
Esercizi su Dynamic Programming

Exercise 1.1 Write an algorithm to find the maximum value that can be obtained with

a full parenthesization of the expression

x1/x2/x3/ . . . xn−1/xn,

where x1, x2, . . . , xn are positive rational numbers and “/” denotes division.

Exercise 1.2 Give an algorithm that uses the table of additional information S[·, ·] (com-

puted by the Matrix-Chain Multiplication dynamic programming algorithm seen in class)

to print the optimal parenthesization for the matrix chain.

Exercise 1.3 Given the string A = 〈a1, a2, . . . , an〉, we say that Ai..j = 〈ai, ai+1, . . . , aj〉
is a palindrome substring of A if ai+h = aj−h, for 0 ≤ h ≤ j − i. (Intuitively, a palindrome

substring is one which is identical to its “mirror” image. For example, if A = accaba, then

both A1..4 = acca and A4..6 = aba are palindrome substrings of A.)

(a) Design a dynamic programming algorithm that determines the length of a longest

palindrome substring of a string A in O(n2) time and O(n2) space.

(b) Modify your algorithm so that it uses onlyO(n) space, while the running time remains

unaffected.

Exercise 1.4 Design and analyze a dynamic programming algorithm which, on input a

string X, determines the minimum number p of palindrome substrings of X, Y1, Y2, . . . , Yp

such that X = 〈Y1, Y2, . . . , Yp〉.

Exercise 1.5 Design and analyze a dynamic programming algorithm that, given in input

a string X, returns the maximum length of a palindrome subsequence of X. The algorithm

must run in time and space O(n2).

1

Exercise 1.6 Given a string of arbitrary integers Z = 〈z1, z2, . . . , zk〉 let weight(Z) =∑k
i=1 zi (note that weigth(ε) = 0). Given two integer strings X = 〈x1, x2, . . . , xm〉 e Y =

〈y1, y2, . . . , yn〉, design a dynamic programming algorithm to determine a Maximum-Weight

Common Subsequence (MWCS) Z of X and Y .

Exercise 1.7 Design and analyze a dynamic programming algorithm which, on input

two nonnegative integers n and k, with n > 0 and 0 ≤ k ≤ n, outputs
(
n
k

)
by performing

Θ(nk) sums. (Hint: Prove that for 0 < k < n,
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.)

Exercise 1.8 Given two strings X and Y , a third string Z is a common superstring of

X and Y , if X and Y are both subsequences of Z. (Example: if X = sos and Y = soia,

then Z = sosia is a common superstring of X and Y .) Design and analyze a dynamic

programming algorithm which, given as input two strings X and Y , returns the length of

the Shortest Common Superstring (SCS) of X and Y and additional information needed

to print the SCS. The algorithm must run in time Θ(|X||Y |). (Hint: Use an approach

similar to the one used to compute the LCS of two strings.)

Exercise 1.9 Given two strings of integers Z1 and Z2, with |Z1| = |Z2| = k, we define

their discrepancy as d(Z1, Z2) =
∑k

i=1 |Z1
i − Z2

i |. Design and analyze a dynamic program-

ming algorithm which, on input two (arbitrary) strings of integers X e Y , computes the

maximum discrepancy obtainable by a subsequence of X and a subsequence of Y of equal

length by performing Θ(|X||Y |) comparisons and sums between integers.

Exercise 1.10 Let n > 0. Given a string of n integers A = 〈a1, a2, . . . , an〉, consider the

following recurrence, defined for all pairs (i, j), with 1 ≤ i ≤ j ≤ n:

B(i, j) =

 ai 1 ≤ i = j ≤ n,

max{B(i, k) ·B(k + 1, j) : i ≤ k ≤ j − 1} 1 ≤ i < j ≤ n.

Design and analyze an iterative bottom-up algorithm that, on input A, returns B(1, n) by

performing O(n3) sums.

Exercise 1.11 Let n > 0. Assume that a given dynamic programming strategy leads to

the following recurrence, defined for all values of i and j with 1 ≤ i ≤ j ≤ n:

C(i, j) =

 1 (i = 1) and (j = n),∑i−1
r=1C(r, j) +

∑n
s=j+1C(i, s) altrimenti.

Design and analyze an iterative bottom-up algorithm that computes all values C(i, j),

1 ≤ i ≤ j ≤ n.

2

Exercise 1.12 Given the following bottom-up code:

DP SUM(n)

for i← 1 to n do A[i, i]← i

for `← 2 to n do

for i← 1 to n− `+ 1 do

j ← i+ `− 1

A[i, j]← A[i, j − 1] + A[i+ 1, j]

return A[1, n]

write an equivalent memoized code and analyze its running time in terms of sums between

integers.

Exercise 1.13 Given a string X = 〈x1, x2, . . . , xn〉, consider the following recurrence

`(i, j), defined for 1 ≤ i ≤ j ≤ n:

`(i, j) =


1 i = j,

2 i = j − 1

2 + `(i+ 1, j − 1) (i < j − 1) ∧ (xi = xj)∑j−1
k=i(`(i, k) + `(k + 1, j)) (i < j − 1) ∧ (xi 6= xj).

Design memoized code to return the value `(1, n) and analyze the code both in the worst

case and in the best case, assuming that the only unit-cost operations are character com-

parisons.

3

