Esercizi su Dynamic Programming

Exercise 1.1 Write an algorithm to find the maximum value that can be obtained with a full parenthesization of the expression

$$x_1/x_2/x_3/\ldots x_{n-1}/x_n,$$

where x_1, x_2, \ldots, x_n are positive rational numbers and "/" denotes division.

Exercise 1.2 Give an algorithm that uses the table of additional information $S[\cdot, \cdot]$ (computed by the Matrix-Chain Multiplication dynamic programming algorithm seen in class) to print the optimal parenthesization for the matrix chain.

Exercise 1.3 Given the string $A = \langle a_1, a_2, \ldots, a_n \rangle$, we say that $A_{i..j} = \langle a_i, a_{i+1}, \ldots, a_j \rangle$ is a *palindrome substring* of A if $a_{i+h} = a_{j-h}$, for $0 \le h \le j - i$. (Intuitively, a palindrome substring is one which is identical to its "mirror" image. For example, if A = accaba, then both $A_{1..4} = acca$ and $A_{4..6} = aba$ are palindrome substrings of A.)

- (a) Design a dynamic programming algorithm that determines the length of a longest palindrome substring of a string A in $O(n^2)$ time and $O(n^2)$ space.
- (b) Modify your algorithm so that it uses only O(n) space, while the running time remains unaffected.

Exercise 1.4 Design and analyze a dynamic programming algorithm which, on input a string X, determines the minimum number p of palindrome substrings of X, Y_1, Y_2, \ldots, Y_p such that $X = \langle Y_1, Y_2, \ldots, Y_p \rangle$.

Exercise 1.5 Design and analyze a dynamic programming algorithm that, given in input a string X, returns the maximum length of a palindrome *subsequence* of X. The algorithm must run in time and space $O(n^2)$.

Exercise 1.6 Given a string of *arbitrary* integers $Z = \langle z_1, z_2, \ldots, z_k \rangle$ let weight $(Z) = \sum_{i=1}^k z_i$ (note that weight $(\epsilon) = 0$). Given two integer strings $X = \langle x_1, x_2, \ldots, x_m \rangle$ e $Y = \langle y_1, y_2, \ldots, y_n \rangle$, design a dynamic programming algorithm to determine a Maximum-Weight Common Subsequence (MWCS) Z of X and Y.

Exercise 1.7 Design and analyze a dynamic programming algorithm which, on input two nonnegative integers n and k, with n > 0 and $0 \le k \le n$, outputs $\binom{n}{k}$ by performing $\Theta(nk)$ sums. (*Hint:* Prove that for 0 < k < n, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.)

Exercise 1.8 Given two strings X and Y, a third string Z is a common superstring of X and Y, if X and Y are both subsequences of Z. (Example: if X = sos and Y = soia, then Z = sosia is a common superstring of X and Y.) Design and analyze a dynamic programming algorithm which, given as input two strings X and Y, returns the length of the Shortest Common Superstring (SCS) of X and Y and additional information needed to print the SCS. The algorithm must run in time $\Theta(|X||Y|)$. (Hint: Use an approach similar to the one used to compute the LCS of two strings.)

Exercise 1.9 Given two strings of integers Z^1 and Z^2 , with $|Z^1| = |Z^2| = k$, we define their discrepancy as $d(Z^1, Z^2) = \sum_{i=1}^k |Z_i^1 - Z_i^2|$. Design and analyze a dynamic programming algorithm which, on input two (arbitrary) strings of integers $X \in Y$, computes the maximum discrepancy obtainable by a subsequence of X and a subsequence of Y of equal length by performing $\Theta(|X||Y|)$ comparisons and sums between integers.

Exercise 1.10 Let n > 0. Given a string of n integers $A = \langle a_1, a_2, \ldots, a_n \rangle$, consider the following recurrence, defined for all pairs (i, j), with $1 \le i \le j \le n$:

$$B(i,j) = \begin{cases} a_i & 1 \le i = j \le n, \\ \max\{B(i,k) \cdot B(k+1,j) : i \le k \le j-1\} & 1 \le i < j \le n. \end{cases}$$

Design and analyze an iterative bottom-up algorithm that, on input A, returns B(1, n) by performing $O(n^3)$ sums.

Exercise 1.11 Let n > 0. Assume that a given dynamic programming strategy leads to the following recurrence, defined for all values of i and j with $1 \le i \le j \le n$:

$$C(i,j) = \begin{cases} 1 & (i=1) \text{ and } (j=n), \\ \sum_{r=1}^{i-1} C(r,j) + \sum_{s=j+1}^{n} C(i,s) & \text{altrimenti.} \end{cases}$$

Design and analyze an iterative bottom-up algorithm that computes all values C(i, j), $1 \le i \le j \le n$.

Exercise 1.12 Given the following bottom-up code:

$$\begin{aligned} \text{DP_SUM}(n) \\ \text{for } i \leftarrow 1 \text{ to } n \text{ do } A[i,i] \leftarrow i \\ \text{for } \ell \leftarrow 2 \text{ to } n \text{ do} \\ \text{for } i \leftarrow 1 \text{ to } n - \ell + 1 \text{ do} \\ j \leftarrow i + \ell - 1 \\ A[i,j] \leftarrow A[i,j-1] + A[i+1,j] \\ \text{return } A[1,n] \end{aligned}$$

write an equivalent memoized code and analyze its running time in terms of sums between integers.

Exercise 1.13 Given a string $X = \langle x_1, x_2, \ldots, x_n \rangle$, consider the following recurrence $\ell(i, j)$, defined for $1 \le i \le j \le n$:

$$\ell(i,j) = \begin{cases} 1 & i = j, \\ 2 & i = j - 1 \\ 2 + \ell(i+1,j-1) & (i < j-1) \land (x_i = x_j) \\ \sum_{k=i}^{j-1} (\ell(i,k) + \ell(k+1,j)) & (i < j-1) \land (x_i \neq x_j). \end{cases}$$

Design memoized code to return the value $\ell(1, n)$ and analyze the code both in the worst case and in the best case, assuming that the only unit-cost operations are character comparisons.