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Pancreatic β-cells show multiple intrinsic modes of oscillation with bursting electri-

cal activity playing a crucial role. Bursting is seen both in experimentally isolated

β-cells as well as in electrically coupled cells in the pancreatic islets, but the burst

period is typically an order of magnitude greater in coupled cells. This difference

has previously been attributed to noisier dynamics, or perturbed electrophysiological

properties, in isolated β-cells. Here, we show that diffusive coupling alone can extend

the period more than ten-fold in bursting oscillators modeled with a so-called phan-

tom burster model, and analyze this result with slow-fast bifurcation analysis of an

electrically coupled pair of cells. Our results should be applicable to other scenarios

where coupling of bursting units, e.g. neurons, may increase the oscillation period

drastically.
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The endocrine pancreatic β-cells release insulin in distinct pulses as a result of

bursting oscillatory activity in their membrane potentials, which arises from the

interaction of slow and fast ion channel dynamics. Isolated β-cells typically show

fast bursting oscillations, while electrically coupled β-cells within the pancreatic

islets show a much slower bursting mode, which is believed to control the amount

of insulin that is released. In this work, we show that different slow processes can

work synergistically in coupled β-cells to regulate the bursting oscillation, lead-

ing to a ∼10-fold increase in the oscillation period. The result that gap-junction

coupling alone can prolong the burst period to this extent represents a novelty

with immediate implications for our understanding of emerging dynamics of β-

cells underlying pulsatile insulin secretion. More generally, a coupling-controlled

interplay of slow processes represents a new mechanism through which burst-

ing oscillators may significantly increase their period to span several orders of

magnitude, and may play a role also in other systems, such as neurons.

I. INTRODUCTION

Coupled oscillators are crucial components of dynamic systems in, e.g., physics, chemistry

and biology, and the role of coupling has been widely studied to understand phenomena such

as synchrony and oscillator death. The latter refers to oscillating units becoming stationary

when coupled, a scenario observed in experiments and models of e.g. chemical oscillators1,2

or biological cells3,4. Coupling can also promote biological oscillations by regularizing and

synchronizing stochastic fluctuations occurring in single cells5,6.

Bursting electrical activity is observed in many types of neurons and endocrine cells. It

consists of action potential firing superimposed on a slower oscillation giving rise to groups

of action potentials separated by silent phases. From a mathematical point of view, bursting

results from the interplay between fast and slow variables, which can be analyzed by so-called

slow-fast analysis7. Standard models of bursting have a single slow variable, which controls

the switch between quiescence and activity8–10.

The β-cells of the endocrine pancreas are a prototypical example of bursting cells, which

have been studied extensively both experimentally and theoretically. Their periodic elec-

trical activity is physiologically important since it drives pulsatile insulin release, which is
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disturbed in diabetes11–15. Interesting, isolated β-cells typically exhibit continuous action

potential firing (spiking) or very rapid bursting with a period of a few seconds, whereas elec-

trically coupled β-cells located in situ in the pancreatic islets show bursting activity, and

related Ca2+ oscillations, with a period of tens of seconds to minutes16,17. This difference

in burst period has been attributed to various mechanisms. For example, noise has been

suggested to shorten the bursts in isolated cells, but to be reduced in the electrically coupled

β-cell population, allowing bursting to appear18–23. Alternatively, coupling alone can change

spiking cells into bursters24–27 and increase the burst period ∼2-fold in standard models of

bursters20,25,28. Another possibility is that isolated β-cells have different electrophysiological

properties as a result of the isolation process29,30.

In accordance with this latter idea, the so-called phantom burster model introduced by

Bertram et al.31 is able to reproduce slow, fast and medium bursting by changing a single

parameter. This flexibility is achieved by incorporating two slow variables working on dif-

ferent time scales. When the fastest of the two slow processes dominate, fast bursting with

a period of a few seconds is produced, whereas slow bursting with period of several minutes

appears when the slowest variable drive the system. Medium bursting is generated by the

interaction of the two slow processes without the need of a third slow variable working on

the intermediate time scale, evoking a “phantom” bursting mechanism.

In this work we describe a new mechanism giving rise to phantom bursting, which depends

solely on electrical coupling between cells, and does not require changes in single-cell param-

eters. Consequently, gap-junction coupling alone can prolong the burst period more than

tenfold, which provides a novel explanation for the large difference in oscillation frequency

between isolated and coupled β-cells.

II. MATHEMATICAL MODELING

We based our study on the mathematical model developed by Bertram et al.31, which is

able to reproduce fast, slow, and intermediate bursting in agreement with experimental
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observations in mouse β-cells. The model is described by the differential equations

Cm
dVi
dt

= −I iion − gc
∑
j

(Vi − Vj) , (1a)

dni

dt
=
n∞(Vi)− ni,

τn(Vi)
, (1b)

dsi
dt

=
s∞(Vi)− si

τs
, (2a)

dzi
dt

=
z∞(Vi)− zi

τz
, (2b)

where Vi represents the transmembrane voltage of the i-th cell, n is a gating variable that

models the activation of a fast voltage-dependent potassium current, while s and z are gating

variables modeling the activation of two slow voltage-sensitive potassium currents that drive

the bursting oscillation. Thus, the model is composed of a fast subsystem constituted of the

V and n variables described by (1a) and (1b), and a slow subsystem ((2a)–(2b)) describing

the slower dynamics of s and z, which – importantly – have time scales that differ by two

orders of magnitude. The last term in (1a) models gap-junction coupling to neighboring

cells (indexed by j)20,23,32. In addition, the model takes into account a voltage-dependent

calcium current showing instantaneous activation and no inactivation, and a passive leakage

current. The membrane currents are given by

I iion = I iCa + I iK + I is + I iz + I iL ,

I iCa = gCam∞ (Vi) (Vi − VCa) ,

I iK = gKni (Vi − VK) ,

I is = gssi (Vi − VK) ,

I iz = gzzi (Vi − VK) ,

I iL = gL (Vi − VL) .



Increased burst period via coupling 5

Table I. Model parameters.
Parameter Value Unit
Cm 4524 fF
VCa 100 mV
VK -80 mV
VL -40 mV
gCa 280 pS
gK 1300 pS
gs 10 pS
gz 32 pS
gL 25 pS
Vn -9 mV
Vm -22 mV
Vs -40 mV
Vz -42 mV
sn 10 mV
sm 7.5 mV
ss 0.5 mV
sz 0.4 mV
τ̄n 9.09 ms
τs 1 s
τz 120 s

Activation curves and the voltage-dependence of the potassium channel’s time constant are

described by

n∞ (Vi) =
1

1 + exp [(Vn − Vi)/sn]
,

m∞ (Vi) =
1

1 + exp [(Vm − Vi)/sm]
,

s∞ (Vi) =
1

1 + exp [(Vs − Vi)/ss]
,

z∞ (Vi) =
1

1 + exp [(Vz − Vi)/sz]
,

τn (Vi) =
τ̄n

1 + exp [(Vi − Vn)/sn)]
.

Parameters are given in Tab. I. The model was resolved with the CVODE algorithm in the

XPPAUT tool33, using restrictive settings of numerical tolerances to ensure a good accuracy

of results. Bifurcation diagrams were computed with the AUTO package within XPPAUT.
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III. RESULTS

We simulated two mutually coupled phantom bursters showing intrinsic fast bursting with a

period of∼5 s, and analyzed emergent electrical activity by varying the coupling conductance

gc in the range 0-60 pS (Fig. 1). As in the uncoupled case (gc = 0 pS), with gc ≥ 40 pS, fast

bursting behavior with a period of about 5 s can be observed. At gc = 60 pS (Fig. 1(a)),

the two cells synchronize completely, and the behavior is as for the single cell. The fast

bursting oscillation is driven by oscillations in s while z is almost constant because of its

slow dynamics (Fig. 1(b)). At gc = 40 pS the membrane potential oscillations in the active

phase of the burst show irregular behavior (Fig. 1(c)), in contrast to the uncoupled case (not

shown) and to the coupled system with gc = 60pS (Fig. 1(a)). Moreover, the underlying s

oscillations show slight inter-burst variation in the amplitude (Fig. 1(d)), suggesting that the

membrane potential oscillations exhibit variability in the duration of the active phase.

At gc = 20 pS the burst period increases by an order of magnitude to ∼50 s (Fig. 1(e)). As in

the original phantom bursting model31 the s variable reaches a stationary value of ∼1 during

the active phase of the burst and decreases to ∼0 in the silent phase, whereas z oscillates in

the range 0.6−0.7 during the burst cycle (Fig. 1(f)). This result suggests that the increase in

s does not generate sufficient hyperpolarizing current to achieve cell repolarization and burst

termination; therefore z is free to increase, which activates a second repolarizing current that

eventually ends the active phase. This scenario is characteristic for phantom bursting31, but

as we will show below, the coupling-induced phantom bursting is mathematically different

from the original phantom bursting mechanism in single cells31.

In order to highlight the range of coupling conductance values that induce phantom bursting

and to quantify the increase in burst duration, we computed the burst period varying the

coupling strength from 0 to 60 pS (Fig. 1(g)). The burst period increases from about 5 s

to a maximum value of ∼55 s at gc ' 23 pS. Further increases in gc cause a non-monotone

decrease of the period, which finally converges to the value observed in a fast bursting

mode for a coupling conductance higher than 40 pS. This finding suggests that significant

changes in the dynamical system occur in response to variations in gc, and highlights irregular

behavior of the electrical oscillations for gc in the range 25 − 40 pS, as suggested from the

temporal traces of the membrane potential (Fig. 1(c)).

We performed slow-fast analyses7,31 of the 2-cell system with the aim to dissect the under-
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Figure 1. Computed membrane potential (a,c,e) and slow gating variables (b,d,f) of a representative
β-cell of a coupled pair of cells. (a,b) gc = 60pS. (c,d) gc = 40pS. (e,f) gc = 20pS. (g) Computed
burst period at different values of the coupling conductance gc.
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lying mechanism leading to the coupling-induced changes. In particular, we constructed

bifurcation diagrams for the fast subsystem (1) with the slow variables considered as param-

eters. This procedure is legitimated by the different scales of the dynamics between the fast

and the slow processes, which are on the order of milliseconds for the membrane potential

and the fast potassium channels gating and on the order of seconds and tens of seconds

for the slow variables. Moreover, since the slow variables are in near-perfect synchrony, we

make the assumptions s1 = s2 = s and z1 = z2 = z, in line with other published studies25–27,

and further justified in the Appendix. On this basis, we clamped the z variable to a fixed

value and treated s as the bifurcation parameter31, for gc = 60, 40, 20 pS (Fig. 2). In case

of fast bursting, we fixed z to its average value, while we used the maximum value of the

z-oscillation computed on the full system, to analyze the intermediate bursting mode.

When gc = 60 pS, the fixed points of the fast subsystem fall on a Z-shaped curve composed

of a high-voltage branch and a low-voltage branch connected by saddle points (Fig. 2(a)).

The low-voltage branch is formed by stable fixed points while the high-voltage branch is

characterized by stable fixed points only at very low values of s. These solutions lose stability

in a Hopf bifurcation as s increases, which gives rise to stable periodic orbits surrounding

the unstable fixed points. At higher values of s, the branch of periodic orbits eventually

coalesces with the saddle branch in a homoclinic bifurcation. This diagram is identical to the

one computed for an isolated cell31 and shares common properties with bifurcation diagrams

of other models of β-cell activity7,19,21,25.

By superimposing the s nullcline and reintroducing the dynamics of s, it is possible to explain

how fast bursting arises7,31. Near the stable low-voltage branch (below the s nullcline)

ds/dt < 0, so the system moves to the left along the low-voltage branch. When the low-

voltage branch disappears through a saddle-node bifurcation, the system jumps to the high-

voltage stable periodic solution, above the s nullcline, which is the only stable solution at

low values of s. Since ds/dt > 0 in this case, the system moves to the right along the

high-voltage periodic branch. Eventually, at the homoclinic bifurcation, the system jumps

back to the low-voltage stable branch, and another burst cycle can begin. This analysis

is confirmed by superimposing the computed trajectories for the two cells coupled with

gc = 60 pS (Fig. 2(b)) on the bifurcation diagram. During the active phase, the two cells

show identical and synchronized action potential oscillations, and the dynamics is as for an

isolated cell. In the following we refer to the high-voltage branch of periodics, underlying
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synchronized action potentials firing, as the in-phase (IP) oscillatory branch25.

At lower values of the coupling conductance the bifurcation diagram shows a more com-

plex behavior. When gc = 40pS several bifurcations of cycles appear (Fig. 2(c)). When

s increases, the in-phase oscillatory branch loses stability through a pitchfork bifurcation

generating two stable branches of asymmetric (AS) oscillatory solutions, characterized by

low-amplitude and high-amplitude oscillations respectively. These branches lose stability in

a torus bifurcation as the bifurcation parameter s increases. Eventually, the asymmetric

branches disappear by merging with unstable periodic orbits arising from a second pitchfork

bifurcation on the in-phase branch. Before disappearing, the asymmetric branches become

stable again via another torus bifurcation. In addition, two other Hopf bifurcations can be

noticed on the high-voltage branch of unstable fixed points, through which another branch

of oscillatory solutions appears and disappears. This periodic branch represents anti-phase

(AP) periodic oscillations in the cells’ membrane potentials, with action potentials that are

180 degrees out-of-phase and with identical amplitude. Although this new periodic solution

does not affect the emergent dynamics at gc = 40 pS, it will play a crucial role at gc = 20

pS as discussed below.

In Fig. 2(d), the superimposed bursting trajectories for the two cells show the effects of the

described changes in the fast subsystem bifurcation diagram. Action potential firing within

the burst is no longer synchronized. When the system jumps into the high-voltage oscillatory

state, it initially follows the unstable in-phase branch but is progressively attracted into a

quasi-periodic oscillation at increasing values of the slow variable s. We note that at higher

values of s (' 0.92), the in-phase branch becomes stable again via a second pitchfork,

attracting the nearby trajectories in the phase-space and thus affecting burst termination.

As observed for the strongly coupled system, the in-phase branch disappears in a homoclinic

bifurcation forcing the trajectories to jump back to the stable low-voltage branch.

When gc is lowered to 20 pS, a pitchfork branching of the intermediate saddle-branch of the

Z-curve and other significant changes are observed (Fig. 2(e)). The right ends of the asym-

metric branches no longer coalesce with the in-phase branch, and the anti-phase periodic

branch is now shifted to the left. Importantly, this AP branch gains and loses stability via

two torus bifurcations. Notably, the AP branch is not present in the single-cell model31, and

hence the mechanism described in the following is a novel path to phantom bursting that

appears only in systems of coupled cells.
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Figure 2. One dimensional fast-subsystem bifurcation diagrams for a 2-cell system with s as bifur-
cation parameter and fixed z. (a,b) gc = 60pS. (c,d) gc = 40pS. (e,f) gc = 20pS. In (a,b,c,d) z
was clamped at 0.55, its mean value in Fig. 1(b,d). In (e,f), bifurcation diagrams were computed
for z = 0.7, the maximum of the oscillations in Fig. 1(f), while the gray curve indicates the shift
of the Z-curve of the bifurcation diagram computed at z = 0.6, the minimum of the oscillations in
Fig. 1(f). In (a,c,e), the dashed curve is the s-nullcline, s = s∞(V ), the black thick curves denote
stable fixed points and stable periodic orbits, while thin black and dark grey lines indicate unstable
fixed points and unstable periodic orbits, respectively. (b,d,f) show numerical solutions overlaid on
the bifurcation diagrams.
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period of a cell pair for varying coupling strength (from Fig. 1(g)) for easier comparison with the
location of the different bifurcations.

The stability of the anti-phase solution is responsible for the increase in the burst period,

since it evokes a phantom bursting oscillation. Specifically, at low values of z (approximately

< 0.65) the s nullcline intersects the AP branch at s ≈ 1, when the orbit is stable, thus

trapping the system in a sustained oscillation. In other words, the fastest slow s variable

is insufficient to terminate the active phase of bursting. In this case, the slower z variable

increases since the membrane voltage is sufficiently high to activate the slower potassium

current. Increasing or decreasing z cause left or right shifts, respectively, of the whole bi-

furcation diagram31, and the increased burst period is due to these slow translations as z

increases and decreases. When the system is trapped in the anti-phase oscillatory state, the

bifurcation diagram shifts to the left, eventually moving the intersection between the s null-

cline and the anti-phase periodic branch into the unstable regime of the AP branch. At this

point, the system settles into an irregular motion before escaping to the low-voltage stable

branch. Now the s nullcline intersects the low-voltage branch at s ' 0, thus the trajectory

converges to this intersection point, clamping the system in a low-voltage state. However,

z is now free to decrease, shifting the bifurcation diagram in the right direction. Eventu-
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ally the intersection passes through the saddle-node bifurcation, and the system jumps back

into the active phase of bursting. Just after the jump, the trajectory follows the unstable

in-phase branch and then settles into the anti-phase oscillation mode after a short transient.

Fig. 2(f) shows a complete phantom bursting trajectory for the two cells superimposed on

the bifurcation diagram.

To obtain an overview of the geometric structure responsible for the burst period’s bell-

shaped dependence on coupling strength (Fig. 1(g)), we followed the bifurcations of the

periodics in a 2-dimensional bifurcation diagram (Fig. 3). The pitchfork-of-periodics bifur-

cation giving rise to the AS branches seen in Fig. 2(c) is present for gc . 55 pS, where its

location is nearly insensitive to the value of gc. For higher gc values, the cells are completely

synchronized and behave as a single cell. The emerging AS branches lose stability in torus

bifurcations that lead to quasi-periodic (QP) behavior for gc . 44 pS. These torus bifurca-

tions are seen in Fig. 2(c), and the QP in the traces for gc = 40 pS in Fig. 1(c,d), but do

not modify the burst period much.

The second Hopf bifurcation (HB) leading to anti-phasic (AP) behavior occurs for gc . 42

pS. The value of the s parameter at which it is located, increases almost linearly with gc.

The emerging periodics gain stability in a torus bifurcation located slightly to the right of

the HB, and as discussed above, it is the stability of the AP oscillation in the fast subsystem

that permits the slowest z variable to contribute to prolonging the burst period. The torus

bifurcation is present for values of gc below ∼24 pS, which coincides nicely with the gc-

value where the burst period is maximal (Fig. 1(g)). The marked drop in the period for

gc = 25− 30 pS is thus likely due to the lack of stability of the AP branch.

IV. CONCLUSIONS

We have shown that diffusive gap junction coupling alone – without introducing cell-to-

cell heterogeneity, changes in single-cell parameters, or noise – can explain why electrically

coupled β-cells exhibit bursting with a period an order of magnitude greater than isolated

cells. Our results show that biological systems may exploit coupling to increase the period

of bursting oscillations drastically when these are driven by two slow processes, the one of

which being dormant for the single-unit system, via a phantom bursting mechanism. It will

be interesting to see whether similar mechanisms underlie the epilepsy-related prolonged
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electrical bursts depending on gap junctional coupling34, or if they are present in other

bursting biological, chemical or physical systems.

For the cell pair studied here, we were able to explain the geometrical structure underlying

the large increase in burst period. Crucially, and at difference with the single-cell phantom

burster scenario31, gap junction coupling led to the appearance and stability of a branch

of anti-phase (AP) solutions25, which allowed the appearance of phantom bursting and the

many-fold increase in burst period. This mechanism is not restricted to the particular single-

cell model used here31, but should appear in any phantom burster model21,35,36 operating

in its fast-bursting mode, as long as gap junction coupling results in a branch of stable

periodics, such as the AP solutions found here.

APPENDIX

In this appendix, we justify the assumption s1 = s2 and z1 = z2 used in the bifurcation

analyses above, and show that the discussion in the main text carries over to the more

realistic scenario where the slow variables (s1 and s2) differ slightly. The difference s⊥ =

s1 − s2 satisfies
ds⊥

dt
=

[s∞(V1)− s∞(V2)]− s⊥

τs
, (3)

and similarly for z⊥ = z1 − z2. Our arguments are based on the fact that the two coupled

cells are either both in the active or both in the silent phase, except for brief transients,

because of relatively strong coupling (Fig. 2) and homogeneity in single cell parameters. As

seen from the s-nullcline in Fig. 2, s∞(V ) ≈ 1 for any V > −40 mV, i.e., during the entire

active phase, and s∞(V ) ≈ 0 for any V < −50 mV, i.e., during the entire silent phase.

Consequently, the square bracket in (3) is always close to zero, and it follows that |s⊥| � 1

asymptotically. This argument (and a similar one for z⊥) justifies s1 ≈ s2 and z1 ≈ z2, as

seen in simulations25 (Fig. 4). In addition, the bifurcation structure of the fast subsystem

is robust to small perturbations away from the diagonal s1 = s2, i.e. for 0 < |s⊥| � 1, as

shown in Fig. 4. In particular, the stable AP branch is present, and is responsible for the

prolonged period seen at gc ≈ 20 pS.



Increased burst period via coupling 14

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

S1

S2

S1

S2

a b

Figure 4. Two-parameter bifurcation diagrams for the fast subsystem with s1 and s2 as parameters.
Blue, green and black/gray curves indicate Hopf, torus and low-voltage saddle-node bifurcations,
respectively. Red curves are simulated trajectories of the full model projected onto the (s1, s2) sub-
space. The light gray area indicates the possible range of variation of s1 and s2. The dashed
diagonal corresponds to complete synchrony of the slow variables, s1 = s2. (a) gc = 20 pS and
z1 = z2 = 0.7, i.e. the maximum of the oscillations in Fig. 1(f). In this case, the gray curve indicates
the low-voltage saddle-node curve computed at z1 = z2 = 0.6, i.e. the minimum of the oscillations
in Fig. 1(f) occurring at the end of the silent phase (compare with Fig. 2(e)). Note that the torus
bifurcations that render the AP stable are robust to perturbations away from the diagonal. (b)
gc = 40 pS and z1 = z2 = 0.55, i.e. its mean value in Fig. 1(b,d). Again, the bifurcation structure
is robust to small perturbations away from the diagonal (compare with Fig. 2(c)).
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