
MapReduce Algorithms for Robust Center-Based

Clustering in Doubling Metrics

Enrico Dandoloa, Alessio Mazzettob, Andrea Pietracaprinaa, Geppino Puccia,∗

aDept. of Information Engineering, University of Padova, Padova, I-35131, Italy
bDept. of Computer Science, Brown University, Providence, 02912, Rhode Island, USA

Abstract

Clustering is a pivotal primitive for unsupervised learning and data analysis.
A popular variant is the (k, ℓ)-clustering problem, where, given a pointset P
from a metric space, one must determine a subset S of k centers minimizing
the sum of the ℓ-th powers of the distances of points in P from their clos-
est centers. This formulation covers the well-studied k-median (ℓ = 1) and
k-means (ℓ = 2) clustering problems. A more general variant, introduced
to deal with noisy pointsets, features a further parameter z and allows up
to z points of P (outliers) to be disregarded when computing the sum. We
present a distributed coreset-based 3-round approximation algorithm for the
(k, ℓ)-clustering problem with z outliers, using MapReduce as a computa-
tional model. An important feature of our algorithm is that it obliviously
adapts to the intrinsic complexity of the dataset, captured by its doubling
dimension D. Remarkably, for D = O (1), our algorithm requires sublinear
local memory per reducer, and yields a solution whose approximation ratio
is an additive term O(γ) away from the one achievable by the best known
sequential (possibly bicriteria) algorithm, where γ can be made arbitrarily
small. To the best of our knowledge, no previous distributed approaches were
able to attain similar quality-performance tradeoffs for metrics with constant
doubling dimension.

Keywords: Clustering, k-means, k-median, Outliers, MapReduce, Coreset,

∗Corresponding Author
Email addresses: enrico.dandolo.1@studenti.unipd.it (Enrico Dandolo),

alessio_mazzetto@brown.edu (Alessio Mazzetto),
andrea.pietracaprina@unipd.it (Andrea Pietracaprina),
geppino.pucci@unipd.it (Geppino Pucci)

Preprint submitted to Journal of Parallel and Distributed Computing July 25, 2024

Distributed algorithm

1. Introduction

Clustering is a fundamental primitive for data analysis and unsupervised
learning, with applications to diverse domains such as pattern recognition, in-
formation retrieval, bioinformatics, social networks, and many more. Among
the many approaches to clustering, a prominent role is played by (k, ℓ)-
clustering where, given in input a set of points from a metric space, a set of
k distinguished points, dubbed centers, must be determined, such that the
sum of the ℓ-th powers of the distance of each input point to its closest cen-
ter is minimized. This formulation covers the popular k-median clustering
problem for ℓ = 1, and the k-means clustering problem for ℓ = 2. The (k, ℓ)-
clustering problem is computationally hard, hence approximate solutions are
typically sought for.

Since the objective function involves the sum of distance powers, the
optimal solution is at risk of being impacted by a few “distant” points, called
outliers, which may severely bias the optimal center selection. The presence
of outliers is inevitable in large datasets, due to the presence of points that
are artifacts of data collection, either representing noisy measurements or
simply erroneous information. To cope with this limitation, we focus on a
heavily studied robust formulation that takes into account outliers [1]: when
computing the objective function for a set of k centers, the z largest distances
from the centers are not included in the sum, where z is an additional input
parameter representing a threshold for the number of noisy points. This
formulation of the problem is known as (k, ℓ)-clustering with z outliers.

There is an ample and well-established literature on sequential strate-
gies for different instantiations of (k, ℓ)-clustering, with and without outliers.
However, with the advent of big data, the high volumes that need to be pro-
cessed often rule out the use of unscalable, sequential strategies. Therefore, it
is of paramount importance to devise efficient clustering strategies tailored to
typical distributed computational frameworks for big data processing, such
as MapReduce [2].

In this paper, we present a scalable MapReduce approximation algorithm
for (k, ℓ)-clustering with z outliers.

2

1.1. Related Work

The (k, ℓ)-clustering problem has been extensively studied in the litera-
ture. Here, for brevity, we mainly report on the results on general metrics,
which are most relevant for our work, and refer the reader to [3, 4, 5] for a
more comprehensive overview of the literature. For the special cases of k-
median (ℓ = 1) and k-means (ℓ = 2), the best sequential algorithms to date
on general metrics are, respectively, the 2.675-approximation for k-median
of [6], and the 6.357-approximation for k-means of [7], and the randomized
PTAS for both problems of [5] for spaces of constant doubling dimension.
A simpler and faster randomized option for k-means is the k-means++ al-
gorithm of [8], whose approximation ratio, which is O(log k) in expectation,
can be lowered to a constant by running the algorithm for ρk centers, with
ρ = O(1) [9]. For general values of ℓ it is shown in [10] that local-search
yields an O (ℓ) approximation. Also, the results of [8, 9] can be generalized
to the case ℓ > 2 with a factor exponential in ℓ in the approximation.

A number of sequential algorithms have also been proposed for k-median
and k-means with z outliers. The best results to date are the LP-based ap-
proaches of [3], which yield solutions for both problems featuring an expected
(7.081 + ϵ)-approximation (resp., 53.002 + ϵ-approximation) for k-median

(resp., k-means) with z outliers, in time |P |O(1/ϵO(1)). We also wish to men-
tion the work of [11], which provides a randomized local search strategy for
k-means running in time O (|P |z + (1/ϵ)k2(k + z)2 log(|P |∆)), and yielding a
274-approximate bicriteria solution with k centers and O((1/ϵ)kz log(|P |∆))
outliers, where ∆ is the ratio between the maximum and minimum pair-
wise distances. Finally, for spaces of doubling dimension D, [12] devises a
different (deterministic) local search strategy yielding a bicriteria solution
with (1 + ϵ)k centers and z outliers achieving approximation 1 + O (ϵ), in

time O
(
(k/ϵ)|P |(D/ϵ)Θ(D/ϵ)

log(|P |∆)
)

for both the k-median and k-means

problems.
In recent years, there has been growing interest in the development of

distributed clustering algorithms (e.g., see [13] and references therein). In
this realm, a number of algorithms have been devised based on the dis-
tributed construction of a coreset, that is, a succinct representation of the
input that preserves the properties needed to solve a given computational
problem, and upon which a sequential α-approximation algorithm can be
run to obtain the final solution. In particular, in [14] a randomized MapRe-
duce algorithm for k-median is proposed which, for inputs of size n, returns a

3

(10α+3)-approximation using O(1/δ) rounds and O(k2nδ) local memory, for
any δ ∈ (0, 1). In [15] a parallelization of the popular k-means++ algorithm
(dubbed k-means||) is proposed, together with a MapReduce implementa-
tion, which, for k-means, returns an O (α)-approximation using O (log n)
rounds and O(k log n) local memory.

In the continuous setting, that is, when points are in Rd and centers are
not required to belong to the input, Balcan et al. [16] present a random-
ized coreset-based 2-round algorithm which, for any fixed ϵ ∈ (0, 1), fea-
tures an (α+O(ϵ))-approximation ratio and requires O (kd/ϵ2 + Lk) (resp.,
O (kd/ϵ4 + Lk log(Lk))) local space for k-median (resp., k-means) when us-
ing L processing elements. For k-means, a recent improvement, reducing
the local memory requirements by a factor O(ϵ2) is presented in [17]. It is
not difficult to show that a straightforward adaptation of these algorithms
to general metric spaces (hence in a non-continuous setting) would yield
(c · α + O(ϵ))-approximations, with c ≥ 2, thus introducing a non-negligible
gap with respect to the quality of the best sequential approximations.

More recently, a randomized MapReduce algorithm for k-median in gen-
eral metrics has been presented in [13], where a sequential local-search is
employed to extract a small family of possible solutions from random sam-
ples of the input. A suitable refinement of the best solution in the family is
then returned. While extensive experiments support the effectiveness of this
approach in practice, no tight theoretical analysis of the resulting approxi-
mation quality is provided.

The literature on distributed approaches to (k, ℓ)-clustering with outliers
is more scant. The simple sequential coreset-based strategy of [18] for k-
means can be easily made into a 2-round MapReduce algorithm yielding a
solution featuring a nonconstant O (log(k + z)) approximation in expectation
and local memory

√
|P |(k + z). In [19], an LP-based algorithm is developed

for the coordinator model, yielding a O (1 + 1/ϵ)-approximate bicriteria so-
lution, with an excess factor (1+ ϵ) either in the number of outliers or in the
number of centers, using Õ(Lk + z) communication words, where L is the
number of available workers. In the coordinator model, better bounds have
been obtained for the special case of Euclidean spaces in [20, 21].

In the extreme case of ℓ = ∞, (k, ℓ)-clustering becomes the well-known
k-center clustering problem, which aims at finding a set of k points such that
the maximum distance of an input point to the closest center is minimized.
The work of [22] provides a 2-round MapReduce algorithm that computes
a 2 + ϵ approximate solution for the k-center problem using local memory

4

O
(√

Pk/ϵD
)
, and a 3-round MapReduce algorithm that computes a 3 + ϵ

approximate solution for the k-center problem with z outliers using local

memory O
(√

P (k + z)/ϵD
)
, where D is the doubling dimension of the input

set P .
Coresets have been extensively studied for many different problems such

as clustering, supervised learning, diversity maximization, and the small-
est enclosing ball problem; we refer to the surveys [23, 24, 25] and references
therein for an extensive review of results in this area. In the realm of big data
applications, coresets are often employed in a streaming or distributed setting
[16, 26, 27, 28, 29, 22, 30]. There is a vast literature on the construction of
small coresets for center-based clustering, either restricted to the Euclidean
space [31, 32, 33, 34, 35, 36, 37, 38, 39, 40], or applicable to general metric
spaces [41, 42, 43, 44, 45, 46]. However, these sequential coreset construc-
tions cannot be straightforwardly ported to the distributed setting, while
maintaining similar approximation guarantees. Indeed, for general metrics,
the naive composable approach [47], that simply gathers together the coresets
constructed locally for each subset of a partition of the input data, does not
necessarily yield a coreset able to achieve the desired approximation guaran-
tee. Additionally, most of the above coreset constructions rely on sampling
and are randomized.

1.2. Our Contribution

We present a scalable coreset-based MapReduce algorithm for (k, ℓ)-
clustering with z outliers, targeting the solution of very large instances.
The algorithm first computes, distributedly, a coreset of suitably selected
input points which act as representatives of the whole input, where each
coreset point is weighted in accordance to the number of input points it rep-
resents. Then, the final solution is computed by running on the coreset an
α-approximate sequential algorithm for the weighted variant of the problem.
Our approach is flexible, in the sense that it leverages any sequential bicri-
teria approximation algorithm for the weighted case, i.e., returning a larger
number ρk of centers and/or excluding a larger number τz of outliers, to dis-
tributedly compute a solution for a large instance attaining almost the same
quality ensured by the sequential algorithm. Indeed, our MapReduce algo-
rithm features an approximation ratio of α+O (γ), where α is the approxima-
tion guarantee of the employed sequential algorithm (with respect to k centers
and z outliers), and γ is a user-provided accuracy parameter which can be

5

made arbitrarily small. The algorithm requires 3 rounds and a local memory

at each worker of size O
(
min

{
|P |,

√
|P |(ρk + τz)(ℓ · 2ℓ · c/γ)2D log2 |P |

})
,

where c is a constant and D is the doubling dimension of P . For reasonable
configurations of the parameters and, in particular, for D = O (1), the local
space is substantially smaller than the input size. It is important to remark
that the algorithm is oblivious to D, in the sense that while the actual value
of this parameter (which is hard to compute) influences the analysis, it is
not needed for the algorithm to run. As a proof of concept, we describe
how the sequential bicriteria algorithms by [11] and [12] for (k, 2)-clustering
(i.e., k-means clustering) with z outliers can be extended to handle weighted
instances, so that, when used within our MapReduce algorithm, they allow
us to get comparable constant approximations in a distributed fashion.

We remark that the main contributions of our algorithm are: (i) its sim-
plicity, since our coreset construction does not require multiple invocations
of complex, time-consuming sequential algorithms for k-means with outliers
(as is the case in [19]); and (ii) its versatility, since the scheme is able to
exploit any sequential algorithm for the weighted case (bicriteria or not) to
be run on the scaled-down coreset with a minimal extra loss in accuracy. In
fact, to the best of our knowledge, ours is the first MapReduce approach to
(k, ℓ)-clustering with z outliers which, for metric spaces with constant dou-
bling dimension, can achieve an approximation arbitrarily close to the one of
the best available sequential solution, either exact or bicriteria.

Novelty with respect to conference versions. This work merges and ex-
pands the results contained in two preliminary conference versions [30, 48].
In particular, (a) for the case without outliers (z = 0), the presented algo-
rithm extends and improves upon the MapReduce algorithm in [30], which is
limited to (k, ℓ)-clustering for ℓ = 1 and ℓ = 2 (k-median and k-means with
no outliers), to handle any integer ℓ ≥ 1 and to exhibit a local memory pro-
portional to |P |1/2 rather than |P |2/3; (b) for the case with outliers (z > 0),
the algorithm extends the results in [48], which are limited to (k, 2)-clustering
(k-means), to (k, ℓ)-clustering for general values of ℓ.

Organization of the paper. Section 2 contains the main definitions and
some preliminary concepts. Section 3 describes a simplified coreset construc-
tion (Subsection 3.1), the full algorithm (Subsection 3.2), and a more space-
efficient coreset construction, which yields our main result (Subsection 3.3).
Section 4 discusses an instantiation of our MapReduce algorithm that uses

6

suitable adaptations of the sequential state-of-the-art algorithms of [11] and
[12]. Finally, Section 5 provides some final remarks and directions for future
work.

2. Preliminaries

Let P be a set of points from a metric space with distance function
d : P × P 7→ R≥0. We assume that every point can be represented using
O(1) memory and that we can compute the distance between two points
given their representations. For any point p ∈ P and subset S ⊆ P , define
the distance between p and S as d(p, S)

.
= minq∈S d(p, q). Also, we let pS

denote a point of S closest to p, that is, a point such that d(p, pS) = d(p, S),
with ties broken arbitrarily. For an arbitrary subset S ⊂ P and for any
integer ℓ ≥ 1, we define the cost function

cost(ℓ)(P, S)
.
=
∑
p∈P

d(p, S)ℓ .

Given P and positive integers k < |P | and ℓ ≥ 1, the (k, ℓ)-clustering problem
requires to find a subset S ⊂ P of size k which minimizes cost(ℓ)(P, S).
Observe that the values ℓ = 1 and ℓ = 2 yield respectively the well known
k-median and k-means problems. We focus on a robust version of (k, ℓ)-
clustering, known in the literature as (k, ℓ)-clustering with z outliers. In this
problem, we are given an additional integer parameter z ≤ |P |, and we seek
a set S ⊂ P of k centers which minimizes cost(ℓ)(P\outz(P, S), S), where
outz(P, S) denotes the set of z points of P farthest from S, with ties broken

arbitrarily. We let OPT
(ℓ)
k (P) (resp., OPT

(ℓ)
k,z(P)) denote the cost of the

optimal solution of (k, ℓ)-clustering (resp., (k, ℓ)-clustering with z outliers)
on P .

The following propositions are folklore results and state technical prop-
erties that will be needed in the analysis.

Proposition 1. For every k > 0 and z ≥ 0, we have OPT
(ℓ)
k+z(P) ≤

OPT
(ℓ)
k,z(P).

Proof. Let S∗ be the optimal solution of (k, ℓ)-clustering with z outliers on

P , that is, such that cost(ℓ)(P\outz(P, S∗), S∗) = OPT
(ℓ)
k,z(P), and let S̄ =

S∗ ∪ outz(P, S
∗). Since |S̄| ≤ k + z, we have that

OPT
(ℓ)
k+z(P) ≤ cost(ℓ)(P, S̄) ≤ cost(ℓ)(P\outz(P, S∗), S∗) = OPT

(ℓ)
k,z(P).

7

cost(ℓ)(P, S) =
∑

p∈P d(p, S)ℓ

OPT
(ℓ)
k (P) = minS⊂P,|S|=k cost(ℓ)(P, S)

outz(P, S) = z points of P farthest from S

OPT
(ℓ)
k,z(P) = minS⊂P,|S|=k cost(ℓ)(P\outz(P, S), S)

cost(ℓ)(P,wP , S) =
∑

p∈P wP (p)d(p, S)ℓ

OPT
(ℓ)
k (P,wP) = minS⊂P,|S|=k cost(ℓ)(P,wP , S)

OPT
(ℓ)
k,z(P,wP) = minS⊂P,|S|=k cost(ℓ)(P, ŵP , S), where ŵP is obtained from wP

by decreasing z units from points of P farthest from S

Table 1: Notations used throughout the paper: P is a set of |P | points, S is a subset of
P , and 0 < z < n is an integer parameter.

Proposition 2. For any p, q ∈ P , S ⊆ P , we have:

d(p, S) ≤ d(p, q) + d(q, S).

Proof. The inequality follows since d(p, S) = d(p, pS) ≤ d(p, qS) ≤ d(p, q) +
d(q, qS) = d(p, q) + d(q, S).

Proposition 3. For any ℓ ≥ 1, and a, b, λ > 0, we have:

(a+ b)ℓ ≤ 2ℓ−1(aℓ + bℓ)

|aℓ − bℓ| ≤ ℓ(aℓ−1 + bℓ−1)|a− b|

abℓ−1 ≤ 1

ℓλℓ
aℓ +

ℓ− 1

ℓ
bℓλ

ℓ
ℓ−1 .

Proof. To prove the first inequality, it is sufficient to observe that (a+ b)ℓ =
2ℓ(a/2+ b/2)ℓ, and that the function x 7→ xℓ is convex for ℓ ≥ 1. The second
inequality is an immediate corollary of Theorem 2 of [49]. Finally, for the
third inequality, we have

abℓ−1 =
a

λ
· (λbℓ−1)

≤ 1

ℓ

(a
λ

)ℓ
+

ℓ− 1

ℓ
(λbℓ−1)

ℓ
ℓ−1 ,

where the last step uses the Young’s inequality for products [50, Ch.12].

8

In the weighted variant of (k, ℓ)-clustering, each point p ∈ P carries a
positive integer weight wP (p). Letting wP : P → Z+∪{0} denote the weight
function, the problem requires to determine a set S ⊂ P of k centers min-
imizing the cost function cost(ℓ)(P,wP , S) =

∑
p∈P wP (p)d(p, S)

ℓ. Likewise,
the weighted variant of (k, ℓ)-clustering with z outliers requires to determine
S ⊂ P which minimizes the cost function cost(ℓ)(P, ŵP , S), where ŵP is ob-
tained from wP by decreasing the weights associated with the points of P
farthest from S, progressively until exactly z units of weights overall are sub-
tracted. More precisely, let pi denote the i-th point in a sorting of P by
non-increasing order of distance from S, for i = 1, 2, . . . , |P |, and let iz be
the largest index such that

∑iz
j=1wP (pj) ≤ z. Then

ŵP (pi) =

0 if i ≤ iz
wP (pi)− (z −

∑iz
j=1wP (pj)) if i = iz + 1

wP (pi) if i > iz + 1

We let OPT
(ℓ)
k (P,wP) and OPT

(ℓ)
k,z(P,wP) denote the cost of the optimal so-

lutions of the two weighted variants above, respectively. (Table 1 summarizes
the main notations used in the paper.)

Doubling Dimension. The algorithm presented in this paper is designed
for general metric spaces, and its performance is analyzed in terms of the
dimensionality of the dataset P , as captured by the the well-established
notion of doubling dimension defined as in [51]. For any p ∈ P and r > 0, let
the ball of radius r centered at p be the set of points of P at distance at most
r from p. The doubling dimension of P is the smallest value D such that for
every p ∈ P and r > 0, the ball of radius r centered at p is contained in the
union of at most 2D balls of radius r/2, centered at suitable points of P .

The notion of doubling dimension has been used extensively for a variety
of applications (e.g., see [52, 53, 54, 55] and references therein). It can
be regarded as a generalization of the Euclidean dimensionality to general
spaces. In fact, it is possible to prove that any set of points P ⊂ Rd has
doubling dimension D = O (d) under the Euclidean distance [56].

Our algorithm is effective for input sets P of doubling dimension D =
O (1), which clearly include all inputs sets belonging to metric spaces of
constant doubling dimension, usually referred to as doubling metrics in the
literature [42]. In the analysis, the doubling dimension plays a key role to
upper bound the size of our coresets. To this purpose, we use a technical

9

result that provides a bound on the maximum number of mutually distant
points contained in a ball of a given radius as a function of the doubling
dimension. Intuitively, a low-dimensional pointset cannot have too many
points that are mutually distant from one another. This is formalized as
follows. A set of points X is said to be an r-clique if for any x, y ∈ X, x ̸= y,
it holds that d(x, y) > r. We have:

Proposition 4. Let P be a pointset of doubling dimension D. For 0 < ϵ < 1
and r > 0, let X ⊆ P be an ϵ · r-clique which is contained in a ball of radius
r centered at some point of X. Then, |X| ≤ (4/ϵ)D.

Proof. By recursively applying the definition of doubling dimension, we ob-
tain that the ball of radius r which includes X can be covered by 2jD balls of
radius 2−j · r, where j is any non-negative integer. Let i be the least integer
for which 2−i · r ≤ ϵ/2 · r holds. Any of the 2iD balls with radius 2−i · r can
contain at most one point of X, since X is a ϵ · r-clique. Thus |X| ≤ 2iD. As
i = 1 + ⌈log2 (1/ϵ)⌉, we finally obtain that |X| ≤ (4/ϵ)D.

Model of Computation. We present and analyze our algorithms using the
MapReduce model of computation [2, 57], which is one of the reference mod-
els for the distributed processing of large datasets, and has been effectively
used for clustering problems (e.g., see [58, 22, 59]). A MapReduce algorithm
specifies a sequence of rounds, where in each round, a multiset X of key-
value pairs is first transformed into a new multiset X ′ of pairs by applying
a given map function in parallel to each individual pair, and then into a
final multiset Y of pairs by applying a given reduce function (referred to as
reducer) in parallel to each subset of pairs of X ′ having the same key. When
the algorithm is executed on a distributed platform, the applications of the
map and reduce functions in each round are (automatically) assigned to the
available processors so as to maximize parallelism. The data, maintained in
a distributed storage system, are brought to the processors’ local memories
in chunks, when needed by the map and reduce functions. Key performance
indicators are the number of rounds and the maximum local memory re-
quired by individual executions of the map and reduce functions. Efficient
algorithms typically target few (possibly, constant) rounds and substantially
sublinear local memory.

We wish to remark that the Massively Parallel Computation (MPC)
model of [60, 61] can be seen as an instantiation of the above MapReduce
model, with the extra constraint that the number of processors and the size

10

of their individual local memories must be O (N1−ϵ), where N is the input
size and ϵ ∈ (0, 1) is a constant.

Coreset. Our algorithm revolves around an efficient and distributed con-
struction of a coreset. In particular, we want our coreset to represent P with
respect to the (k, ℓ)-clustering problem, in the sense that: (i) the cost of any
solution with respect to P can be well approximated using the coreset; and
(ii) the coreset contains a good solution to P . In the literature (e.g., [5]), the
above properties are captured, respectively, by the concepts of γ-approximate
coreset and γ-centroid set, which are formally defined as follows. Let T be a
subset of P weighted according to a proxy function π : P → T , where the
weight of each q ∈ T is wT (q) = |{p ∈ P : π(p) = q}|.
Definition 1 (γ-approximate coreset). For γ ∈ (0, 1), (T,wT) is a γ-
approximate coreset for P with respect to k, ℓ, and z if for every S,Z ⊂ P ,
with |S| ≤ k and |Z| ≤ z, we have:

|cost(ℓ)(P\Z, S)− cost(ℓ)(T, ŵT , S)| ≤ γ · cost(ℓ)(P\Z, S),

where ŵT is such that for each q ∈ T , ŵT (q) = wT (q)−|{p ∈ Z : π(p) = q}|.
Recent works [42, 45] provide algorithms to construct small γ-

approximate coresets in doubling metrics. Unfortunately, we will not be
able to employ those constructions since they rely on sampling and are thus
randomized, while we target deterministic solutions. Additionally, their sam-
pling strategies require the knowledge of the doubling dimension D of the
input set, whereas we seek an algorithm which is oblivious to D.

Definition 2 (γ-centroid set). For γ ∈ (0, 1), (T,wT) is a γ-centroid set for
P with respect to k, ℓ, and z if there exists a set X ⊆ T of at most k points
such that

cost(ℓ)(P\outz(P,X), X) ≤ (1 + γ) ·OPT
(ℓ)
k,z(P).

The idea of centroid set was originally introduced in [62]. In our work, we
present a MapReduce construction of a γ-centroid set for the (k, ℓ)-clustering
problem in doubling metrics. There is another previous work that addresses
the construction of γ-centroid sets in doubling metrics [42], however, this con-
struction seems inherently sequential and there is no straightforward adapta-
tion to the distributed setting. In fact, it is not possible to adopt the simple
distributed strategy where we construct a γ-centroid set for each subset of a
partition of the input data, and then consider the union of these sets, since
this union is not necessarily a γ-centroid set for the whole input.

11

3. MapReduce algorithm for (k, ℓ)-clustering with z outliers

In this section, we present a MapReduce algorithm for (k, ℓ)-clustering
with z ≥ 0 outliers running in 3 rounds with sublinear local memory. We
remark that by setting z = 0, the algorithm specializes to the non-robust
version of (k, ℓ)-clustering problem, and notably, to the standard k-median
(ℓ = 1) and k-means (ℓ = 2) problems. As typical of many efficient algorithms
for clustering and related problems, our algorithm uses the following coreset-
based approach. First, a suitably small weighted coreset T is extracted from
the input P , such that each point p ∈ P has a “close” proxy π(p) ∈ T , and
the weight wP (q) of each q ∈ T is the number of points of P for which q is
proxy. Then, the final solution is obtained by running on T the best (possibly
slow) sequential approximation algorithm for weighted (k, ℓ)-clustering with
z outliers, or no outliers in the case z = 0. Essential to the success of
this strategy is that T can be computed efficiently in a distributed fashion,
its size is much smaller than |P |, and it exhibits the properties specified in
Definition 1 and Definition 2, thus providing a suitable representation of P ,
for the clustering purposes.

In Subsection 3.1, we describe a primitive used for our MapReduce coreset
construction. In Subsection 3.2, we present and analyze the final algorithm,
while in Subsection 3.3 we outline how a refined coreset construction can yield
substantially lower local memory requirements. Throughout the section, we
assume that P has doubling dimension D.

3.1. Flexible coreset construction

The construction of our coreset is inspired by the approach introduced
in the seminal work of [31] to solve sequential k-median and k-means in Rd.
Namely, given the input set of points P , first a subset S ⊂ P of size k, or
(slightly) larger, is determined, such that cost(ℓ)(P, S) ≤ β · OPT

(ℓ)
k (P), for

some constant β > 1. Next, a refinement procedure is invoked to inflate S
into a larger set C in such a way that sufficiently distant points from S in
P have their distance decreased in C by a factor O (δ), where 0 < δ < 1
is an accuracy parameter that can be made arbitrarily small. The resulting
set C is such that

∑
p∈P d(p, C)ℓ ≤ δ · OPT

(ℓ)
k (P), a relation that can be

used to show that C is an O (δ)-approximate coreset for the (k, ℓ)-clustering
problem. In [31], C is obtained through the construction of a hierarchy of
grids of exponentially increasing cell size around the points of S ⊂ Rd.

12

Our objective is to leverage the approach of [31] outlined above, to provide
a MapReduce algorithm for (k, ℓ)-clustering for non-Euclidean spaces. To
this purpose, we have to face the following three challenges: (i) we cannot
simply compute the initial set S from P through a sequential algorithm,
since large inputs need to be processed distributedly; (ii) we must provide a
distributed counterpart of the exponential grid refinement for general metrics;
and (iii) in general metrics (as also observed in [31]) we also need to guarantee
that the resulting coreset is a O(δ)-centroid set. In what follows, we detail
how we face these three challenges.

The first ingredient of our coreset construction is a sequential approxi-
mation algorithm referred to as SeqClust, which, given in input an instance
(Q, k, ℓ), comprising a dataset Q and the values k and ℓ, computes a solution
to the (k, ℓ)-clustering problem without outliers for Q. Possible choices for
SeqClust are, for instance, the algorithms of [8, 10, 9]. The coreset con-
struction uses SeqClust as a black box, but it requires the knowledge of an
upper bound on its approximation ratio, which we denote by β ≥ 1 in what
follows. In Section 4 we will discuss state-of-the-art options for the actual
instantiation of SeqClust, for varying ℓ.

The second ingredient of our coreset construction is the procedure
CoverWithBalls, which, given an arbitrary coreset X ⊂ P , constructs a
more refined coreset Y ⊂ P such that points of P that were somewhat far
from X are brought closer to Y . More precisely, given X, a precision pa-
rameter δ, and a distance threshold R, CoverWithBalls builds a weighted
coreset Y ⊂ P whose size is not much larger than X, such that for each
p ∈ P , Y contains a proxy π(p) such that d(p, π(p)) ≤ δmax{R, d(p,X)}.
For every q ∈ Y , its weight wY (q) is set equal to the number of points of P
for which q is proxy. The pseudocode for CoverWithBalls (see Algorithm 1
below), is based on a simple greedy procedure.

We wish to remark that the proxy function π is not explicitly stored, but
it is implicitly represented by vector w, in the sense that the output (Y,w)
satisfies the following properties:

• for every q ∈ Y , wY (q) = |{p ∈ P : π(p) = q}|;

• for every p ∈ P\Y , d(p, π(p)) ≤ δmax{R, d(p,X)}.

The following lemma provides a bound on the coreset Y returned by
CoverWithBalls(P,X, δ, R) with respect to the size of the original coreset
X.

13

Algorithm 1: CoverWithBalls(P,X, δ, R)

1 Y ← ∅;
2 while P ̸= ∅ do
3 q ←− arbitrarily selected point in P ;
4 Y ←− Y ∪ {q};w(q)←− 1;
5 foreach p ∈ P do
6 if d(p, q) ≤ δmax{R, d(p,X)} then
7 remove p from P ;
8 w(q)←− w(q) + 1; /* q becomes the proxy π(p) of p
9 (not explicitly stored)*/

10 end

11 end

12 end
13 return (Y,w)

Lemma 1. Let Y be the coreset returned by the execution of
CoverWithBalls(P,X, δ, R), and let c be a real value such that, for any
p ∈ P , d(p,X) ≤ cR. Then,

|Y | ≤ |X| · (8/δ)D · (log2 c+ 2),

where D is the doubling dimension of P .

Proof. LetX = {x1, . . . , x|X|} be the starting coreset. For any i, 1 ≤ i ≤ |X|,
let Pi = {p ∈ P : pX = xi} and Bi = {p ∈ Pi : d(p, xi) ≤ R}. In addition,
for any integer value j ≥ 0 and for any feasible value of i, we define Di,j =
{p ∈ Pi : 2

jR < d(p,X) ≤ 2j+1R}. We observe that for any j ≥ ⌈log2 c⌉, the
sets Di,j are empty, since d(p,X) ≤ cR. Together, the sets Bi and Di,j are a
partition of Pi.

For any i, let Yi = Y ∩Bi. We now want to show that the set Yi is a δR-
clique. Let y1, y2 be any two different points in Yi and suppose, without loss
of generality, that y1 was added first to Y . Since y2 was not removed from P ,
this means that d(y1, y2) > δmax{d(y2, X), R} ≥ δR, where we used the fact
that d(y2, X) ≤ R since y2 belongs to Bi. Since Yi ⊆ Bi, and Bi is contained
in a ball of radius R centered in xi, thus we can apply Proposition 4 and
bound its size, obtaining that |Yi| ≤ (4/δ)D.

For any i and j, let Yi,j = Y ∩Di,j. We can use a similar strategy to bound
the size of those sets. We first show that the sets Yi,j are (δ/2)2

j+1R-cliques.

14

Let y1, y2 be any two different points in Yi,j and suppose, without loss of
generality, that y1 was added first to Y . Since y2 was not removed from P ,
this means that d(y1, y2) > δmax{d(y2, X), R} ≥ (δ/2)2j+1R, where we used
the fact that d(y2, X) > 2j ·R since y2 belongs to Di,j. Since Yi,j ⊆ Di,j, and
Di,j is contained in a ball of radius 2j+1R centered in xi, thus we can apply
again Proposition 4 and obtain that |Ci,j| ≤ (8/δ)D. Since the Yi’s and Yi,j’s
form a partition of Y , we have that:

|Y | ≤
|X|∑
i=1

|Yi|+
|X|∑
i=1

⌈log2 c⌉−1∑
j=0

|Yi,j| ≤ |X|(8β/ϵ)D(log2 c+ 2) .

The following technical lemma provides a sufficient condition for a
weighted set to be an approximate coreset. This result will be used in our
proof, and it will prove convenient to analyze the set of points returned by
the CoverWithBalls procedure.

Lemma 2. Let (T,wT) be such that
∑

p∈P d(p, π(p))ℓ ≤ δ ·OPT
(ℓ)
k,z(P). Then,

(T,wT) is a σ-approximate coreset for P with respect to k, ℓ, and z, where
σ = δ for ℓ = 1, and σ = ℓ2ℓ−2δ + ℓ(2ℓ−2 + 1)δ1/ℓ for ℓ > 1.

Proof. Consider two arbitrary subsets S, Z ⊂ P with |S| ≤ k and |Z| ≤ z,
and let ŵ be obtained from w by subtracting the contributions of the elements
in Z from the weights of their proxies. We have:∣∣cost(ℓ)(P\Z, S)− cost(ℓ)(T, ŵ, S)

∣∣ = |
∑

p∈P\Z

d(p, S)ℓ −
∑
q∈T

ŵqd(q, S)
ℓ|

= |
∑

p∈P\Z

d(p, S)ℓ −
∑

p∈P\Z

d(π(p), S)ℓ|

≤
∑

p∈P\Z

∣∣d(p, S)ℓ − d(π(p), S)ℓ
∣∣ .

15

Consider first the case ℓ = 1. Then,

|d(p, S)− d(π(p), S)| ≤
∑

p∈P\Z

d(p, π(p))

(since, by Proposition 2,

−d(p, π(p) ≤ d(p, S)− d(π(p), S) ≤ d(p, π(p))

≤ δ ·OPT
(ℓ)
k,z(P)

≤ δ · cost(ℓ)(P\Z, S),

where the last two inequalities follow from the hypothesis and from the
straightforward observation that OPT

(ℓ)
k,z(P) ≤ cost(ℓ)(P\Z, S). Instead, for

ℓ > 1, we have:∑
p∈P\Z

∣∣d(p, S)ℓ − d(π(p), S)ℓ
∣∣

≤ ℓ
∑

p∈P\Z

|d(p, S)− d(π(p), S)|(d(p, S)ℓ−1 + d(π(p), S)ℓ−1)

≤ ℓ
∑

p∈P\Z

(
d(p, π(p))(d(p, S)ℓ−1 + 2ℓ−2(d(p, S)ℓ−1 + d(p, π(p))ℓ−1))

)
(by Proposition 2, as for the case ℓ = 1)

≤ ℓ2ℓ−2
∑

p∈P\Z

d(p, π(p))ℓ + ℓ(2ℓ−2 + 1)
∑

p∈P\Z

d(p, π(p))d(p, S)ℓ−1.

In the first inequality, we used Proposition 3. By reasoning as for the case
ℓ = 1, we get that the first sum is upper bounded by δ · cost(ℓ)(P\Z, S). Let
us now concentrate on the second sum. By using Proposition 3 again, we
have that∑
p∈P\Z

d(p, π(p))d(p, S)ℓ−1 ≤ 1

ℓλℓ

∑
p∈P\Z

d(p, π(p))ℓ +
ℓ− 1

ℓ
λ

ℓ
ℓ−1

∑
p∈P\Z

d(p, S)ℓ

≤
(1

ℓλℓ
δ +

ℓ− 1

ℓ
λ

ℓ
ℓ−1

)
· cost(ℓ)(P\Z, S).

The lemma follows by setting λ = δ
ℓ−1

ℓ2 .

3.1.1. MapReduce Construction of the Coreset

We are ready to present a 2-round MapReduce algorithm, dubbed
MRcoreset, that, given in input a dataset P , the values k, ℓ, and z, and

16

a precision parameter γ, combines the two ingredients presented above to
produce a weighted coreset which is both an O(γ)-approximate coreset and
an O(γ)-centroid set with respect to k, ℓ, and z. The computation performed
by MRcoreset(P, k, ℓ, z, γ) in each round is described below.

Round 1. The dataset P is evenly and arbitrarily partitioned into L equally
sized subsets, P1, P2, . . . , PL, through a suitable map function. Then, in
parallel, the following steps are performed by a distinct reducer on each Pi,
with 1 ≤ i ≤ L:

1. SeqClust is invoked with input (Pi, k
′, ℓ), where k′ is a suitable function

of k and z that will be fixed later in the analysis, returning a solution
Si ⊂ Pi.

2. Let Ri = (cost(ℓ)(Pi, Si)/|Pi|)1/ℓ. The primitive
CoverWithBalls(Pi, Si, γ/(2β)

1/ℓ, Ri) is invoked, returning a weighted
set of points (Ci, wCi

).

Round 2. The same partition of P into P1, P2, . . . , PL is used. A suit-
able map function is applied so that each reducer receives a distinct Pi and
the triplets (|Pj|, Rj, Cj) computed in Round 1, for all 1 ≤ j ≤ L (the
weights wCj

are ignored). Then, for 1 ≤ i ≤ L, in parallel, the reducer

in charge of Pi sets R =
(∑L

j=1 |Pj| · Rℓ
j/|P |

)1/ℓ
, C = ∪Lj=1Cj, and invokes

CoverWithBalls(Pi, C, γ/(2β)
1/ℓ, R). The invocation returns the weighted

set (Ti, wTi
).

The final coreset returned by the algorithm is (T,wT), where T = ∪Li=1Ti and
wT is the weight function such that wTi

is the restriction of wT to the points
of Pi, for 1 ≤ i ≤ L.

We now characterize the main properties of the coresets computed in
the two rounds of MRcoreset, which will be exploited in the next subsec-
tion to derive the performance-accuracy tradeoffs featured by our solution
to the (k, ℓ)-clustering problem. Recall that we assumed that SeqClust is
instantiated with an approximation algorithm that, when invoked on in-
stance (Pi, k

′, ℓ), returns a set Si ⊂ Pi of k
′ centers such that cost(ℓ)(Pi, Si) ≤

β ·OPT
(ℓ)
k′ (Pi), for some β ≥ 1.

Lemma 3. Let (C,wC) and (T,wT) be the weighted coresets computed by

17

MRcoreset(P, k, ℓ, z, γ). We have:

|C| = O
(
min

{
|P |, |L| · k′ ·

(
16 ℓ
√
β/(

ℓ
√
2γ)
)D · log |P |}) ,

|T | = O
(
min

{
|P |, |L|2 · k′ ·

(
16 ℓ
√
β/(

ℓ
√
2γ)
)2D · log2 |P |}) ,

where D is the doubling dimension of P

Proof. First observe that C and T are subsets of P , hence their sizes are
clearly upper bounded by |P |. For any i = 1, . . . , L and p ∈ Pi, it holds

that Ri · ℓ
√
|Pi| = ℓ

√
cost(ℓ)(Pi, Si) ≥ d(p, Si). By using Lemma 1, we ob-

tain that |Ci| = O
(
k′ ·
(
16 ℓ
√
β/(ℓ
√
2γ)
)D · log |P |), which immediately yields

the second term of the minimum in the bound on |C|. By Lemma 4, we

know that cost(ℓ)(Pi, Ci) ≤ γℓ · OPT
(ℓ)
k′ (Pi). For any p ∈ P we have that

γ ℓ
√
|P |·R = ℓ

√
γℓ
∑

i |Pi|Rℓ
i =

ℓ

√
γℓ
∑

i cost
(ℓ)(Pi, Si) ≥ ℓ

√
γℓ
∑

iOPT
(ℓ)
k′ (Pi) ≥

ℓ

√∑
i cost

(ℓ)(Pi, Ci) ≥ ℓ
√

cost(ℓ)(P,C) ≥ d(p, C). Thus, the second term of

the minimum in the bound on |T | follows by applying Lemma 1 to bound
the sizes of the sets Ti.

As noted in the introduction, while the doubling dimension D appears
in the above bounds, the algorithm does not require the knowledge of this
value, which would be hard to compute.

Lemma 4. Let (C,wC) and (T,wT) be the weighted coresets computed by
MRcoreset(P, k, ℓ, z, γ), and let πC , πT be the corresponding proxy functions.
We have: ∑

p∈P

d(p, πX(p))
ℓ ≤ (2γ)ℓ ·OPT

(ℓ)
k′ (P), (with X = C, T)

Proof. We prove the lemma for X = C, the other case is similar. By the

18

properties of the output of CoverWithBalls we know that

∑
p∈P

d(p, πX(p))
ℓ = γℓ/(2β)

L∑
i=1

∑
p∈Pi

(max{Ri, d(p, Si)})ℓ)

≤ γℓ/(2β)
L∑
i=1

∑
p∈Pi

(Rℓ
i + d(p, Si)

ℓ)

≤ γℓ/(2β)
L∑
i=1

(|Pi|Rℓ
i + cost(ℓ)(Pi, Si))

≤ γℓ ·
L∑
i=1

OPT
(ℓ)
k′ (Pi).

The lemma for X = C will follow by proving that
∑L

i=1OPT
(ℓ)
k′ (Pi) ≤ 2ℓ ·

OPT
(ℓ)
k′ (P). To this purpose, let S∗ be the optimal solution of (k, ℓ)-clustering

on P , and let S∗(Pi) = {cPi : c ∈ S∗}. By the triangle inequality, it follows
that for each x ∈ Pi, d(x, S

∗(Pi)) ≤ 2d(x, S∗), whence

OPT
(ℓ)
k′ (Pi) ≤ cost(ℓ)(Pi, S

∗(Pi)) ≤ 2ℓcost(ℓ)(Pi, S
∗),

which immediately yields the desired bound.

The next theorem establishes the main result of this section regarding the
quality of the coreset (T,wT) with respect to the (k, ℓ)-clustering problem
with z outliers.

Theorem 1. Let σ = 2γ, for ℓ = 1, and σ = ℓ22ℓ−2γℓ + 2ℓ(2ℓ−2 + 1)γ, for
ℓ > 1. For any γ ∈ (0, 1) such that σ ≤ 1/2, setting k′ = k + z in the first
round, MRcoreset(P, k, ℓ, z, γ) returns a weighted coreset (T,wT) which is a
σ-approximate coreset and an O (σ)-centroid set for P with respect to k, ℓ,
and z.

Proof. The fact that (T,wT) is a σ-approximate coreset for P with respect to
k, ℓ, and z, follows directly from Proposition 1, Lemma 2 (setting δ = (2γ)ℓ),
and Lemma 4. We are left to show that (T,wT) is an O (γ)-centroid set for
P with respect to k, ℓ, and z. Let S∗ ⊂ P be the optimal set of k centers
and let Z∗ = outz(P, S

∗). Hence, cost(ℓ)(P\Z∗, S∗) = OPT
(ℓ)
k,z(P). Define

X = {pT : p ∈ S∗} ⊂ T . We show that X is a good solution for the (k, ℓ)-
clustering problem with z outliers for P . Clearly, cost(ℓ)(P\outz(P,X), X) ≤

19

cost(ℓ)(P\Z∗, X), hence it is sufficient to upper bound the latter term. To this
purpose, consider the weighted set (C,wC) computed at the end of Round 1,
and let πC be the proxy function defining the weights wC . Arguing as we did
for (T,wT), we can conclude that (C,wC) is also a σ-approximate coreset for
P with respect to k, ℓ, and z.

Consider first ℓ = 1. By the triangle inequality,

cost(ℓ)(P\Z∗, X) ≤
∑

p∈P\Z∗

d(p, πC(p)) +
∑

p∈P\Z∗

d(πC(p), X)

≤ σ ·OPT
(ℓ)
k,z(P) +

∑
q∈C

ŵC(q)d(q,X)

where ŵC is obtained from wC by subtracting the contributions of the ele-
ments in Z∗ from the weights of their proxies. Then, we have:∑

q∈C

ŵC(q)d(q,X) ≤
∑
q∈C

ŵC(q)d(q, q
S∗
) +

∑
q∈C

ŵC(q)d(q
S∗
, X) +

≤ (1 + σ)OPT
(ℓ)
k,z(P) +

∑
q∈C

ŵC(q)d(q
S∗
, X)

(since (C,wC) is a σ-approximate coreset).

Before proceeding to upper bound the term
∑

q∈C ŵC(q)d(q
S∗
, X) as a

function of OPT
(ℓ)
k,z(P), we obtain the following similar derivation for the

case ℓ > 1. Since σ ≤ 1/2, we have

cost(ℓ)(P\Z∗, X) ≤ 1

1− σ
cost(ℓ)(C, ŵC , X) ≤ (1 + 2σ)cost(ℓ)(C, ŵC , X),

20

Then:

cost(ℓ)(C, ŵC , X) =
∑
q∈C

ŵC(q)d(q,X)ℓ

≤
∑
q∈C

ŵC(q)d(q, q
S∗
)ℓ +

∑
q∈C

ŵC(q)d(q
S∗
, X)ℓ +

+ (2ℓ − 1)
(∑

q∈C

ŵC(q)d(q, q
S∗
)d(qS

∗
, X)ℓ−1 +

+
∑
q∈C

ŵC(q)d(q
S∗
, X)d(q, qS

∗
)ℓ−1

)
=

∑
q∈C

ŵC(q)d(q, q
S∗
)ℓ +

∑
q∈C

ŵC(q)d(q
S∗
, X)ℓ +

+ (2ℓ − 1)
(1

ℓλℓ
1

∑
q∈C

ŵC(q)d(q, q
S∗
)ℓ +

+
ℓ− 1

ℓ
λ

ℓ
ℓ−1

1

∑
q∈C

ŵC(q)d(q
S∗
, X)ℓ

)
+

+ (2ℓ − 1)
(1

ℓλℓ
2

∑
q∈C

ŵC(q)d(q
S∗
, X)ℓ +

+
ℓ− 1

ℓ
λ

ℓ
ℓ−1

2

∑
q∈C

ŵC(q)d(q, q
S∗
)ℓ
)
,

where the last inequality follows by applying Proposition 3 twice, with ar-
bitrary positive values λ1 and λ2 that will be fixed later. Since (C,wC)
is a σ-approximate coreset, we can upper bound every occurence of∑

q∈C ŵC(q)d(q, q
S∗
)ℓ in the above formula with (1+σ)OPT

(ℓ)
k,z(P). Therefore,

we get

cost(ℓ)(C, ŵC , X) ≤

≤
[
1 + σ + (2ℓ − 1)

(1

ℓλℓ
1

(1 + σ) +
ℓ− 1

ℓ
λ

ℓ
ℓ−1

2 (1 + σ)
)]

OPT
(ℓ)
k,z(P) +

+
(
1 + (2ℓ − 1)

(ℓ− 1

ℓ
λ

ℓ
ℓ−1

1 +
1

ℓλℓ
2

))∑
q∈C

ŵC(q)d(q
S∗
, X)ℓ

We now conclude the proof by upper bounding the term∑
q∈C ŵC(q)d(q

S∗
, X)ℓ, using a unique argument for any ℓ ≥ 1. First

21

observe that, since X ⊂ T contains the point in T closest to qS
∗
,

we have d(qS
∗
, X) = d(qS

∗
, T) and CoverWithBalls guarantees that

d(qS
∗
, T) ≤ (γ/(2β)1/ℓ)max{R, d(qS

∗
, C)}, where R is the parameter used

in CoverWithBalls. Also, for q ∈ C, d(qS
∗
, C) ≤ d(qS

∗
, q) = d(q, S∗). Now,∑

q∈C

ŵC(q)d(q
S∗
, X)ℓ ≤

≤ (γℓ/(2β))
∑
q∈C

ŵC(q)((max{R, d(q, S∗)})ℓ)

≤ (γℓ/(2β))
∑
q∈C

ŵC(q)(R
ℓ + d(q, S∗)ℓ)

≤ (γℓ/(2β))

(
((|P | − z)/|P |)

L∑
i=1

|Pi| ·Rℓ
i +
∑
q∈C

ŵC(q)d(q, S
∗)ℓ

)

≤ (γℓ/(2β))

(
L∑
i=1

cost(ℓ)(Pi, Si) +
∑
q∈C

ŵC(q)d(q, S
∗)ℓ

)

≤ (γℓ/(2β))

(
β

L∑
i=1

OPT
(ℓ)
k+z(Pi) + cost(ℓ)(C, ŵC , S

∗)

)

≤ (γℓ/2)

(
L∑
i=1

OPT
(ℓ)
k+z(Pi) + cost(ℓ)(C, ŵC , S

∗)

)
(since β ≥ 1).

Let S̄∗ ⊂ P be the set of k+z centers such that cost(ℓ)(P, S̄∗) = OPT
(ℓ)
k+z(P),

and let S̄∗
i = {qPi : q ∈ S̄∗}, for every 1 ≤ i ≤ L. By us-

ing the triangle inequality, it is easy to argue that for each 1 ≤ i ≤ L
and each x ∈ Pi, d(x, S̄∗

i) ≤ 2d(x, S̄∗), which immediately implies that

OPT
(ℓ)
k+z(Pi) ≤ cost(ℓ)(Pi, S̄

∗
i) ≤ 2ℓcost(ℓ)(Pi, S̄

∗). Thus,
∑L

i=1 OPT
(ℓ)
k+z(Pi) ≤

2ℓ ·OPT
(ℓ)
k+z(P), hence, by Proposition 1,

∑L
i=1OPT

(ℓ)
k+z(Pi) ≤ 2ℓ ·OPT

(ℓ)
k,z(P).

Moreover, since (C,wC) is a σ-approximate coreset for P with respect

to k, ℓ, and z, cost(ℓ)(C, ŵC , S
∗) ≤ (1 + σ)OPT

(ℓ)
k,z(P). Consequently,∑

q∈C ŵC(q)d(q
S∗
, X)ℓ ≤ (γℓ/2)(2ℓ + 1 + σ)OPT

(ℓ)
k,z(P).

By setting λ1 = γ− 1
ℓ and λ2 = γ

ℓ−1
ℓ , for the case ℓ > 1, and putting all

of the above derivations together, and recalling the assumption that ℓ is a

22

(small) constant, after some tedious computation we conclude that

cost(ℓ)(P\Z∗, X) ≤ (1 + 2σ)(1 +O (σ)) ·OPT
(ℓ)
k,z(P)

≤ (1 +O (σ)) ·OPT
(ℓ)
k,z(P).

We conclude the proof by using the definition of σ.

Remark. A careful analysis of the constants involved in the proof of the
above theorem shows that for ℓ = 1 (resp., ℓ = 2) (T,wT) is a (7γ)-centroid
set (resp., (27γ)-centroid set) for P with respect to k, ℓ, and z. Moreover,
observe that Lemma 3 shows that the size of T is exponential in the dou-
bling dimension D. This exponential dependency is also featured in previous
constructions of centroid sets in doubling metrics [42].

3.2. Complete algorithm

Let SeqWeightedClustOut be a sequential algorithm, which, given in in-
put a weighted set (T,wT) and the values k, ℓ, and z, returns a (possibly bicri-

teria) solution S of ρk centers such that cost(ℓ)(T, ŵT , S) ≤ α·OPT
(ℓ)
k,z(T,wT),

where ρ ≥ 1 and ŵT is obtained from wT by scaling τz units of weight from
the points of T farthest from S, for some τ ≥ 1. For γ > 0, the complete algo-
rithm first runs the 2-round MRcoreset(P, ρk, ℓ, τz, γ) algorithm, to extract
a weighted coreset (T,wT). Then, it executes the following third round:

Round 3. Coreset (T,wT) is gathered in a single reducer which runs
SeqWeightedClustOut(T,wT , k, ℓ, z) to compute the final solution S.

The following theorem establishes the space-accuracy tradeoffs featured
by our MapReduce algorithm.

Theorem 2. Under the same hypotheses of Theorem 1, the above 3-round
MapReduce algorithm computes a solution S of at most ρk centers such that

cost(ℓ)(P\outτz(P, S), S) ≤
(
α +O

(
γ · ℓ · 2ℓ

))
·OPT

(ℓ)
k,z(P),

and requires

O
(
min

{
|P |, |P |2/3 · (ρk + τz)1/3 ·

(
16 ℓ
√
β/(

ℓ
√
2γ)
)2D · log2 |P |})

local memory, where ρ, τ ≥ 1 are the parameters defining the bicriteria guar-
antees of algorithm SeqWeightedClustOut. Therefore, when ρ > 1 and/or
τ > 1, the MapReduce algorithm yields bicriteria guarantees.

23

Proof. Let T be the coreset computed at Round 2, and let Ẑ ⊆ P be such
that the scaled weight function ŵT , associated to the solution S computed
in Round 3, can be obtained from wT by subtracting the contribution of
each point in Ẑ from the weight of its proxy in T . Clearly, |Ẑ| ≤ τz and
cost(ℓ)(P\outτz(P, S), S) ≤ cost(ℓ)(P\Ẑ, S). We know from Theorem 1 that
(T,wT) is a σ-approximate coreset for P with respect to ρk, ℓ, and τz. We
have:

cost(ℓ)(P\Ẑ, S) ≤ 1

1− σ
cost(ℓ)(T, ŵT , S)

≤ (1 + 2σ)cost(ℓ)(T, ŵT , S) ≤ (1 +O (σ)) · α ·OPT
(ℓ)
k,z(T,w).

By arguing as in Theorem 1, we can show that (C,wC) (computed in Round
1) is also a σ-approximate coreset for P with respect to ρk, ℓ, and τz.
Then, we can immediately conclude that both (C,wC) and (T,wT) are σ-
approximate coresets for P with respect to k, ℓ, and z. A simple adaptation
of the proof of Theorem 1 shows that (T,wT) is a O (γ)-centroid set for P
with respect to k, ℓ, and z. Now, let X ⊆ T be the set of at most k points
of Definition 2, and let ŵT be obtained from wT by subtracting the contri-
butions of the elements in outz(P,X) from the weights of their proxies. We
have that:

OPT
(ℓ)
k,z(T,w) ≤ cost(ℓ)(T, ŵT , X)

≤ (1 + σ)cost(ℓ)(P\outz(P,X), X)

≤ (1 + σ)(1 +O (σ)) ·OPT
(ℓ)
k,z(P) = (1 +O (σ)) ·OPT

(ℓ)
k,z(P).

Putting it all together, we conclude that

cost(ℓ)(P\outτz(P, S), S) ≤ cost(ℓ)(P\Ẑ, S) ≤ (α +O (σ)) ·OPT
(ℓ)
k,z(P).

For what concerns the local memory, we have that in Round 1
O (|P |/L) memory is sufficient to process each partition Pi, in Round 2
O (max{|C|, |P |/L}) memory is sufficient to run CoverWithBalls in each
partition, and in Round 3 O (|T |) memory is sufficient to compute the final
solution on the coreset T . The claimed local memory bound follows from
Lemma 3, setting L = (|P |/(ρk + τz))1/3.

We wish to remark that for reasonable values of the involved parameters,
the local memory requirements are substantially sublinear in |P |. Also, a
close inspection of our proof structure shows that our results can be gener-
alized with the same argument to any non-integer ℓ ≥ 2.

24

3.3. Improved local memory

The local memory of the algorithm presented in the previous sub-
sections can be substantially improved by modifying Round 2 of
MRcoreset(P, k, ℓ, z, γ). In the algorithm, the local memory size is domi-
nated by the size of the final coreset T which, in turn, is a function of the
size of the intermediate coreset C computed in Round 1. Due to parallelism,
|C| embodies a factor L, which the improved algorithm aims at eliminating.
More specifically, in Round 2 of the modified version, C is first shrunk into a
much smaller set C ′, which retains roughly the same quality as C, and then
the final coreset T is extracted by running CoverWithBalls on C ′ rather
than on C.

Let WeightedSeqClust be a weighted counterpart of SeqClust, namely
a sequential algorithm which, given in input an instance (Q,w, k, ℓ), where
(Q,w) is a weighted dataset, computes a β-approximate solution to the
weighted (k, ℓ)-clustering problem without outliers for (Q,w). Possible
choices for WeightedSeqClust are, for instance, the straightforward adap-
tations of the algorithms of [8, 10, 9] to the weighted case. The modified
version of Round 2 is as follows:

New Round 2. Consider the partition of P into P1, P2, . . . , PL used in
Round 1. A suitable map function is applied so that each reducer receives
a distinct Pi and all tuples (|Pj|, Rj, Cj, wCj

) computed in Round 1, with
1 ≤ j ≤ L. Then, for 1 ≤ i ≤ L in parallel, the reducer in charge of Pi

performs the following steps:

1. It sets C = ∪Lj=1Cj and sets wC such that each wCj
is the restriction of

wC to Cj.

2. It runs WeightedSeqClust to extract a β-approximate solution SC to
weighted (k, ℓ)-clustering on (C,wC), with k′ = k + z centers.

3. It sets R =
(∑L

j=1 |Pj| · Rℓ
j/|P |

)1/ℓ
, and runs

CoverWithBalls(C, SC , γ/(2β)
1/ℓ, R) (ignoring the weights wC),

yielding a weighted set C ′.

4. It runs CoverWithBalls(Pi, C
′, γ/(2β)1/ℓ, R) (again, ignoring the

weights wC′), yielding the weighted set (Ti, wTi
).

As before, the final coreset returned by the algorithm is (T,wT), where T =
∪Li=1Ti and wT is the weight function obtained by combining the wTi

’s. The
analysis of this modified construction is given below.

25

Lemma 5. Let γ satisfy the hypotheses of Theorem 1, and let (C ′, wC′) be the
weighted coreset computed by CoverWithBalls(C, SC , γ/(2β)

1/ℓ, R). Then,
there exists a proxy function πC′ : P → C ′ such that∑

p∈P

d(p, πC′(p))ℓ ≤ (9 · 22ℓ−3)γℓ ·OPT
(ℓ)
k′ (P).

Proof. Let πC : P → C be the proxy function of Lemma 4, and let ϕC′ :
C → C ′ be the map induced by CoverWithBalls(C, SC , γ/(2β)

1/ℓ, R). Define
πC′ : P → C ′ as ϕC′ ◦ πC . By Proposition 3 and Lemma 4 we have that∑

p∈P

d(p, πC′(p))ℓ ≤ 2ℓ−1
∑
p∈P

d(p, πC(p))
ℓ + 2ℓ−1

∑
p∈P

d(πC(p), πC′(p))ℓ

≤ 2ℓ−1(2γ)ℓ ·OPT
(ℓ)
k′ (P) + 2ℓ−1

∑
q∈C

wC(q)d(q, ϕC′(q))ℓ.

The latter term can be bounded by using the properties of CoverWithBalls
as follows. Let Ŝ∗ be the optimal centers for P with respect to k′. We have
that ∑

q∈C

wC(q)d(q, ϕC′(q))ℓ ≤

≤ (γℓ/(2β))
∑
q∈C

wC(q)(R
ℓ + d(q, SC)

ℓ)

≤ (γℓ/(2β))

(
L∑
i=1

|Pi| ·Rℓ
i + cost(ℓ)(C,wC , SC)

)

≤ (γℓ/(2β))

(
L∑
i=1

cost(ℓ)(Pi, Si) + cost(ℓ)(C,wC , SC)

)

≤ (γℓ/(2β))

(
2ℓβ

L∑
i=1

cost(ℓ)(Pi, S
∗
) + β ·OPT

(ℓ)
k′ (C,wC)

)
≤ (γℓ/2)

(
2ℓ ·OPT

(ℓ)
k′ (P) + OPT

(ℓ)
k′ (C,wC)

)
.

By combining the arguments of Lemma 2 and Lemma 4, we obtain that
(C,wC) is a σ-approximate coreset for P with respect to k′ and z = 0, with
σ ≤ 1/2. Thus, using again Proposition 3

26

OPT
(ℓ)
k′ (C,wC) ≤ 2ℓcost(ℓ)(C,wC , S

∗
)

≤ 2ℓ(1 + σ)cost(ℓ)(P, S
∗
)

≤ (3 · 2ℓ−1) ·OPT
(ℓ)
k′ (P).

Putting it all together, we conclude that∑
p∈P

d(p, πC′(p))ℓ ≤ (9 · 22ℓ−3)γℓ ·OPT
(ℓ)
k′ (P).

Lemma 6. Let γ satisfy the hypotheses of Theorem 1, and let (T,wT) be the
weighted coreset computed by MRcoreset(P, k, ℓ, z, γ), with the corresponding
proxy function πT . We have:∑

p∈P

d(p, πT (p))
ℓ ≤ 2ℓ−1(1 + 9 · 2ℓ−3)γℓ ·OPT

(ℓ)
k′ (P).

Proof. As shown at the end of the proof of Lemma 4,
∑L

i=1OPT
(ℓ)
k′ (Pi) ≤

2ℓ · OPT
(ℓ)
k′ (P). By the properties of the output of CoverWithBalls and

Lemma 5, we have that

∑
p∈P

d(p, πT (p))
ℓ ≤

∑
p∈P

(γℓ/(2β))max

{
L∑
i=1

|Pi| ·Rℓ
i/|P |, d(p, πC′(p))ℓ

}

≤ (γℓ/(2β))

(
L∑
i=1

|Pi| ·Rℓ
i +
∑
p∈P

d(p, πC′(p))ℓ

)

≤ (γℓ/(2β))

(
L∑
i=1

β ·OPT
(ℓ)
k′ (Pi) +

∑
p∈P

d(p, πC′(p))ℓ

)
≤ (γℓ/(2β))(2ℓβ + (9 · 22ℓ−3)γℓ) ·OPT

(ℓ)
k′ (P)

≤ 2ℓ−1(1 + 9 · 2ℓ−3)γℓ ·OPT
(ℓ)
k′ (P),

where for the last inequality we used the fact that β ≥ 1.

From Proposition 1, Lemma 6, and Lemma 2 (where δ is set equal to
2ℓ−1(1 + 9 · 2ℓ−3)γℓ), it follows that (T,wT) is an σ-approximate coreset for

27

P with respect to k and z, where σ = 2ℓ−1(1 + 9 · 2ℓ−3)γℓ, for ℓ = 1, and
σ = ℓ2ℓ−22ℓ−1(1 + 9 · 2ℓ−3)γℓ + ℓ(2ℓ−2 + 1)(2ℓ−1(1 + 9 · 2ℓ−3))1/ℓγ, for ℓ > 1.
Moreover, by a slight adaptation of the proof of Theorem 1 and by setting
γ sufficiently small, we have that (T,wT) is also a O (σ)-centroid set for P
with respect to k and z.

The following theorem establishes the space-accuracy tradeoffs featured
by the MapReduce algorithm presented in Subsections 3.1 and 3.2, when
employing the new Round 2 described in this subsection.

Theorem 3. For γ ∈ (0, 1) such that σ ≤ 1/2, the modified 3-round MapRe-
duce algorithm computes a solution S of at most ρk centers such that

cost(ℓ)(P\outτz(P, S), S) ≤
(
α +O

(
ℓ · 2ℓ · γ

))
·OPT

(ℓ)
k,z(P),

and requires

O

(
min

{
|P |, |P |1/2 ·

(
16 ℓ
√

β/(
ℓ
√
2γ)
)2D
· log2 |P |

})
local memory, where ρ, τ ≥ 1 are the parameters defining the bicriteria guar-
antees of algorithm SeqWeightedClustOut. Therefore, when ρ > 1 and/or
τ > 1, the MapReduce algorithm yields bicriteria guarantees.

Proof. The bound on the approximation factor is obtained as a straight-
forward adaptation of the proof of Theorem 2. For what concerns the local
memory requirements, the same line of reasoning employed in Lemma 3 yield:

|C ′| = O
(
min

{
|P |, (ρk + τz) ·

(
16 · ℓ

√
β/(

ℓ
√
2γ)
)D · log |P |}) ,

|T | = O
(
min

{
|P |, |L| · (ρk + τz) ·

(
16 ℓ
√
β/(

ℓ
√
2γ)
)2D · log2 |P |}) .

The bound on the memory requirements follows by repeating the same ar-
gument used in the proof of Theorem 2, but now setting L = (|P |/(ρk +
τz))1/2.

Once again, we remark that for reasonable values of the involved param-
eters, the local memory requirements are substantially sublinear in |P |, and
they feature a dependence on |P |1/2, rather than |P |2/3, as those stated in
Theorem 2.

28

4. Instantiation with different sequential algorithms for weighted
clustering

In order to provide a proof of concept of the applicability of our coreset-
based approach, in this section we briefly outline how to adapt the two state-
of-the-art sequential algorithms for clustering with z outliers in general met-
rics presented in [12] and [11], to handle the weighted variant of the problem,
which is needed to extract a solution from the coreset. These algorithms are
bicriteria, in the sense that the approximation guarantee is obtained at the
expense of a a larger number of centers [12], or a larger number of outliers
[11]. Then, we assess the accuracy-resource tradeoffs attained by the MapRe-
duce algorithm of Section 3, when these algorithms are employed in its final
round.

The algorithm in [12] handles the (k, ℓ)-clustering problem with z out-
liers through a simple multi-swap local search. Specifically, for given
ρ, ϵ > 0, the algorithm starts from an initial set C ⊂ P of k centers
and performs a number of iterations, where C is refined into a new set
C ′ by swapping a subset Q ⊂ C with a subset U ⊂ P\C (possibly of
different size), such that |Q|, |U | ≤ ρ and |C ′| ≤ (1 + ϵ)k, as long as
cost(ℓ)(P\outz(P,C ′), C ′) < (1− ϵ/k) · cost(ℓ)(P\outz(P,C), C). It is argued
in [12] that for ρ = (D/ϵ)Θ(D/ϵ), their algorithm returns a set C of at most

(1+ϵ)k centers such that cost(ℓ)(P\outz(P,C), C) ≤ (1+O(2ℓϵ))·OPT
(ℓ)
k,z(P),

where D is the doubling dimension of P . The running time is exponential in
ρ, so the algorithm is polynomial when D is constant. (It has to be noted
that the algorithm requires the knowledge of an upper bound to D.)

Adapting the above local-search algorithm to handle the weighted (k, ℓ)-
clustering problem with z outliers is straightforward and concerns the cost
function only. Namely, for an input (P,w) it is sufficient to substitute
cost(ℓ)(P\outz(P,C), C) with cost(ℓ)(P, ŵ, C), where ŵ is obtained from
w by scaling the weights associated with the points of P farthest from
C, progressively until exactly z units of weights overall are subtracted.
Then, simple modifications of the analysis in [12] suffice to prove that the
adapted algorithm returns a set C of at most (1 + ϵ)k centers such that

cost(ℓ)(P, ŵ, C) ≤ (1 +O(2ℓϵ)) ·OPT
(ℓ)
k,z(P).

The algorithm in [11] is specialized for the (k, ℓ)-clustering problem with
z outliers with ℓ = 2 (k-means). Given a set of points P and parameters k
and z, the algorithm starts with a set C ⊂ P of k arbitrary centers and a
corresponding set Z = outz(P,C) of outliers. Then, for a number of itera-

29

tions, it updates the current pair (C,Z) to a new pair (Cnew, Znew) so that
cost(2)(P\Znew, Cnew) < (1 − ϵ/k)cost(2)(P\Z,C), for a given ϵ > 0, until
no such improvement is possible. In each iteration, first a new set C ′ is
computed through a standard local-search [63] on P\Z, and then the new
pair (Cnew, Znew) is identified as the one with minimal cost(2)(P\Znew, Cnew)
among the following ones: (C ′, Z ∪ outz(P\Z,C ′) and (C ′′, Z ∪ outz(P,C

′′),
where C ′′ is obtained from C ′ with the most profitable swap between a
point of P and a point of C ′. It is shown in [11] that the algorithm

returns a pair (C,Z) such that cost(2)(P\Z,C) ≤ 274 · OPT
(2)
k,z(P) and

|Z| = O ((1/ϵ)kz log(|P |∆)), where ∆ is the ratio between the maximum
and minimum pairwise distances in P .

The algorithm in [11] can be adapted to handle the weighted variant of
the problem as follows. Let (P,w) denote the input pointset. In this weighted
setting, the role of a set Z of m outliers is played by a weight function wZ

such that 0 ≤ wZ
p ≤ wp, for each p ∈ P , and

∑
p∈P wZ

p = m. The union of
two sets of outliers in the original algorithm is replaced by the pointwise sum
or pointwise maximum of the corresponding weight functions, depending on
whether the two sets are disjoint (i.e., Z and outz(P\Z,C ′)) or not (i.e., Z
and outz(P,C

′′)). It can then be proved that the adapted algorithm returns

a pair (C,wZ) such that cost(2)(P,w − wZ , C) ≤ 274 · OPT
(2)
k,z(P,w) and∑

p∈P wZ
p = O ((1/ϵ)kz log(|P |∆)).

Either one of these two adapted sequential algorithms can be invoked in
Round 3 of our MapReduce strategy to yield distributed bicriteria solutions
for (k, ℓ)-clustering (limited to the case ℓ = 2 if the algorithm based on [11]
is used) with the space-accuracy bounds stated in Theorems 2 and 3.

5. Conclusions

We presented a MapReduce algorithm for (k, ℓ)-clustering with z. The
algorithm is based on a scalable coreset-based strategy that can be imple-
mented in 3 parallel rounds using an amount of local memory which, for
low-dimensional datasets, is substantially sublinear in the input size, thus
enabling the processing of large datasets. Remarkably, the algorithm fea-
tures an approximation quality which can be made arbitrarily close to the
one of any sequential (bicriteria) approximation algorithm for the weighted
variant of the problem. Due to the parallelism that it can potentially exploit
and to the limited volume of communication it entails, our algorithm provides
a scalable alternative to current (k, ℓ)-clustering algorithms (with or without

30

outliers) for doubling metrics. It is important to note that our algorithm can
be straightforwardly ported to the MPC model of [60, 61], since it complies
with the extra constraints imposed by this model, as discussed in Section 2.

We wish to remark that the randomized coreset constructions for points
in doubling metrics presented in [42, 45] feature a linear dependency on the
doubling dimension, and they could be used to improve the initial coresets C
and C ′ built by our algorithm. Unfortunately, however, these constructions
require the impractical assumption of an a priori knowledge of the doubling
dimension for their sampling strategy. Nonetheless, even if they were em-
ployed, the memory required by our algorithm would still be dominated by
the centroid set construction, which would again exhibit the exponential de-
pendency in the doubling dimension. In fact, this exponential dependency is
also found in previous sequential constructions of centroid sets in doubling
metrics [42].

It would be interesting to carry out a thorough experimental assessment
of the relative performance of our algorithm against the state-of-the art ap-
proaches discussed in Section 1.1. Another interesting question to be explored
concerns the adaptation of the recent non-bicriteria LP-based algorithm in
[3] to handle weighted instances, so to be usable as a subroutine by our
algorithm.

Acknowledgments. The authors are grateful to the three anonymous re-
viewers for their constructive criticism, which helped improve the quality
of the paper. This work was supported, in part, by MUR of Italy, un-
der PRIN Project n.2022TS4Y3N - EXPAND: scalable algorithms for EX-
Ploratory Analyses of heterogeneous and dynamic Networked Data, and
PNRR CN00000013 (National Centre for HPC, Big Data and Quantum Com-
puting).

References

[1] M. Charikar, S. Khuller, D. Mount, G. Narasimhan, Algorithms for
facility location problems with outliers, in: Proc. ACM-SIAM SODA,
2001, pp. 642–651.

[2] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, Comm. of the ACM 51 (1) (2008) 107–113.

31

[3] R. Krishnaswamy, S. Li, S. Sandeep, Constant approximation for k-
median and k-means with outliers via iterative rounding, in: Proc. 50th
ACM STOC, 2018, pp. 646–659.

[4] A. Deshpande, P. Kacham, R. Pratap, Robust k-means++, in: Proc.
36th UAI, 2020, pp. 799–808.

[5] V. Cohen-Addad, A. Feldmann, D. Saulpic, Near-linear time approxi-
mation schemes for clustering in doubling metrics, J. ACM 68 (6) (2021)
44:1–44:34.

[6] J. Byrka, T. Pensyl, B. Rybicki, A.Srinivasan, K. Trinh, An improved
approximation for k-median and positive correlation in budgeted opti-
mization, ACM Trans. Algorithms 13 (2) (2017) 23:1–23:31.

[7] S. Ahmadian, A. Norouzi-Fard, O. Svensson, J. Ward, Better guarantees
for k-means and Euclidean k-median by primal-dual algorithms, SIAM
J. Computing 49 (4) (2020) 97–156.

[8] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seed-
ing, in: Proc. ACM-SIAM SODA, 2007, pp. 1027–1035.

[9] D. Wei, A constant-factor bi-criteria approximation guarantee for k-
means++, in: Proc. NIPS, 2016, pp. 604–612.

[10] A. Gupta, K. Tangwongsan, Simpler analyses of local search algorithms
for facility location, CoRR abs/0809.2554 (2008).

[11] S. Gupta, R. Kumar, K. Lu, B. Moseley, S. Vassilvitskii, Local search
methods for k-means with outliers, Proc. VLDB Endow. 10 (7) (2017)
757–768.

[12] Z. Friggstad, K. Khodamoradi, M. Rezapour, M. Salavatipour, Approx-
imation schemes for clustering with outliers, ACM Trans. Algorithms
15 (2) (2019) 26:1–26:26.

[13] H. Song, J. Lee, W. Han, PAMAE: Parallel k -medoids clustering with
high accuracy and efficiency, in: Proc. 23rd ACM KDD, 2017, pp. 1087–
1096.

[14] A. Ene, S. Im, B. Moseley, Fast clustering using MapReduce, in: Proc.
17th ACM KDD, 2011, pp. 681–689.

32

[15] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, Scalable
k-means++, Proc. VLDB Endow. 5 (7) (2012) 622–633.

[16] M. Balcan, S. Ehrlich, Y. Liang, Distributed k-means and k-median
clustering on general communication topologies, in: Proc. 27th NIPS,
2013, pp. 1995–2003.

[17] O. Bachem, M. Lucic, A. Krause, Scalable k-means clustering via
lightweight coresets, in: Proc. 24th ACM KDD, 2018, pp. 1119–1127.

[18] A. Statman, L. Rozenberg, D. Feldman, k-means+++: outliers-resistant
clustering, MDPI Algorithms 13 (12) (2020) 311.

[19] S. Guha, Y. Li, Q. Zhang, Distributed partial clustering, ACM Trans.
Parallel Comput. 6 (3) (2019) 11:1–11:20.

[20] S. Li, X. Guo, Distributed k-clustering for data with heavy noise, in:
Proc. NeurIPS, 2018, pp. 7849–7857.

[21] J. Chen, E. Azer, Q. Zhang, A practical algorithm for distributed clus-
tering and outlier detection, in: Proc. NeurIPS, 2018, pp. 2253–2262.

[22] M. Ceccarello, A. Pietracaprina, G. Pucci, Solving k-center clustering
(with outliers) in MapReduce and streaming, almost as accurately as
sequentially, PVLDB 12 (7) (2019) 766–778.

[23] J. M. Phillips, Coresets and sketches, in: Handbook of discrete and
computational geometry, Chapman and Hall/CRC, 2017, pp. 1269–1288.

[24] A. Munteanu, C. Schwiegelshohn, Coresets-methods and history: A the-
oreticians design pattern for approximation and streaming algorithms,
KI-Künstliche Intelligenz 32 (2018) 37–53.

[25] D. Feldman, Core-sets: Updated survey, in: Sampling techniques for
supervised or unsupervised tasks, Springer, 2020, pp. 23–44.

[26] G. Rosman, M. Volkov, D. Feldman, J. W. I. Fisher, D. Rus, Coresets
for k-segmentation of streaming data, Proc. NeurIPS 27 (2014).

[27] G. Frahling, C. Sohler, Coresets in dynamic geometric data streams, in:
Proc. 37th ACM STOC, 2005, pp. 209–217.

33

[28] V. Braverman, G. Frahling, H. Lang, C. Sohler, L. F. Yang, Clustering
high dimensional dynamic data streams, in: Proc. 34th ICML, 2017, pp.
576–585.

[29] V. Braverman, D. Feldman, H. Lang, D. Rus, Streaming coreset con-
structions for m-estimators, in: Proc. APPROX-RANDOM, 2019, pp.
62:1–62:15.

[30] A. Mazzetto, A. Pietracaprina, G. Pucci, Accurate mapreduce algo-
rithms for k-median and k-means in general metric spaces, in: Proc.
30th ISAAC, 2019, pp. 34:1–34:16.

[31] S. Har-Peled, S. Mazumdar, On coresets for k-means and k-median clus-
tering, in: Proc. 36th ACM STOC, 2004, pp. 291–300.

[32] S. Har-Peled, A. Kushal, Smaller coresets for k-median and k-means
clustering, in: Proc. 21st SoCG, 2005, pp. 126–134.

[33] K. Chen, On coresets for k-median and k-means clustering in metric
and Euclidean spaces and their applications, SIAM J. Computing 39 (3)
(2009) 923–947.

[34] M. Langberg, L. J. Schulman, Universal ϵ-approximators for integrals,
in: Proc. ACM-SIAM SODA, 2010, pp. 598–607.

[35] C. Sohler, D. P. Woodruff, Strong coresets for k-median and subspace
approximation: Goodbye dimension, in: Proc. 59th IEEE FOCS, IEEE,
2018, pp. 802–813.

[36] L. Becchetti, M. Bury, V. Cohen-Addad, F. Grandoni,
C. Schwiegelshohn, Oblivious dimension reduction for k-means:
beyond subspaces and the Johnson-Lindenstrauss lemma, in: Proc.
51th ACM STOC, 2019, pp. 1039–1050.

[37] L. Huang, N. K. Vishnoi, Coresets for clustering in Euclidean spaces:
importance sampling is nearly optimal, in: Proc. 52th ACM STOC,
2020, pp. 1416–1429.

[38] L. Huang, S. H.-C. Jiang, J. Lou, X. Wu, Near-optimal coresets for
robust clustering, in: Proc. 11th ICLR, 2023, pp. 1–21.

34

[39] V. Cohen-Addad, K. G. Larsen, D. Saulpic, C. Schwiegelshohn, O. A.
Sheikh-Omar, Improved coresets for euclidean k-means, Proc. NeurIPS
(2022) 2679–2694.

[40] Y. Xu, V. Chau, C. Wu, Y. Zhang, V. Zissimopoulos, Y. Zou, A semi
brute-force search approach for (balanced) clustering, Algorithmica. To
appear (2023).

[41] D. Feldman, M. Langberg, A unified framework for approximating and
clustering data, in: Proc. 43rd ACM STOC, 2011, pp. 569–578.

[42] L. Huang, S. Jiang, J. Li, X. Wu, Epsilon-coresets for clustering (with
outliers) in doubling metrics, in: Proc. 59th IEEE FOCS, 2018, pp.
814–825.

[43] D. Baker, V. Braverman, L. Huang, S. H.-C. Jiang, R. Krauthgamer,
X. Wu, Coresets for clustering in graphs of bounded treewidth, in: Proc.
37th ICML, 2020, pp. 569–579.

[44] V. Braverman, S. H.-C. Jiang, R. Krauthgamer, X. Wu, Coresets for
clustering in excluded-minor graphs and beyond, in: Proc. ACM-SIAM
SODA, 2021, pp. 2679–2696.

[45] V. Cohen-Addad, D. Saulpic, C. Schwiegelshohn, A new coreset frame-
work for clustering, in: Proc. 53rd ACM STOC, 2021, pp. 169–182.

[46] V. Cohen-Addad, K. G. Larsen, D. Saulpic, C. Schwiegelshohn, Towards
optimal lower bounds for k-median and k-means coresets, in: Proc. 54th
ACM STOC, 2022, pp. 1038–1051.

[47] P. Indyk, S. Mahabadi, M. Mahdian, V. Mirrokni, Composable core-sets
for diversity and coverage maximization, in: Proc. 33rd ACM PODS,
2014, pp. 100–108.

[48] E. Dandolo, A. Pietracaprina, G. Pucci, Distributed k-means with out-
liers in general metrics, in: Proc. 29th Euro-Par, 2023, pp. 474–488.

[49] G. Jameson, Some inequalities for (a+ b)p and (a+ b)p + (a− b)p, The
Mathematical Gazette 98 (2014) 96–103.

[50] A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science, Cam-
bridge University Press, 2020.

35

[51] J. Heinonen, Lectures on Analysis of Metric Spaces, Universitext,
Springer, Berlin, 2001.

[52] L. Gottlieb, A. Kontorovich, R. Krauthgamer, Efficient classification for
metric data, IEEE Trans. on Information Theory 60 (9) (2014) 5750–
5759.

[53] M. Ceccarello, A. Pietracaprina, G. Pucci, E. Upfal, A practical parallel
algorithm for diameter approximation of massive weighted graphs, in:
Proc. 30th IEEE IPDPS, 2016, pp. 12–21.

[54] M. Ceccarello, A. Pietracaprina, G. Pucci, Fast coreset-based diversity
maximization under matroid constraints, in: Proc. 11th ACM WSDM,
2018, pp. 81–89.

[55] P. Pellizzoni, A. Pietracaprina, G. Pucci, Dimensionality-adaptive k-
center in sliding windows, in: Proc. 7th IEEE DSAA, 2020, pp. 197–206.

[56] J. Verger-Gaugry, Covering a ball with smaller equal balls in rn, Discrete
Computational Geometry 33 (1) (2005) 143–155.

[57] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, E. Upfal, Space-
round tradeoffs for mapreduce computations, in: Proc. 26th ACM ICS,
2012, pp. 235–244.

[58] C. Sreedhar, N. Kasiviswanath, P. Chenna Reddy, Clustering large
datasets using k-means modified inter and intra clustering (KM-I2C)
in Hadoop, J. Big Data 4 (2017) 27:1–27:19.

[59] A. Bakhthemmat, M. Izadi, Decreasing the execution time of reducers
by revising clustering based on the futuristic greedy approach, J. Big
Data 7 (1) (2020) 6:1–6:21.

[60] H. Karloff, S. Suri, S. Vassilvitskii, A model of computation for mapre-
duce, in: Proc. ACM-SIAM SODA, 2010, pp. 938–948.

[61] P. Beame, P. Koutris, D. Suciu, Communication Steps for Parallel Query
Processing, in: Proc. ACM-SIGMOD PODS, 2013, pp. 273–284.

[62] J. Matoušek, On approximate geometric k-clustering, Discrete & Com-
putational Geometry 24 (1) (2000) 61–84.

36

[63] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, A. Y.
Wu, A local search approximation algorithm for k-means clustering,
Comput. Geom. 28 (2-3) (2004) 89–112.

37

