ESEMPIO 1

Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali ESEMPIO (XX appello, a.a. 2013-2014)

Cognome e nome: ______ Laurea: _____

PER LA COMMISSIONE D'ESAME									
$1\mathrm{E}$	$2\mathrm{E}$	3E	$4\mathrm{E}$	$5\mathrm{E}$	Totale				
	8	8	8	s/n	32				

Esercizio 1. Al variare di $\lambda \in \mathbb{R}$, determinare il numero delle soluzioni di $f(x) = \lambda$, dove $f(x) = e^{1/(2x)} \frac{1}{1-x}$.

Esercizio 2. Determinare al variare di $\alpha \in \mathbb{R}$ il carattere di

$$\sum_{n=1}^{\infty} \frac{n^{\alpha}}{1 - \cos(e^{1/n} - 1)}.$$

Esercizio 3. Sia data

$$f(x) = \begin{cases} 2x + 2^{-1/(x-a)^2} & \text{se } x < a \\ b + x^2 & \text{se } x \ge a. \end{cases}$$

Determinare, se ne esistono, per quali $a, b \in \mathbb{R}$ si ha che $f \in C^1(\mathbb{R})$.

Esercizio 4. Dopo averne studiato la convergenza, si calcoli, se convergente, il seguente integrale

$$\int_0^2 \frac{x+2}{\sqrt{4-x^2}} \, \mathrm{d}x.$$

Esercizio 5. (5.a) Dare la definizione di $\lim_{x\to 2} f(x) = +\infty$ e di $\lim_{x\to +\infty} f(x) = 2$.

(5.b) Dimostrare il criterio della radice per le serie numeriche.

Laurea:_

Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali ESEMPIO (XX appello, a.a. 2013-2014)

Cognome e nome: _____

Matricola:

PER LA COMMISSIONE D'ESAME									
$1\mathrm{E}$	$2\mathrm{E}$	$3\mathrm{E}$	$4\mathrm{E}$	$5\mathrm{E}$	Totale				
	8	8	8 8	s/n	32				

Esercizio 1. Sia data

$$f(x) = \log(x+4) + \frac{x+8}{x+4}.$$

- (1.a) Calcolare gli intervalli di convessità e concavità di f.
- (1.b) Individuare il massimo intervallo A tale che: $-3 \in A$ e f sia invertibile in A.
- (1.c) Sia g la funzione inversa della restrizione ad A di f. Calcolare g'(f(-3)).

Esercizio 2. Calcolare, al variare di $\alpha \in \mathbb{R}$, l'integrale generale dell'equazione differenziale ordinaria

$$y'' + 8y' + 16y = 2e^{\alpha t}.$$

Esercizio 3. Calcolare il seguente limite.

$$\lim_{x \to 0^+} \frac{\arctan(\frac{x^2}{4})}{e^{\sin x} - \cos(\sqrt{x}) - \frac{3}{2}x}.$$

Esercizio 4. Si calcoli il seguente integrale

$$\int_0^{\pi/4} \frac{\tan x - 1}{3\tan^2 x - 6\tan x + 4} \frac{1}{\cos^2 x} \, \mathrm{d}x.$$

Esercizio 5. (5.a) Dare la definizione di successione $\{a_n\}_n$ infinitesima e di $\lim_{n\to+\infty}\frac{5}{a_n}=1$.

(5.b) Dimostrare il Teorema della media integrale. Applicarlo poi alla funzione $f(x) = \cos x$ nell'intervallo $[0, \pi/2]$ calcolando esplicitamente un punto c per cui la tesi del teorema sia verificata.