of the MIP separation model can be obtained along the same lines as for its LP

counterpart:

Find an optimal solution (u∗, w∗, w∗
0, α∗, α∗0, δ∗) of a restricted MIP separtion problem

taking into account only a subset of points x1 · · · xh.

Invoke the KP oracle to solve

max{α∗y : y ∈ KP (w
∗
, w

∗
0)}

so as to certify the validity of α∗x ≤ α∗0 for the current KP relaxation KP (w∗, w∗
0)...

... or else to produce a new point xh+1 to be inserted in the MIP separation model (along with

the corresponding variable δh+1), and repeat.
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