Thinning out facilities: Lagrange, Benders, and (the curse of) Kelley

Matteo Fischetti, University of Padova

Markus Sinnl, Ivana Ljubic, University of Vienna

Apology of Benders

Everybody talks about Benders decomposition...

- ... but not so many MIPeople actually use it
- ... besides Stochastic Programming guys of course

Benders in a nutshell

CLASSICAL BOUDERS ('601) d y + c x Ayzb yzo integn Ay 2 b Dy+Fx 2g < BELDERS' cuts > y 20 integer x 20 La FERS. aty SAO La OPTIM. W 2. Po+Bty FEAS 4'S Benders' cuts for conver pr. (beoficion) min f(x,y)g(x,y) = 0 h(y) = 0 $\begin{cases} min \quad f(x,y) \\ g(x,y) \leq 0 \\ y^{2} \leq y \leq y^{4} \\ L_{2} \quad otrimal \quad Vacue : \quad W(y^{4}) \\ y \quad REPLOOP \ (PSTS : \quad V \\ y'S \quad y'S \quad y''$ fig, h convex How to solve W > Bi+ B'y, 1= s, ..., n } - KELLEY'S CUTTING FLANE -> BUNDLE METHODS - IN-DUT (SPECIALIZED) =

#BendersToTheBone

CLASSICAL BENDERS ('602) min d^Ty+c^Tx Ay ≥ b Dy+Fx ≥g y ≥0 integer x 20 min Ayzb 430 < BENDERS' cuts LO FERS. dTy SA. LO OPTIM. W 2 PO+BTY Raulu '

Original problem (left) vs Benders' master problem (right)

Benders after Padberg&Rinaldi

The original ('60s) recipe was to solve the master to optimality by enumeration (integer y*), to generate B-cuts for y*, and to repeat
 → This is what we call "Old Benders" within our group

\rightarrow still the best option for some problems!

- Folklore (Miliotios for TSP?): generate B-cuts for any integer y* that is going to update the incumbent
- McDaniel & Devine (1977) use of B-cuts to cut (root node) fractional y*'s
- ...
- Everything fits very naturally within modern **Branch-and-Cut**
 - Lazy constraint callback for integer y* (needed for correctness)
 - **User cut** callback for any y* (useful but not mandatory)
- Feasibility cuts \rightarrow we know how to handle (minimal infeasibility etc.)
- Optimality cuts → often a nightmare even after MW improvements (pareto-optimality) and alike → THE TOPIC OF THE PRESENT TALK

Benders for convex MINLP

Jeff Linderoth Benders' cats for convex pr. (feofficine) (min f(x,y) $g(x,y) \leq 0$ $h(y) \leq 0$ $h(y) \leq 0$ $h(y) \leq 0$ $h(y) \leq 0$ Following The IMA Volumes in Mathematics and its Applications fig, h convex

- Benders cuts can be generalized to convex MINLP
 - → Geoffrion via Lagrangian duality
 - → resulting Generalized Benders cuts still linear
- Potentially very useful **to remove nonlinearity** from the master by using kind of "surrogate cone" cuts \rightarrow hide nonlinearity where it does not hurt...

Optimality cut geometry

Solving the master LP relaxation \rightarrow minimization of a convex function w(y) \rightarrow a very familiar setting for people working with **Lagrange** duality (Dantzig-Wolfe decomposition and alike) **#LagrangeEverywhere**

Optimality cut generation

Given y*, how to compute the supporting hyperplane (in blue)?

1-2-3 Benders optimality cut computation

Q: Given
$$y^*$$
, compute $w(y^*)$
and the associated Bendlers' cut
 $w \ge w(y^*) + \overline{P_y}w(y^*)(y-y^*)$

A: so-lue:

$$\begin{cases}
min \quad f(x,y) \\
g(x,y) \leq 0 \\
y^* \leq y \leq y^* \\
La \quad otrimal \quad Vacue : \quad W(y^*) \\
La \quad otrimal \quad Vacue : \quad W(y^*) \\
GF \quad y's : \quad y
\end{cases}$$

- 1) solve the original convex problem with new var. bounds $y^* \le y \le y^*$
- 2) take opt_val and reduced costs r_j 's
- 3) write $w \ge opt_val + \sum_j r_j(y_j y_j^*)$

Benders++ cuts

• We have seen that Benders cuts are obtained by solving the **original problem** after fixing y=y*, thus voiding the information that y must be integer

• Full primal optimal sol. **(y*,x*)** available for generating MIP cuts exploiting the integrality of y

However (y*,x*) is not a vertex → no cheap "tableau cuts" (GMI and alike) available …

... while any black-box **separation function** that receives the original model and the pair (y^*,x^*) on input can be used (MIR heuristics, CGLP's, half cuts, etc.)

• Generated cuts to be added to the original model (i.e. to the "slave") in case they involve the x's

 Very good results with split cuts for Stochastic Integer Programming recently reported by Bodur, Dash, Gunluck, Luedtke (2014)

#TheCurseOfKelley

How to solve min $\{w: w \ge \beta_i^{i+} \beta_j^{i}, j=0, ..., n\}$ -> KELLEY'S CUTTING PLANE -> BUNDLE METHODS -> IN-OUT (SPECIALIZED)

Now that you have seen the plot of w(y), you understand a main reason for Benders slow convergence \rightarrow if still skeptical, please call one of these guys...

UFL with linear and quadratic costs

- Uncapacitated Facility Location (a.k.a. Simple Plant Location in the old days...)
- One of the basic OR problems, deeply studied in the 70-80' by pioneers like Balas, Geoffrion, Magnanti, Cornuejols, Nemhauser, Wolsey, …

$$\begin{split} \min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\ \text{s.t.} \sum_{i \in I} x_{ij} = 1 & \forall j \in J \\ x_{ij} \leq y_i & \forall i \in I, j \in J \\ x_{ij} \geq 0 & \forall i \in I, j \in J \\ y_i \in \{0, 1\} & \forall i \in I \end{split}$$

UFL (linear costs) MIP model

$\min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij}$	
s.t. $\sum_{i \in I} x_{ij} = 1$	$orall j \in J$
$x_{ij} \leq y_i$	$\forall i \in I, j \in J$
$x_{ij} \ge 0$	$\forall i \in I, j \in J$
$y_i \in \{0,1\}$	$\forall i \in I$

- Can be viewed as a 2-stage Stochastic Program: pay to open facilities in the first stage, get a second-stage cost correction by each client (scenario) → x's are just "recourse var.s"
- **Benders decomposition**: very natural, potentially very useful, addressed in the early days but apparently dismissed nowadays
- **Current best exact solver**: Lagrangian optimization (Posta, Ferland, Michelon, 2014)

qUFL (quadratic costs)

- Just change objective to $\min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij}^2$
- Applications in energy systems with power losses (dispersion → electrical currents' square) and finance applications (variance)
- Embarrassingly tight **perspective** reform. (Gunluk, Linderoth, 2012)

$$\begin{split} \min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} z_{ij} \\ \text{s.t.} \sum_{i \in I} x_{ij} = 1 & \forall j \in J \\ x_{ij} \leq y_i & \forall i \in I, j \in J \\ x_{2j}^2 \leq z_{ij} y_i & \forall i \in I, j \in J \\ x_{ij} \geq 0 & \forall i \in I, j \in J \\ z_{ij} \geq 0 & \forall i \in I, j \in J \\ y_i \in \{0, 1\} & \forall i \in I \end{split}$$

Our specialized Benders

Fat master model: • mi

$$n\sum_{i\in I}f_iy_i + \sum_{j\in J}w_j$$

- **Slim** (aggregated) master: ۲
- **Specialized** slave solver (LP/QCP) for ulletBenders cut generation:
 - faster
 - numerically more accurate
- **Specialized** UFL heuristic (linear case only) ۲
- Margot's test of cut validity (very useful to trap numerical troubles) ۲

Escaping the #CurseOfKelley

• Root node LP bound **very critical** → many ships sank here!

- Kelley's cutting plane can be desperately slow, bundle methods required
- In a root node preprocessing, we implemented our own "interior point" method inspired by (Ben-Ameur and Neto 2007, Fischetti and Salvagnin 2010, Naoum-Sawaya and Elhedhli 2013).
- Note that every point y in the 0-1 hypercube is "internal" to the (y,w) polyhedron for a sufficiently large w → you better work on the y-space (as any honest bundle would do)
- In-out/analytic center methods work on the (y,w) space \rightarrow adaptation needed
- As a quick shot, we implemented a very simple "chase the carrot" heuristic to determine an internal path towards the optimal y
- Our very first implementation worked so well that we did not have an incentive to try and improve it **#OccamPrir** MIP 2015, Chicago, June 2015

Our #ChaseTheCarrot dual heuristic

• We (the donkey) start with y=(1,1,...) and optimize the master LP as in Kelley, to get optimal y^* (the carrot on the stick).

• We move y half-way towards y*. We then separate a point y' in the segment y-y* close to y. The generated optimality cut(s) are added to the master LP, which is reoptimzied to get the new optimal y* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement (cross-over like)

• Warning: adaptations needed if feasibility cuts can be generated...

Effect of the improved cut-loop

- Comparing Kelley cut loop at the root node with Kelley+ (add epsilon to y*) and with our chase-the-carrot method (inout)
- Koerkel-Ghosh **qUFL** instance gs250a-1 (250x250, quadratic costs)
- ***nc** = n. of Benders cuts generated at the end of the root node
- times in logarithmic scale

Computational results (linear case)

- Many hard instances from UFLLIB solved in just sec.s
- Some instances solved to proven optimality for the first time

Table I	i reviousiy uns		istances solv	ed to optimality usin	g our app		icai costsji
inst.	bestknown	opt	t[s]	rootbound	$t_{root}[s]$	$g_r[\%]$	nodes
ga250a-3	257985	257953	493.49	257554.773407	12.77	0.15	200184
ga250a-5	258225	258190	585.93	257790.245068	9.65	0.15	229446
ga500c-5	621313	621313	9226.86	601500.282332	12.31	3.19	195191
gs500c-3	621204	621204	11448.19	601980.526816	13.44	3.09	194657
gs500c-5	623180	623180	26828.91	603115.401650	14.20	3.22	270147
2500 - 10	3101800	3099907	824.76	3097480.189279	104.67	0.08	1362
3000-100	1602335	1602154	225.25	1601733.816607	82.67	0.03	441

Table 1Previously unsolved UFL instances solved to optimality using our approach (linear costs).

• Many best-known solution values strictly improved (22 out of 50) or matched (22 more).

Computational results (quadratic case)

Table 3Comparing our slim and fat models with the perspective reformulation (Günlük and Linderoth
2012), on a set of randomly generated qUFL instances proposed in Günlük et al. (2007), Günlük and
Linderoth (2012). Perspective reformulation hits memory limit for $n, m \ge 200$.

	Our slim model				Our fat model				Perspective reformulation				
n	m	t[s]	$g_r[\%]$	$t_{root}[s]$	nodes	t[s]	$g_r[\%]$	$t_{root}[s]$	nodes	t[s]	$g_r[\%]$	$t_{root}[s]$	nodes
50	5 0	0.04	0.14	0.03	1.6	0.05	0.13	0.03	1.6	39.89	0.07	29.08	4.2
50	100	0.06	0.13	0.04	2.6	0.10	0.11	0.06	2.7	105.77	0.14	63.18	7.6
50	200	0.11	0.13	0.08	6.7	0.29	0.12	0.16	7.5	195.47	0.13	90.43	10.0
80	30	0.05	0.22	0.03	1.7	0.05	0.16	0.03	1.1	72.42	0.29	41.44	6.0
80	50	0.08	0.36	0.05	5.7	0.07	0.34	0.04	5.5	137.80	0.40	61.77	10.9
80	100	0.10	0.21	0.08	5.9	0.14	0.21	0.08	5.3	279.94	0.25	120.10	8.0
80	200	0.14	0.13	0.11	5.2	0.27	0.14	0.16	6.4	622.38	0.15	202.79	11.5
100	100	0.23	0.21	0.19	6.6	0.16	0.20	0.10	6.0	563.33	0.25	208.60	13.0
150	150	0.24	0.17	0.19	7.8	0.32	0.16	0.20	9.0	2526.73	0.17	869.19	11.9
200	200	0.33	0.06	0.28	6.7	0.45	0.06	0.32	4.1				
250	250	0.46	0.05	0.42	4.3	0.71	0.04	0.60	4.1				

Up to **10,000 speedup** for medium-size instances (150x150)

Much larger instances (250x250) solved in less than 1 sec.

Computational results (quadratic case)

	Our slim model						Our fa	at model	
n	m	t[s]	$g_r [\%]$	$t_{root}[s]$	nodes	t[s]	$g_r [\%]$	$t_{root}[s]$	nodes
500	500	1.39	0.03	1.31	16.2	3.30	0.03	2.82	9.5
500	1000	3.02	0.03	2.75	54.7	8.90	0.03	7.81	20.8
500	5000	11.59	0.01	10.41	87.2	132.89	0.02	127.27	32.4
500	10000	36.98	0.01	22.09	558.2	673.93	0.02	646.97	106.5
1000	500	3.80	0.04	3.32	76.0	4.60	0.04	3.86	26.1
1000	1000	5.78	0.03	5.25	65.3	15.18	0.03	13.74	28.2
1000	5000	20.70	0.01	19.32	44.3	193.76	0.02	181.87	180.3
1000	10000	64.01	0.01	34.74	603.0	799.02	0.02	748.56	399.8
2000	500	6.73	0.03	6.10	66.7	8.95	0.03	7.83	29.8
2000	1000	14.86	0.02	12.72	194.4	35.41	0.02	32.65	65.9
2000	5000	115.09	0.01	42.07	1649.0	405.85	0.02	361.69	629.3
2000	10000	309.36	0.01	76.88	10735.8	2646.69	0.03	1246.60	13114.0

Table 4Comparing the performance of slim versus fat model on a larger set of benchmark
instances for qUFL generated as in Günlük et al. (2007), Günlük and Linderoth (2012).

Huge instances (2,000x10,000) solved in 5 minutes

MIQCP's with 20M SOC constraints and 40M var.s

qUFL much easier than UFL (!)

Table 5All KG instances for qUFL are solvedto optimality by our slim model (quadratic costs).Each row shows average values over 5 instancesper subclass.

group	t[s]	$g_r[\%]$	$t_{root}[s]$	nodes
ga250a	0.40	0.00	0.39	4.4
ga250b	0.28	0.03	0.22	71.2
ga250c	0.40	0.03	0.36	39.4
gs250a	0.21	0.00	0.20	3.4
gs250b	0.27	0.02	0.21	80.6
gs250c	0.46	0.03	0.42	21.6
ga500a	0.76	0.00	0.73	3.0
ga500b	2.12	0.04	1.95	58.0
ga500c	19.46	0.16	1.49	49911.6
gs500a	0.81	0.00	0.77	12.4
gs500b	2.47	0.03	2.31	72.8
gs500c	15.05	0.14	1.26	12721.6
ga750a	2.03	0.00	1.62	107.4
ga750b	2.08	0.01	1.82	65.2
ga750c	35.79	0.08	2.41	64338.0
gs750a	1.94	0.00	1.65	53.2
gs750b	3.24	0.01	1.82	414.0
gs750c	26.94	0.07	2.98	16837.0

- Due to the extremely tight lower bound, the quadratic case is typically orders of magnitude easier than its linear counterpart!
- Of course only when Benders is used to control
 - n. of variables
 - n. of SOC constraints
 - and to hide nonlinearity where it does not hurt (in the slave) while the master remains a neat MILP

Thanks for your attention

- Full paper
 - M. Fischetti, I. Ljubic, M. Sinnl, "Thinning out facilities: a Benders decomposition approach for the uncapacitated facility location problem with separable convex costs", Tech. Rep. UniPD, 2015.

and slides available at

http://www.dei.unipd.it/~fisch/papers/ http://www.dei.unipd.it/~fisch/papers/slides/

 Thanks are due to @Fischeders who was supposed to deliver this talk but did not show up on time #TooNerd

Some references

- Ben-Ameur, W., J. Neto. 2007. Acceleration of cutting-plane and column generation algorithms: Applications to network design. Networks 49 3–17.
- Bonami, P., M. Kilinc, J. Linderoth. 2012. Algorithms and software for convex mixed integer nonlinear programs. *Mixed Integer Nonlinear Programming* **154** 1–39.
- Cornuejols, G., G.L. Nemhauser, L.A. Wolsey. 1980. A canonical representation of simple plant location problems and its applications. *SIAM J. Algebr. Discr. Meth.* **1** 261–272.
- Fischetti, M., D. Salvagnin. 2010. An in-out approach to disjunctive optimization. A. Lodi, M. Milano,
 P. Toth, eds., Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6140. Springer Berlin Heidelberg, 136-140.
- Frangioni, A., C. Gentile. 2006. Perspective cuts for a class of convex 0-1 mixed integer programs. Math. Programming 106 225–236.

Geoffrion, A. 1972. Generalized Benders Decomposition. J. Optim. Theory Appl. 10 237–260.

Some references

- Günlük, O., J. Lee, R. Weismantel. 2007. MINLP strenghtening for separable convex quadratic transportation-cost UFL. Tech. Rep. RC24213 (W0703-042), IBM Research Division.
- Günlük, O., J. Linderoth. 2012. Perspective reformulation and applications. J. Lee, S. Leyffer, eds., Mixed Integer Nonlinear Programming. Springer, 61–92.
- Hijazi, H., P. Bonami, A. Ouorou. 2014. An outer-inner approximation for separable mixed-integer nonlinear programs. INFORMS J. Comput. 26 31–44.
- Naoum-Sawaya, Joe, Samir Elhedhli. 2013. An interior-point Benders based branch-and-cut algorithm for mixed integer programs. Ann. Oper. Res. 210 33–55.
- Posta, M., J. A. Ferland, P. Michelon. 2014. An exact cooperative method for the uncapacitated facility location problem. *Math. Programming Comput.* 6 199–231.

