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Motivation

scientists

people,

Why not us?
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Symmetry for dummies

« Consider a generic optimization problem of the form

v(P) :=min{f(x):x € F(P)}

where FI(P)C'R" and f: R" = R
« A symmetry permutation is an index permutation
m:{l,---,n} = {1,---,n}
such that

r e F(P)=a € F(P) and f(2') = f(x)

where :zrjr{j} =x; forall j€& {1,---,n}
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Symmetry permutation (illustration)

permutation = node covering by disjoint directed cycles
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Symmetry group

Symmetry group G: finite collection of symmetry permutations
closed under composition and inversion

Generators of G: set of symmetry permutations whose composition
(and inversion) yields G

Orbits of G: indices i and | belong to a same orbit iff there exist 17 in
G such that (i) = |

X5
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Generators and orbits (example)

orbits = strongly-connected components of generator graph
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Nice, but... how to compute them?

In some cases, a suitable (sub) group is known a priori

Otherwise, it can be computed starting from the available
mathematical formulation of the problem ...

... hoping the user was not so clever to use sophisticated tricks
(e.qg., lifted cuts) that hide symmetry

Reasonably fast in practice through sw such as saucy, nauty, etc.

So, let’'s assume a suitable symmetry group G has been computed
with “reasonable” overhead
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Symmetry and convex optimization

Assume both F(P) and f are convex

Fact (Parrilo, 2003): an optimal solution 7 exists such that
T; = const. within each orbit O

Argument:

If f is strictly convex, a unique optimal solution x* exists, so each 17 in
G must leave x* unchanged - equal value within each orbit

If not, just consider a second-level strictly convex function p to break
ties...
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Claim: there exists an optimal solution T such that

T; = const. within each orbit O,

Indeed, let x* be an optimal solution with minimum

3 (@)
=1

Assume, by contradiction, that there exist i, 7 € O, such that =} T
e As i, 7 belong a same orbit, there exists m in ¢ such that =(i) = j.

e Let y* be an optimal solution obtained from =* by applving 7., where
x* # y* and p(y*) = p(z*).

¢ Dv convexity, the point z y *1/2 is an optimal solution as well,

vy
||

while p(z*) < (p(z*) 4+ p(y“‘ ] plx*) because p 1s strictly convex.
i ]
y = (L2, L1)(4.3)  (55)(1.1,1,1)
| — Ol — | | — Og — |
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Symmetry helps in the convex case

Because of the above, the only unknowns
In the convex case are the k values of =
Inside O4,...,0k

Exact reformulation
1. introduce additional variables

zhzsz{jhm_j? h:l"*k

2. project the formulation on the z-space, by just replacing

€T — ,Ehff’|0h| for all j S C)h? h = 1, k

3. solve the projected model on the z-space
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Symmetry hurts in the nonconvex case

Unfortunately, the average point & can be infeasible/nonoptimal in
the nonconvex case - reformulation does not work!

Even worse: in the discrete case, enumeration is tricked by
symmetry (symmetric subtrees can be visited again and again...)

Possible remedies:
a. Break symmetry somehow

—> a potentially useful property
is not fully exploited!

b. Modify branching rules (isomorphism pruning, orbital
branching) to take advantage of symmetry - a powerful idea!
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Symmetry in convex MI(N)LP

* Consider the convex Integer (N)LP

(P) o(P):=min{f(x):z e F(P), z integer}
where F(P) CR™ and f : R"™ — R are both convex.

(mixed-integer case very similar, with integer/continuous orbits)
» Feasible setis nonconvex - reformulation on the z-space is not exact
« Can we exploit the symmetry group anyway?

« E.g., within an enumerative method, at each node compute the symmetry
group after branching, and solve the convex continuous relaxation on the
Z. (instead of x-) space
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Orbital Shrinking

Idea: relax “individual integrality” into “surrogate integrality”

EXTEND: Introduce additional z-variables  zx = > jc0, *j, h=1,--- k
along with the integrality requirement -, integer, h=1,---,k

RELAX: Remove the integrality requirement on x (but not on z) to obtain a
“blurred relaxation” = still a convex MI(N)LP with the same symmetry group

SHRINK: Reformulate exactly the blurred relaxation on the z-space by just
replacing .
x; — 2,/|Oy|  forallj €O, h=1---k

—> still a convex MI(N)LP but of smaller size and with no symmetry left

SOLVE: Solve the shrunken MI(N)LP relaxation to get a lower bound -
hopefully much easier than solving the original problem [smaller/no symmetry]
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A familiar example

Consider the Asymmetric TSP on a complete digraph...
... and take an instance with symmetric arc costs ¢Ci; = Cj;

Very inefficient because of symmetry - orbital shrinking will
automatically detected orbits

(12, T21) (T13, X31) -+ - (X4, Xj) - -

... and introduce orbital integer variables ={ij} = Tij + Zji
2-node SECs >  zijy =2 + x5 <1 > Z{) € 10,1}

In this case, orbital shrinking yields an exact reformulation: optimize
on the z-space (STSP), get an optimal (integer) z*, and then optimize

o

on the x-space with restriction x,. + x.;, = z7.., to get an optimal x*
i ]2 {3_‘]?} g P
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Discussion

Can we expect to get a tight relaxation in all cases?

Certainly NOT when

— asingle orbit (or just few) exists =2 100% symmetrical formulations

— Removing detailed integrality on the single x’s oversimplifies the problem
—> trivial relaxation on the z-space

 e.g. bin packing problem with 2-index (item,bin) x-variables

Hopefully YES when the blurred relaxation still has a structure that
requires nontrivial branching/cuts to be solved

— rich structure induced by integrality of the z var.s only
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lllustrative experiments

Testbed: Margot’s website (100% symmetrical instances)

Working with a subgroup of G generated by a subset of generators
— Tradeoff between size and expected tightness of the shrunken relaxation

ldea:
1. sortthe k& (say) generators somehow - generators with small cycles first...
2. consider the subgroup of G induced by the first { (say) generators

Consider a “dial” to test intermediate situations:
{e} Gy G o
I I I

several small orbits a few large orbits
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Typical behaviour
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sts81
ik obj | CPU
1/14 45 | 3.60
2/14 45 1.51
3/14 45 1.18
4/14 45 1.13
5/14 33 | 0.01
6/14 33 | 0.01
?/14 33 | 0.02
8/14 33 | 0.00
9/14 29 | 0.02
10/14 29 | 0.00
11/14 29 | 0.01
1'2/14 28 | 0.01
13/14 28 | 0.00
14/14 27 | 0.00
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Hand-picked thresholds

Instance | Gy LP CPU

ca36243 | 49 48 0.07
cliqued | oo 36 0.06
cod105 -16 -18 4.91
cod105r | -13 -15 0.25

cod83 260 -28 0.12
cod83r 22 -25 4.44
cod93 4R 51 3.07

cod93r -46 47 2.74
cov1075 19 18 3.03
cov1076 44 43 185.83
cov9b4a 28 26 0.45
mered oc 140 0.12
04_35 oc 70 0.07
0a36243 o0 48 0.75
0a77247 oo 112 0.00
of5.14.7 | oo 35 0.13
of7.189 | oo 63 0.04
pa36243 | -44 -48 1.26
sts135 60 45 0.05

sts27 12 9 0.01
stsdb 24 15 0.39
sts63 27 21 0.00
sts81 33 27 0.00
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Automatically-chosen thresholds

Instance | £/k best Gy Gy CPU  c¢pxt | LP
ca36243 | 3/6 49* 49 48 0.02 48
clique9 | 5/15 oo™ 00 00 0.06 0.17 | 36
cod105 3/11 | -12%  limat -14.097 limit -18
cod105r | 3/10 | -11*  -11 -11 24.12 2836 | -15
cod83 3/9 =200 21 -24 16.78 9.54 | -28
cod83r 3/7 -19* 21 -22 4.44 7.85 | -25
cod93 3/10 -40 -46.111 lzmiat -51
cod93r 3/8 -38 -39 -44  271.74 44648 | -47
cov1i075 | 3/9 20* 20 19 3.03 7979 | 18
cov1i076 | 3/9 45 44 43 2.78 43
cov954 3/8 307 28 26 0.11 26
mered 21/31 | oc® 00 00 0.15 3.37 | 140
04_35 3/9 oo* 00 70 0.00 70
0a36243 | 3/6 oo* 00 48 0.01 48
0a77247 | 3/7 oo™ 00 00 0.10 265.92 | 112
of5.14.7 | 7/9 oo™ o0 35 0.00 35
of7.18.9 | 7/16 oo* 00 00 0.09 0.15 | 63
pa36243 | 3/6 -44* 44 -48 0.01 -48
sts135 3/8 106 75 60 0.11 109.81 | 45
sts27 4/8 18* 14 12 0.01 1.05 9
stsdb 2/5 30* 24 15 0.00 15
sts63 4/9 45* 36 27 0.02 1.99 | 21
ste81 5/14 61 45 33 0.01 3.92 | 27
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Research gquestions

|dentify relevant classes of problems suitable to orbital shrinking (i.e.,
with a rich structure on the z-space left after shrinking)

Exploit cuts taken from the shrunken formulation on the z var.s
Conditions under which the shrunken relaxation is in fact exact
Full integration of orbital shrinking within an exact solution scheme

Use as a heuristic: find an optimal z, fix it, and optimize on x ...
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