Esercizi su Dynamic Programming

Exercise 1.1 Write an algorithm to find the maximum value that can be obtained with

a full parenthesization of the expression

x1/xo/T3) . 1/ T,
where 1, xs, ..., x, are positive rational numbers and “/” denotes division.

Exercise 1.2 Give an algorithm that uses the table of additional information S-, -] (com-
puted by the Matrix-Chain Multiplication dynamic programming algorithm seen in class)

to print the optimal parenthesization for the matrix chain.

Exercise 1.3 Given the string A = (ay,as, ..., a,), we say that A; ; = (a;, ait1,. .., q;)
is a palindrome substring of A if a;1, = aj_p, for 0 < h < j —i. (Intuitively, a palindrome
substring is one which is identical to its “mirror” image. For example, if A = accaba, then

both A; 4 = acca and Ay ¢ = aba are palindrome substrings of A.)

(a) Design a dynamic programming algorithm that determines the length of a longest

palindrome substring of a string A in O(n?) time and O(n?) space.

(b) Modify your algorithm so that it uses only O(n) space, while the running time remains

unaffected.

Exercise 1.4 Design and analyze a dynamic programming algorithm which, on input a
string X, determines the minimum number p of palindrome substrings of X, Y7,Y5,...,Y,
such that X = (Y7,Y5,...,Y,).

Exercise 1.5 Design and analyze a dynamic programming algorithm that, given in input
a string X, returns the maximum length of a palindrome subsequence of X. The algorithm

must run in time and space O(n?).



Exercise 1.6 Given a string of arbitrary integers Z = (21, 29,...,2k) let weight(Z) =
% | zi (note that weigth(e) = 0). Given two integer strings X = (71, 79,...,T,) ¢ Y =
(Y1,Y2, - - -, Yn), design a dynamic programming algorithm to determine a Maximum-Weight
Common Subsequence (MWCS) Z of X and Y.

Exercise 1.7 Design and analyze a dynamic programming algorithm which, on input

two nonnegative integers n and k, with n > 0 and 0 < k < n, outputs (Z) by performing

©(nk) sums. (Hint: Prove that for 0 < k < n, (") = (n_l) + ("_1).)

k k k—1

Exercise 1.8 Given two strings X and Y, a third string Z is a common superstring of
X and Y, if X and Y are both subsequences of Z. (Ezample: if X = sos and Y = soia,
then Z = sosia is a common superstring of X and Y.) Design and analyze a dynamic
programming algorithm which, given as input two strings X and Y, returns the length of
the Shortest Common Superstring (SCS) of X and Y and additional information needed
to print the SCS. The algorithm must run in time O(|X||Y|). (Hint: Use an approach

similar to the one used to compute the LCS of two strings.)

Exercise 1.9 Given two strings of integers Z' and Z2, with |Z'| = |Z?| = k, we define
their discrepancy as d(Z', Z%) = Y%, |Z} — Z?|. Design and analyze a dynamic program-
ming algorithm which, on input two (arbitrary) strings of integers X e Y, computes the
maximum discrepancy obtainable by a subsequence of X and a subsequence of Y of equal

length by performing ©(|X||Y|) comparisons and sums between integers.

Exercise 1.10 Let n > 0. Given a string of n integers A = (aq, as, ..., a,), consider the

following recurrence, defined for all pairs (i, 7), with 1 <7 < j <mn:

By =1 @ 1<i=j<n,
Z’ = . . . . . .
J max{B(i,k)-Blk+1,j):i<k<j—1} 1<i<j<n.

Design and analyze an iterative bottom-up algorithm that, on input A, returns B(1,n) by

performing O(n?) sums.

Exercise 1.11 Let n > 0. Assume that a given dynamic programming strategy leads to

the following recurrence, defined for all values of ¢ and 7 with 1 <i < j < n:

Cli ) 1 (i=1) and (j =n),
i,7) = ,
! 2V C(rj) + X011 Cli,s)  altrimenti.

Design and analyze an iterative bottom-up algorithm that computes all values C(i, ),
1<i1<y3<n.



Exercise 1.12 Given the following bottom-up code:

DP_SUM(n)
for i + 1 ton do Ali,i] < i
for / < 2 ton do
fori< 1ton—/¢+1do
jei+0-1
Afi,j] < Ali,j — 1]+ Ali + 1, ]
return A[l,n]

write an equivalent memoized code and analyze its running time in terms of sums between

integers.

Exercise 1.13 Given a string X = (zy,9,...,2,), consider the following recurrence
0(i,7), defined for 1 <i < j<n:

1 L= 7,
e i=j-1
CID=V a1 (i< j—1) A=)
I E) -k 1,9)) (i< — 1) A (2 # 2,).

Design memoized code to return the value ¢(1,n) and analyze the code both in the worst
case and in the best case, assuming that the only unit-cost operations are character com-

parisons.



