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Main Objectives of the course

To provide a working knowledge and a thorough understanding of
modern state-space identification methods, called SUBSPACE IDEN-
TIFICATION methods. These are the only working and easy-to-use
methods for the identification of MULTIVARIABLE SYSTEMS

1. Multivariable linear stochastic models
2. Kalman filtering
3. Statistical methods: PCA and CCA
4. Numerical LinearAlgebra: SVD and LQ decompositions
5. Stochastic model reduction/approximation
6. Asymptotic statistical properties (consistency, efficiency)
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PART ONE
1. Review of State Space models of stationary processes

◦ General facts about stationary processes

◦ State Space models and spectral factorization

◦ The Linear matrix Inequality (LMI)

◦ Predictor spaces and Kalman filtering

2. The Stochastic Realization Problem from covariance data

◦ Problem Statement

◦ Deterministic realization theory

◦ Canonical correlation analysis

3. The Stochastic Realization Problem from sample covariance data

◦ Statistical estimation by the method of moments

◦ Properties of the solution

◦ Early algorithms (Aoki)

◦ The CCA algorithm
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Wide-sense stationary random processes

y = {y(t,ω)} discrete-time m-dimensional random process t ∈ [t0,+∞).
Expected value: Ey(t) =

∫
Ω

y(t,ω)dP = µ(t)
can be subtracted off. All random quantities will be zero mean. Assume a
finite Covariance function:

Ey(t)y(s)> = Λ(t,s) , m×m matrix function .

This is the basic mathematical description of the process. A second or-
der process is the equivalence class of all stochastic process having (zero
mean and) the same covariance function. Contains a Gaussian represen-
tative. Second order processes can be described by Linear models.

y is a (wide sense) stationary process if its covariance function depends
on the difference t− s: Λ(t,s)≡ Λ(t− s).
We shall study stationary processes on the time line Z(t0 =−∞).
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Hilbert space setting for second order
processes

The closure in L2(Ω,P) of all finite linear combinations of the random vari-
ables yk(t),k = 1,2, . . . ,m, t ∈ Z, is a Hilbert space

H(y) := span{yk(t) ; k = 1,2, . . . ,m ; t ∈ Z} ≡ span{y(t) ; t ∈ Z}

with inner product 〈ξξξ ,ηηη〉= E{ξξξ η̄ηη}.
The shift operator U : H(y)→H(y) is the linear extension of

Uyk(t) := yk(t +1) , k = 1,2, . . . ,m, t ∈ Z

is Unitary (preserves inner product).
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Purely non deterministic stationary random
processes

A stationary random process is purely non deterministic (p.n.d) if it can be
represented as the output of a causal `2-stable linear system driven by a
white noise

y(t) =
t∑

k=−∞

W (t− k)w(k)

{w(t)} p-dimensional white noise process of variance Ew(t)w(s)>=Ipδ (t− s).
The m× p impulse response W (t) is a causal function in `2: W (t) = 0 for
t < 0.
The Fourier transform has an analytic extension W (z) to {|z|> 1} in H2.
The representation is highly non unique. Input white noise is a latent vari-
able; special white input is the innovation process = one step prediction
error given the infinite past.
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Spectrum from shaping filters

Shaping filter representation

w(t) y(t)
W (z)- -

Wiener-Kintchin formula gives the spectral density matrix Φ(e jθ ) of
{y(t)}

Φ(e jθ ) =

+∞∑
k=−∞

e− jθτ
Λ(τ) =W (e jθ )W (e− jθ )> spectral factorization.

FACT: every shaping filter W (z) is a spectral factor of Φ(z).
The covariance function Λ(τ) of a p.n.d process admits Fourier transform.
Positivity: Φ(e jθ ) =W (e jθ )W (e− jθ )> ≥ 0 .
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Shaping filters and ARMA models

Assume W (z) is a rational matrix function. Since W (z) is stable i.e. ana-
lytic in {|z| > 1}, can be written as a ratio of polynomial matrices W (z) =
D(z)−1 N(z) with detD(z) 6= 0 in {|z|> 1};

D(z) = Izν +

ν∑
1

Ak zν−k N(z) = N0zν +

ν∑
1

Nk zν−k

{y(t)} may be described by a (multivariabile) ARMA model

y(t)+
ν∑
1

Ak y(t− k) = N0 w(t)+
ν∑
1

Nk w(t− k) .

There are many ARMA model representations !
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Purely deterministic stationary random
processes

y is a purely deterministic (p.d) process if it has zero innovation. Can be
predicted exactly based on the infinite past.
Example (elementary)

y(t) =
ν∑

k=1

xk cosωkt + zk sinωkt , Ex2
k = Ez2

k = σ
2
k

all random variables {xk , zk ; k = 1,2, . . . ,ν} mutually uncorrelated.

H(y) := span{xk , zk ; k = 1,2, . . . ,ν}= H−t (y) = H+
t (y)

The spectral density does not exists. Formally is a sum of delta functions
(spectral lines).
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Wold decomposition

Theorem 1 (Wold decomposition) Every stationary process can be de-
composed uniquely as

y(t) = u(t)+v(t) ,

where {u(t)} is p.n.d., {v(t)} is p.d. and {u(t)} and {v(t)} are uncorrelated;
i.e. 〈uk(t),v j(s)〉= 0, ∀t,s ∈ Z, ∀k, j = 1, . . . ,m.

The spectrum of y is the sum of an absolutely continuous part (spectral
density) plus a singular part (spectral lines + ..).
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State space models of random processes

Any p.n.d. process {y(t)} is the response to some normalized white noise
process {w(t)} of a linear Shaping Filter of transfer function W (z)

w(t) y(t)
W (z)- -

If W (z) is rational; i.e. W (z) =C(zI−A)−1B+D, can be realized as a state
space system{

x(t +1) = Ax(t)+Bw(t) x(t0) = x0
y(t) = Cx(t)+Dw(t) , t ≥ t0

(1)

{w(t)} p-dimensional white noise process of variance Ew(t)w(s)>=Ipδ (t− s)
Initial (random) data

Ex0 = 0 , Var x0 = Σ0 , Ex0 w(t)> = 0 ∀ t ≥ t0 .
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Minimality

REACHABILITY: rank
[
B AB . . . An−1B

]
= n

OBSERVABILITY: rank


C

CA
...

CAn−1

 = n

In any case if Reachability + Observability hold W (z) analytic⇔ |λ (A)|< 1
Reachability + Observability are necessary but not sufficient for minimality.
Example {

x(t +1) = −ax(t)+(1−a2)w(t)
y(t) = x(t)+aw(t)

this y(t) is white noise. Particular case a= 0; i.e. W (z)= z−1. These models
have a minimal representation of order n = 0.

Stochastic minimality holds iff there are no nontrivial right all-pass divi-
sors of W (z). This is the same as minimality of the spectral factor which
will be defined later as minimality of the McMillan degree.
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Unnormalized white noises
{

x(t +1) = Ax(t)+v1(t) x(t0) = x0
y(t) = Cx(t)+v2(t) , t ≥ t0

with unnormalized white inputs:

E
{[

v1(t)
v2(t)

][
v1(t)> v2(t)>

]}
=

[
Q S
S> R

]
≥ 0.

Factorize (full rank) [
Q S
S> R

]
=

[
B
D

][
B> D>

]
Then v1(t) :=Bw(t) , v2(t) :=Dw(t) with w the same normalized white noise
Note: v1(t) and v2(t) are in general correlated white noise processes un-
less

B = [B̄ 0], D = [0 D̄] S = BD> = 0 .
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The State process

Since Ex0 w(t)> = 0 ∀ t ≥ t0,

x(t) = At−t0x(t0)+
t−1∑
k=t0

At−1−kBw(k) Orthogonal sum (∗)

Then {x(t)} is a wide-sense Markov process; i.e.

Ê [x(t) | x(τ), t0 ≤ τ ≤ s] = Ê [x(t) | x(s) ] , ∀t ≥ s ,

If {w(t)} and x0 jointly Gaussian, then {x(t)} is Gaussian and Markov in
strict sense. State Variance

Σ(t) = Ex(t)x(t)> := Var(x(t))

Satisfies a Lyapunov difference equation

Σ(t +1) = AΣ(t) A>+BB> , Σ(t0) = Σ0 .

Σx(t,s) = At−s
Σ(s) , t ≥ s
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Proof of the Markov property

Writing (∗) with s in place of t, you see that w(t)⊥ x(s) for all t ≥ s. Hence
if you project

x(t) = At−sx(s)+
t−1∑
k=s

At−1−kBw(k) ,

onto H(x(t0), . . . ,x(s)) :=H−s (x)⊂H−s (w) the second term of the sum projects
to zero and the (components of the) first belong to the space and stays un-
changed. In fact

Ê [x(t) | x(s) ] = At−sx(s) .
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Conditional orthogonality

Ricordiamo che due sottospazi di variabili aleatorie del secondo ordine
X,Y, si definiscono condizionatamente scorrelati o, meglio, condizionata-
mente ortogonali, dato un terzo sottospazio di variabili del secondo ordine
Z, se risulta

〈x,y〉= 〈 Ê(x | Z), Ê(y | Z)〉 (2)

per ogni x ∈ X, y ∈ Y. Notazione: X⊥ Y | Z
La (2) è equivalente alla

〈x− E(x | Z),y− E(y | Z)〉= cov(x,y | Z) = 0 ,

per cui la covarianza incrociata condizionata di x e y, date le variabili del
sottospazio Z, è zero.
Che questa sia la naturale versione “debole” dell’ indipendenza condizion-
ata si può vedere supponendo che X, Y e Z siano popolati da variabili con-
giuntamente Gaussiane. Allora la densità congiunta condizionata pxy(· |Z)
fattorizza nel prodotto delle due densità px(· | Z) py(· | Z) (si può inizial-
mente supporre Z generato da un vettore z di dimensione finita e notare
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che il ragionamento vale, indipendentemente dalla dimensione di Z). La
nozione intuitiva di incorrelazione condizionata è poi catturata in modo es-
plicito dal seguente enunciato (la cui dimostrazione si può ad esempio
trovare in [?].

Lemma 1 Si ha X⊥ Y | Z se e solo se vale una delle tre condizioni equiv-
alenti

(i) Ê(x | Y∨Z) = Ê(x | Z) x ∈ X

(ii) Ê(y | X∨Z) = Ê(y | Z) y ∈ Y

(iii) X∨Z ⊥ Y∨Z | Z

dove X∨Y denota lo spazio di Hilbert generato dalle variabili aleatorie dei
sottospazi X e Y (ovvero la chiusura della somma vettoriale X+Y).



The (wide-sense) Markov property

Coordinte-free notion of Markov process
Let {Xt}t∈Z be a family of subspaces of some ambient Hilbert space of
second order random variables. Let

X−t := span{Xs ; s < t} , X+
t := span{Xs ; s > t} strict past and future

X̄−t := span{Xs ; s≤ t} , X̄+
t := span{Xs ; s≥ t} past and future .

Definition 1 The family {Xt}t∈Z is Markovian if past and future are condi-
tionally uncorrelated given the present; i.e. X−t ⊥ X+

t | Xt for all t. Any n-
dimensional process x(t)= [x1(t), . . . ,xn(t) ]> such that Xt = span{x1(t), . . . ,xn(t)}
is a (wide sense) Markov proces.

By lemma 1 this is equivalent to

Ê
[
x(t + k) | X−t

]
= Ê [x(t + k) | Xt] , Ê

[
x(t− k) | X+

t
]
= Ê [x(t− k) | Xt] ∀k≥ 0

for all t ∈ Z. One can exchange X+/−
t for X̄+/−

t everywhere.
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Conventions on past and future

For a generic process y both the strict past and future do not contain the
present. It is convenient to define past and future in such a way that at
least one of them contains the present. A common convention is to include
the present in the future and not in the past; i.e. to define

H−t (y) := span{y(s) ; s < t} H+
t (y) := span{y(s) ; s≥ t}

For a Markov process this distinction is immaterial since strict past (future)
and whole past (or future) play the same role but fo rgeneral processes this
is not true.
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Conditional orthogonality and state equations

Define the n+m dimensional random vector

z(t) :=
[

x(t +1)
y(t)

]
Let

H+
t (z) := H+

t+1(x)∨H+
t (y), H−t (z) := H−t+1(x)∨H−t (y)

Proposition 1 If (x, y) satisfy a linear state equation, then one has the
conditional orthogonality relation

H−t (z)⊥H+
t (z) | Xt t0 ≤ t (3)

where Xt := span{x1(t), . . . ,xn(t)} is the state space of the system at time
t :.
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Proof:

TO BE ADDED
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A geometric approach

Let Xt denote the state space of the system{
x(t +1) = Ax(t)+Bw(t) ,

y(t) = Cx(t)+Dw(t)

The state vector is just a choice of basis in Xt. Once a basis in Xt is fixed all
the matrices (ABCD) are uniquely determined. In fact, let P = Ex(t)x(t)>,
then 

A = Ex(t +1)x(t)>P−1 ,

C = Ey(t)x(t)>P−1 ,

C̄ = Ey(t−1)x(t)> ,[
Bw(t)
Dw(t)

]
=

[
x(t +1)

y(t)

]
− E(

[
x(t +1)

y(t)

]
| x(t)) .

(4)

so in a sense, constructing a stochastic model is just a matter of finding
the state space and choosing a suitable basis.
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Conditional orthogonality and state equations

Proposition 2 Conversely, if (3) holds and Xt is finite dimensional with ba-
sis {x1(t), . . . ,xn(t)}, then x, y satisfy a state space equation of the form (1).

Proof : Since z(t) ∈H+
t (z) and x(t) is a basis for Xt

ẑ(t | t−1) := Ê
[

z(t) |H−t−1(z)
]
= Ê

[
z(t) |H−t (z)

]
= Ê [z(t) | x(t) ]=

[
A
C

]
x(t).

Let z(t) = ẑ(t | t−1)+v(t), then v(t) is the innovation of z and hence is white
noise. Normalize and define w(t) so that

v(t) =
[

B
D

]
w(t) .
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The p.n.d. and p.d. subsystems of a state
space model

Proposition 3 The n random variables {x1(t),x2(t), . . . ,xn(t)} form a basis
in Xt if and only if Σ(t) := Ex(t)x(t)> > 0 .

Pick a basis (at time zero) x = [xs xd ]
> where xs is the p.n.d. and xd the p.d.

component . They span two orthogonal complementary subspaces Xs and
Xd. In fact by Wold decomposition, H(xs) and H(xd) are orthogonal and
hence the Markov property holds separately for the two state processes;[

xs(t +1)
xd(t +1)

]
=

[
As 0
0 Ad

][
xs(t)
xd(t)

]
+

[
Bs
Bd

]
w(t)

Note: Bd must be zero since otherwise xd would have a non-zero innova-
tion (Prove this!).
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Second order description

Joint covariances of {y(t)} and {x(t)} are completely determined by the
model!

Output Covariance Λ(t,s) = Ey(t)y(s)>

Σx(t,s) =

{
At−s Σ(s) t ≥ s

Σ(t) (A>)s−t t ≤ s

Λ(t,s) =


CAt−s−1 C̄(s)> t > s

C Σ(t)C>+DD> t = s

C̄(t)(A>)s−t−1C> t < s

C̄(s)> := AΣ(s)C>+BD>
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Asymptotic stationarity of p.n.d. processes

Definition: {y(t)} is asymptotically stationary if for t − t0 → ∞, Λ(t,s)⇒
Λ(t− s), depends on the difference t− s.

If A (as.) stable |λ (A) | < 1 then {x(t)} and {y(t)} for t− t0→ +∞, jointly
asympt. stationary

Σx(t− s) = At−s
Σ̄ , t ≥ s ,

Λ(t− s) =

{
CAt−s−1 C̄> t > s

C Σ̄C>+DD> t = s

where C̄> := A Σ̄C>+BD> and Σ̄ := limt−t0→+∞ Σ(t) satisfies the Lya-
punov equation

Σ̄ = A Σ̄A>+BB> .

Σ̄, asympt. state variance, does not depend on the initial condition Σ0.
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Homework

Particularize the formulas above for the case when x is (stationary) purely
deterministic.

In this case Σ̄ = Ex0x>0 = Σ0 satisfies a homogeneous Lyapunov equation.
Assume Σ0 > 0 and show that in a suitable basis A must be an orthogonal
matrix, namely

AA> = A>A = I

Describe the eigenvalues/eigenvectors of an orthogonal matrix.
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The Lyapunov equation

Theorem 2 The discrete Lyapunov equation

X = AX A>+Q ,

with arbitrary Q, has a solution (necessarily unique) if and only if the spec-
trum of A is unmixing; i.e. does not contain reciprocal elements, that is
λk ∈ σ(A)⇒ 1/λk /∈ σ(A). If Q = Q> the solution is symmetric.
Let A have unmixing spectrum and P be the solution. If Q = BB> and (A,B)
is reachable, the number of eigenvalues of A with modulus less [greater]
than 1 is equal to the number of positive [negative] eigenvalues of P. In
particular P is non singular.

Corollary 1 Any of the two conditions below imply the remaining one

i) (A,B) is reachable

ii) A is asymptotically stable

iii) The equation X = AX A>+BB> has a unique solution P = P> > 0 .
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Causal/Acausal models

The state space model{
x(t +1) = Ax(t)+Bw(t) ,

y(t) = Cx(t)+Dw(t)
(5)

with |λ (A)| < 1 is a causal or forward representation since the equations
can be solved to yield

x(t) =
t−1∑

s=−∞

At−1−sBw(s) , y(t) =
t−1∑

s=−∞

CAt−1−sBw(s)+Dw(t)

which represent x(t) and y(t) as a causal function of the past {w(s) ; s≤ t }.
However this is just a representation out of many possible others. A ran-
dom process is just a flow; has no intrinsic causality. Shaping filter repre-
sentation could be anti-causal or even of “mixed” causal-anticausal type.
The only condition which is really needed is that the impulse response be
in `2(Z). For rational processes σ(W (z))∩ {|z| = 1} = /0. Otherwise the
spectrum of W (z) could be arbitrary.
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Introduction to rational spectral factorization

Inverse problem (stochastic realization): Given a p.n.d. stationary pro-
cess y with a rational spectral density matrix Φ(z) want to find and classify
the state space realizations of y.
We want to classify all Minimal state space models where dimx(t) is the
smallest possible.
This involves computing the rational spectral factors parametrized in the
form W (z) = C(zI−A)−1 B+D. Here we will not worry about constructing
the noise process w.
Will solve this problem obtaining a parametrization of all minimal analytic
(i.e. causal) spectral factors.
Minimal spectral factors are of minimal Mc Millan degree. Will also study a
more general problem.
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Causal-Anticausal splitting of Φ(z)

Covariance function of the process y

Λ(τ) =

{
CAτ−1 C̄> τ > 0

C Σ̄C>+DD> τ = 0

where C̄> := AΣC>+BD> and Σ satisfies the Lyapunov equation

Σ = AΣA>+BB> .

Since y is p.n.d. the Fourier transform of Λ exists. Get the Laurent expan-
sion:

Φ(z) =
+∞∑

τ=−∞

Λ(τ)z−τ
Λ(−τ) = Λ(τ)>

=
[
C(zI−A)−1C̄>+Λ0/2

]
+
[
Λ0/2+C̄(z−1 I−A>)−1C>

]
:= Φ+(z) + Φ+(z−1)>

Since |λ (A)|< 1 this is an analytic + co-analytic decomposition.
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The positive real part of Φ(z)

A rational m×m matrix function Φ(z) is a spectral density iff it satisfies
◦ the para-Hermitian symmetry Φ(z) = Φ(z−1)>

◦ Φ(e jθ ) integrable on the unit circle⇒ no poles on the unit circle
◦ positive semidefinite on the unit circle Φ(e jθ )≥ 0 .

Hence Φ+(z) is analytic on {|z| ≥ 1} and

Φ(e jθ ) = Φ+(e jθ )+Φ+(e− jθ )> = 2ℜeΦ+(e jθ )≥ 0

therefore Φ+(z) is a positive real function, the Positive Real part of Φ(z),
see e.g. the book by Anderson and Vongpanitlerd for the definition and
implications of this important property.
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Generalization of the additive splitting

Call a rational m×m matrix function Φ(z) parahermitian if it satisfies only
the first two conditions.
So far we have been showing a causal-anticausal decomposition of the
spectrum with A an asymptotically stable matrix. One can have many other
additive decompositions of a parahermitian Φ(z). The poles of Φ(z) have
reciprocal symmetry; i.e. if Φ(z) has a pole in z = pk then 1/pk must also
be a pole (be it finite or not) of the same multiplicity.
The set of poles, σ(Φ), of a Φ(z) of degree 2n can then be split in two re-
ciprocal subsets σ1 and σ2 each containing n complex numbers (repeated
according to multiplicity), such that σ2 = 1/σ1. This decomposition of the
spectrum yields, by partial fraction expansion, a rational additive decom-
position of Φ(z) of the type

Φ(z) = Z(z)+Z(z−1)> , (‡)

where Z(z) is a rational function with poles in σ1 and those of Z(z−1)>

necessarily in σ2 = 1/σ1. Clearly, here A need not be asymptotically stable.
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Unmixing

Recall that an n×n matrix A has unmixed spectrum if σ(A), does not con-
tain reciprocal pairs counting multiplicity. Assume minimality of (C, A, C̄>).
Then A has unmixed spectrum if and only if the selected pole set σ1≡ σ(A)
has no self-reciprocal elements. It is obvious that this happens if and only
if σ1∩σ2 = /0.

Example 1 The parahermitian function Φ(z) =
K2

(z− 1
2)

2(z−1− 1
2)

2
has pole

set {1
2,

1
2, 2, 2} so the only non intersecting subsets of two elements are

{1
2,

1
2 } and {2, 2}. Hence in this case either Z(z) is stable and coincides

with Φ(z)+ or is totally antistable with poles in {2, 2}.

Note that the unmixed spectrum condition is exactly the condition insur-
ing that the Lyapunov equation P−APA> = Q has a (unique) solution for
arbitrary Q.
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Rational spectral factorization

The rational spectral factorization problem is, given a parahermitian ratio-
nal matrix Φ(z) find rational matrix functions W (z) such that Φ(z)=W (z)W (z−1)>

In the classical setting Φ(z) is actually a spectral density and one starts
from the additive decomposition Φ(z) = Φ+(z)+Φ+(z−1)> with Φ+(z) pos-
itive real and looks for analytic spectral factors.
We want to generalize this problem. Start from a parahermitian matrix
given by a general additive decomposition (‡) where the function Z(z) :=
C(zI−A)−1C̄>+ 1

2Λ0 is not necessarily positive real and look for rational
spectral factors with the same poles of Z(z). Note that the existence of
spectral factors is not automatically guaranteed in this case and is in fact
equivalent to the the positivity of Φ(e jθ ) since, irrespective of analiticity, if
a spectral factor W exists, then

Φ(e jθ ) =W (e jθ )W (e− jθ )> ≥ 0 .
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From additive decomposition to spectral
factorization

Would like to factor the function given by the additive decomposition (‡),
namely

Φ(z) =
[
C(zI−A)−1 I

][0 C̄>

C̄ Λ0

][
(z−1 I−A>)−1C>

I

]
(∗)

as Φ(z) =W (z)W (z−1)>. Note that this seems impossible at first sight since
the matrix in the middle is not positive semidefinite. But there are many
constant matrices representing the same quadratic form.

Lemma 2 Let

M =

[
P−APA> −APC>

−CPA> −CPC>

]
for some n×n symmetric matrix P. Then we have[

C(zI−A)−1 I
]

M
[
(z−1 I−A>)−1C>

I

]
≡ 0

identically.
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Proof : Use the identity

P−APA> = AP(z−1 I−A>)+(zI−A)PA>+(zI−A)P(z−1 I−A>) . (6)

Let P−APA> := Q and use the shorthand A(z) := (zI−A). Left multiply by
C A(z)−1 and right multiply by A(z−1)−>C> to get

C A(z)−1 QA(z−1)−>C> = C A(z)−1 APC>+CPA>A(z−1)−>C>+CPC>

which is what we need to show.
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The Linear matrix Inequality (LMI)

Lemma 3 If there exists P = P> such that the following Linear Matrix In-
equality

M(P) =
[

P−APA> C̄>−APC>

C̄−CPA> Λ0−CPC>

]
≥ 0 LMI

is satisfied, the parahermitian matrix Φ(z) admits spectral factors. In fact,
let W (z) =C(zI−A)−1B+D where B, D be defined by the factorization

M(P) =
[

B
D

][
B> D>

]
,

then W (z) =C(zI−A)−1B+D is a spectral factor.

The lemma follows from the content of the previous slide. Hence if the LMI
has a solution, Φ(z) is actually a spectral density. Note that no stability of
A nor minimality are required.
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Exercise: Show that if A is unmixing and C(zI−A)−1C̄> is a minimal real-
ization then C(zI−A)−1B is also a minimal realization.

Hint: A proof can be based on the fact that σ1 ∩σ2 = /0 implies that the
McMillan degree δ (Z) = 1

2δ (Φ) = n so that the dimension of A is n×n which
implies that (A, B) must be reachable otherwise the dimension of a minimal
realization of W would be smaller than n and hence Φ(z) = W (z)W (z−1)>

would have McMillan degree smaller than 2n which is in contrast with the
minimality of the realization of Z(z).

If A is not unmixing there may be ambiguities in forming the decomposition
Φ(z) = Z(z)+Z(z−1)>. Actually in some case the decomposition may not
even exist.
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The Linear matrix Inequality (LMI): Necessity

Conversely want to show that for any spectral factor there is a P = P>

satisfying the LMI constructed with the parameters (A,C, C̄, Λ0) of some
Z(z). Note that whenever W (z) =C(zI−A)−1B+D is a spectral factor then
we can write

Φ(z) =
[
C(zI−A)−1 I

][BB> BD>

DB> DD>

][
(z−1 I−A>)−1C>

I

]
(†)

The LMI is defined once we show that this Φ(z) has a parahermitian addi-
tive decomposition like (‡), or equivalently (∗). Now in force of Lemma 2,
this amounts to showing that there are matrices P, C̃ and R such that[

BB> BD>

DB> DD>

]
=

[
0 C̃>

C̃ R

]
+

[
P−APA> −APC>

−CPA> −CPC>

]
, (∗∗)

since by multiplying this equation on the left by [C (zI−A)−1 I] and on the
right by [C (Iz−1−A)−1 I]> and by using Lemma 2 we would conclude that
Φ(z) has a parahermitian additive decomposition of the same form as (∗)
with Z(z) =C (zI−A)−1C̃+ 1

2R.
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The Linear matrix Inequality (LMI): Necessity

Lemma 4 Let W (z) =C(zI−A)−1B+D be a rational spectral factor of Φ(z)
with an unmixing A matrix. Then there is a corresponding additive decom-
position Φ(z) = Z(z)+ Z(z−1)> with = C(zI−A)−1C̃>+ 1

2Λ0 and a unique
P = P> satisfying the linear matrix inequality[

P−APA> C̃>−APC>

C̃−CPA> Λ0−CPC>

]
≥ 0 .

If |λ (A)|< 1 and (A, B) is reachable, then P > 0.

Proof: For analytic spectral factors (|λ (A)|< 1) the lemma is nearly obvious.
A short probabilistic proof goes as follows. Take a stationary realization
with transfer function W (z) and compute the variance of[

B
D

]
w(t) =

[
x(t +1)

y(t)

]
−
[

A
C

]
x(t) = z(t)− Ê [z(t) | x(t) ]

and notice that the variance of the quantity on the left must obviously be
positive semidefinite. By Pithagora’s theorem the variance of the second
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member is [
P C̄>

C̄ Λ0

]
−
[

APA> APC>

CPA> CPC>

]
since

Ey(t)x(t +1)>= E(Cx(t)+Dw(t))(x(t)>A>+w(t)>B>) =CPA>+DB>= C̄

(this follows since the model is causal). In this case the solution P of the
LMI is the variance of x(t).

For arbitrary A we can give an algebraic proof as follows.



By the unmixing assumption the Lyapunov equation P−APA> = BB> has
a unique symmetric solution P. Therefore solving equation (∗∗) with this
fixed P yields

C̃> = APC>+BD>

C̃ =CPA>+DB>

R =CPC>+DD>

whereby Φ(z)=C(zI−A)−1C̃>+R+C̃(z−1 I−A>)−1C> := Z̃(z)+R+Z̃(z−1)>.
Now Φ(z) has a spectral factor and hence is a bona fide spectral density
matrix which admits a unique Laurent expansion. Now in a suitably small
neighborhood of the unit circle Z̃(z) has an expansion in powers of z−1

without constant term while Z̃(z−1)> has an expansion in positive powers
of z also without constant term. It follows that R = Λ0 and there is a unique
P = P> satisfying the LMI corresponding to Z(z) =C (zI−A)−1C̃+ 1

2Λ0. 2
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The Positive Real Lemma

Corollary 2 (Positive Real Lemma) Let Z(z) be a m×m transfer function
with a minimal realization Z(z) =C(zI−A)−1C̄>+ 1

2Λ0 where A is an asymp-
totically stable n× n matrix. Then, the set of symmetric solutions P of the
linear matrix inequality (LMI)

P := {P = P> ; M(P)≥ 0}

is nonempty if and only if Z(z) is positive real. All P∈P are positive definite.

Positive definitness of P follows from the minimality of (C, A, B) which in
turn follows from that of (C, A, C̄ ) (see the Exercise).
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Parametrization of all minimal analytic spectral
factors

Theorem 3 (B.D.O. Anderson) Let (A,C, C̄, 1
2Λ0) be a minimal realization

of Φ+, the positive real part of Φ. Then there is a one-to-one correspon-
dence between minimal analytic spectral factors of Φ and symmetric n×n
matrices P solving the Linear Matrix Inequality LMI in the following sense:
Corresponding to each solution P = P> of the LMI, necessarily positive
definite, there corresponds a minimal analytic spectral factor W (z) =C(zI−

A)−1B+D where A and C are as above and
[

B
D

]
is the unique (modulo

orthogonal transformations) full-rank factor of M(P).
Conversely, corresponding to each minimal analytic spectral factor having
minimal realization W (z) =C(zI−A)−1B+D there is a unique positive defi-
nite P ∈ P solving the LMI with C̄ =CPA>+DB>.
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Proof

That from the minimality of (A,C, C̄, 1
2Λ0) follows that any spectral factor of

the form W (z) = C(zI−A)−1B+D is a minimal spectral factor, is the con-
tent of the Exercise on slide 37. Hence to each solution P = P> of the LMI
(necessarily positive definite since |λ (A)| < 1), there corresponds a mini-
mal analytic spectral factor.
Conversely, let W (z) =C(zI−A)−1B+D be a minimal realization of a mini-
mal spectral factor, then by Lemma 4 there is a unique P with P = P> > 0
solution of the LMI constructed from Z(z) = C(zI − A)−1C̄>+ 1

2Λ0 where
C̄ =CPA>+DB>. Z(z) is indeed the positive real part of the spectrum. 2

Note: The matrix C̄ =CPA>+DB>must be the same for all minimal spectral
factors W (z) = C(zI−A)−1B+D since it is the “B” parameter of a minimal
realization of Φ+; hence it does not depend on which spectral factor is
chosen to form Φ(z). In other words, C̄ is an invariant over the family of all
minimal stochastic realizations expressed with a fixed (C, A) pair.
Recall that C̄ = Ey(t)x(t +1)> so this quantity is also an invariant.
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The set P of solutions of the LMI

Easy to see that P is a closed and convex set.

Need a condition, called regularity, that precludes the presence of zeros
either at z = 0 or at z = ∞ in the spectral density matrix of the process.

∆(P) := Λ0−CPC> > 0 for all P ∈ P.

Clearly, a regular process must be full rank.

The number of columns of the spectral factor W (z) varies with P ∈ P. In
fact, if the rank of

[
B> D>

]> is full, W (z) is m× p, where p := rankM(P).
Then, letting T := −(C̄>−APC>)∆(P)−1, one has a block-diagonalization
of M(P) [

I T
0 I

]
M(P)

[
I 0

T> I

]
=

[
R(P) 0

0 ∆(P)

]
,

where

R(P) = P−APA>− (C̄>−APC>)∆(P)−1(C̄>−APC>)>.
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Hence, P ∈ P if and only if it satisfies the Algebraic Riccati inequality

R(P) ≥ 0 . (ARI)

Moreover, p = rankM(P) = m+ rankR(P) ≥ m. If P satisfies the Algebraic
Riccati Equation R(P) = 0, i.e.,

P = APA>+(C̄>−APC>)∆(P)−1(C̄>−APC>)>, (ARE)

then rankM(P) = m and the spectral factor W (z) is m×m.
The family of P’s solving the ARE; i.e. corresponding to square spectral
factors, form a subfamily P0 of P. If P /∈ P0, W (z) is rectangular.
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The extreme points of P

Theorem 4 There are two special solutions of the ARE: P−, P+, such that
P− ≤ P≤ P+, for all P ∈P .

P−⇒
[

B−
D−

]
⇒W−(z) = C(zI−A)−1B−+D−

is the minimum phase spectral factor whose zeros are all in {|z| < 1} i.e.
with a causal inverse

P+⇒
[

B+

D+

]
⇒W+(z) = C(zI−A)−1B++D+

the maximum phase spectral factors whose zeros are all in {|z| > 1} i.e.
with an anticausal inverse.

Proof based on Kalman filter theory.
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The Kalman filter

Problem: compute the minimum variance estimate of the state at time t +1
of the stationary linear model{

x(t +1) = Ax(t)+Bw(t)
y(t) = C x(t)+Dw(t)

, Cov
{[

Bw(t)
Dw(t)

]}
=

[
Q S
S> R

]
δ (t− s) .

Assume R > 0 but no conditions on A for now. Given past measurements
of {y(t)} up to time t ≥ t0 with x(t0) = x0 ⊥ w(t) , t ≥ t0 and given Ex0 =

0 ,Var{x0}= Σ0,
want to compute x̂(t +1 | t) := Ê [x(t +1) | y(s), t0 ≤ s≤ t ].
This is given by the Kalman one-step ahead predictor:

x̂(t +1 | t) = Ax̂(t | t−1)+K(t)e(t) , t ≥ t0

where the Innovation process e(t) := y(t)−Cx̂(t | t−1), is white noise !.
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The Kalman filter cont.d

The Kalman gain K(t) and innovation Variance

K(t) :=
[

AP̃(t)C>+S
]

Λ(t)−1
Λ(t) = Ee(t)e(t)> =CP̃(t)C>+R

where, let x̃(t | t−1) := x(t)− x̂(t | t−1)}, the error covariance matrix, P̃(t)
normally denoted P(t | t−1), is:

P̃(t) = E x̃(t | t−1) x̃(t | t−1)> = Σ(t)− P̂(t)

where Σ(t) = Ex(t)x(t)> , P̂(t) = E x̂(t | t−1)x̂(t | t−1)> are the covariance
matrices of the state and state estimate.
The error covariance matrix P̃(t), satisfies the Riccati Difference Equa-
tion

P̃(t +1) = AP̃(t)A>−K(t)Λ(t)K(t)>+Q , P̃(t0) = Σ0 .
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The Riccati equation of Kalman filtering

Substitute P̃(t) = Σ(t)− P̂(t) in the Kalman gain:

K(t) =
[
AΣ(t)C>+S−AP̂(t)C>

]
Λ(t)−1 =

[
C̄>(t)−AP̂(t)C>

]
Λ(t)−1

where (recall S = BD>) define C̄>(t) := AΣ(t)C>+BD>.
Now use the Lyapunov difference equation for the state variance Σ(t)

Σ(t +1) = AΣ(t)A>+Q

(N.B.: this holds if x(t) ⊥ w(t) although A may be arbitrary) and get an
equivalent Riccati equation in terms of P̂(t), the covariance of x̂(t | t−1)

P̂(t+1)=AP̂(t)A>+(C̄>(t)−AP̂(t)C>)(Λ0(t)−CP̂(t)C>)−1(C̄(t)−CP̂(t)A>), P̂(t0)= 0 .

Here Λ0(t) =CΣ(t)C>+R = Ey(t)y(t)> is the transient output covariance.
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Asymptotics of the Riccati equation under
stationarity

Theorem 5 Let x(t) be an asymptotically stationary state process. Then
for t − t0→ ∞, the predictor x̂(t | t − 1) converges to a stationary process
and its covariance matrix converges to a constant P̂ = P̂> ≥ 0. If in addi-
tion, |λ (A)|< 1, so that Σ̄ := limt−t0→∞ Σ(t) satisfies the algebraic Lyapunov
equation, then P̂ satisfies the ARE of Spectral factorization :

P̂ = AP̂A>+(C̄>−AP̂C>)(Λ0−CP̂C>)−1(C̄−CP̂A>) .

where C̄> := AΣ̄C>+BD>. Under these conditions P≥ P̂ for all solutions P
of the LMI corresponding to the parameters (C, A, C̄, Λ0 ).

Proof: Proof that P̂(t) converges is in [Dispense] hence the limit error co-
variance Σ̄− P̂ exists and is positive semidefinite (error covariance solution
of the ARE of Kalman filtering). It follows that Σ̄≥ P̂. This is true for all state
space models having an asymptotically stable A matrix.
Take all models corresponding to solutions P of the LMI (Theorem 3);
hence P ≥ P̂ for all solutions P of the LMI, since these P’s are state vari-
ances of a (minimal) model. 2
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Invariance properties

Fix a minimal realization C(zI−A)−1C̄>+Λ0/2 of the positive real part of
a spectral density Φ(z). Then according to Theorem 3 the whole family of
minimal spectral factors of Φ(z) is parametrized 1 : 1 by a solution of the
LMI. Let {

x(t +1) = Ax(t)+Bw(t)
y(t) = C x(t)+Dw(t)

be a minimal stochastic realization of y in this family. Then

Proposition 4 All these models have the same steady state Kalman filter,
in fact, the state of the Kalman filter is the predictor, x̂(t | t−1), of the state
of any minimal state space model of y and is itself the model with minimal
state covariance matrix P̂≡ P−.

In fact the Kalman gain K̄ and the innovation variance Λ̄ are independent
of the parameters (B,D) of the model and the predictor satisfies the same-
steady state Kalman filter equation irrespective of which model one starts
from.
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The steady state Kalman filter with
asymptotically stable A

The steady-state Kalman filter corresponding to K̄ := limt−t0→∞ K(t); i.e.

K̄ = (C̄>−AP̂C>)(Λ0−CP̂C>)−1

where P̂ is the limit of P̂(t), is a state space representation of y:

x̂(t +1) = Ax̂(t)+ K̄e(t)
y(t) = Cx̂(t)+ e(t)

where e is the stationary innovation process of y of covariance Λ̄ = (Λ0−
CP̂C>). Hence the square transfer function W̄ (z)=C(zI−A)−1K̄+I must be
the minimum phase (unnormalized) spectral factor of Φ(z). Note that
W̄ (z) may have zeros on the unit circle so the minimum phase condition is
not strict in general. For this to be true we would need strict positivity of
the spectral density on the unit circle. Will discuss this later.
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The incremental LMI

Assume A is unmixing and we have fixed a spectral factor say W0(z) =
C(zI − A)−1B0 + D0 of Φ(z) corresponding to the solution P0 of the LMI
(Lemma 4). We consider the sum

M̃(X) :=
[

B0B>0 B0D>0
D0B>0 D0D>0

]
−
[

X−AXA> −AXC>

−CXA> −CXC>

]
=

[
−X +AXA>+Q0 AXC>+S0

CXA>+S>0 CXC>+R0

]
with an obvious meaning of the symbols. In virtue of Lemma 2 we have

Φ(z) =
[
C(zI−A)−1 I

]
M̃(X)

[
(z−1 I−A>)−1C>

I

]
and all spectral factors of Φ(z) can be derived from solutions X = X> of the
LMI M̃(X) ≥ 0 by the usual factorization trick. Now, by uniqueness of the
parametrization of spectral factors (Lemma 4) to each such X there must
correspond a unique P solving the usual M(P) ≥ 0 and conversely. This
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happens just when X = P0−P since in this case, setting C̄> = AP0C>+S0,
one LMI turns into the other. Now, still assuming that CXC>+R0 = Λ0−
CPC> is non singular, we can derive the Riccati inequality equivalent to the
LMI, by block-diagonalization:

−X +AXA>+Q0− (AXC>+S0)(CXC>+R0)
−1(CXA>+S>0 )≥ 0

This leads in particular to the ARE

X = AXA>− (AXC>+S0)(CXC>+R0)
−1(CXA>+S>0 )+Q0 (AREKF)

which is the Riccati equation of Kalman Filtering. Note that all of this holds
just provided A is unmixing (so that the Lyapunov equation P0 = AP0A>+Q0
has a solution). When does this ARE have a unique positive semidefinite
solution is a classical question in system theory.



The steady state Kalman filter with general A

Theorem 6 The (AREKF) has a positive semidefinite solution X̄ = X̄> if
and only if (A,C), is detectable. For any such such solution let

K̄ := K(X̄) := (AX̄C>+S0)(CX̄C>+R0)
−1

Γ̄ := A− K̄C ,

then the eigenvalues of the matrix Γ̄ are strictly inside the unit circle; i.e. X̄
is a stabilizing solution, if and only if the pair (F, Q̃0), defined as

F := A−S0R−1
0 C , Q̃0 := Q0−S0R−1

0 S>0
is stabilizable. In this case (and only in this case) X̄ is the unique positive
semidefinite solution. In addition X̄ > 0 if and only if (F, Q̃0) is a reachable
pair.

Under the above conditions X̄ is the (unique) limit of the error covariance,
limt−t0→∞ P̃(t) irrespective of the initial condition Σ0, and hence the steady-
state Kalman filter is still a bona-fide state space representation of y:{

x̂(t +1) = Ax̂(t)+ K̄e(t)
y(t) = Cx̂(t)+ e(t)

where e is the stationary innovation process of y.
55



Stabilizability and Spectral density

The stabilizability of (F, Q̃0) seems to be a condition depending on the
particular spectral factor W0(z) = C(zI−A)−1B0+D0 of Φ(z). In fact this is
not the case.

Proposition 5 A rational spectral density Φ(z) does not have zeros on the
unit circle; i.e

Φ(e jθ )> 0 , ∀θ ∈ [−π, π ]

if and only if it admits a spectral factor W (z) =C(zI−A)−1B+D with (C, A)

detectable and (F, Q̃) stabilizable where F := A− SR−1C and Q̃ := Q−
SR−1S>. In particular, any minimal spectral factor of a rational spectral den-
sity which has no zeros on the unit circle, must have a stabilizable (F, Q̃)

pair.
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Spectral zeros on the unit circle; example

Wonder if the condition on (F, Q̃) has anything to do with the triplet (A, B,C ).
The answer is NO.
Let w(t) be scalar normalized white noise and consider the model

x(t +1) = 1/2x(t)−1/2w(t)

y(t) = x(t)+w(t)

Here A = 1/2, S =−1/2, R = 1, Q = 1/4,C = 1 so that

F = A−SR−1C = 1/2+1/2 = 1 , Q̃ = 1/4−1/4 = 0

hence (F, Q̃) is not stabilizable although the triplet (A, B,C ) is trivially min-

imal. In fact the transfer function of this model is W (z) =
z−1

z−1/2
and is a

spectral factor of a spectrum Φ(z) which has has a zero at z = 1.
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What kind of a model is the s.s. Kalman filter ?

Since A need not be asymptotically stable in general Σ(t) does not satisfy
the Lyapunov equation and there is in general no limit of Σ(t) neither of
P̂(t). Nevertheless if Φ(z) does not have zeros on the unit circle the closed
loop matrix A− K̄C of the Inverse system (whitening filter){

x̂(t +1) = [A− K̄C] x̂(t)+ K̄y(t)
e(t) = −Cx̂(t)+y(t)

e is asymptotically stable; i.e. A− K̄C has eigenvalues (the zeros !) inside
the unit circle. So the s.s. Kalman filter is still a minimum phase model !!.
Problem :
Is there still a minimal solution of the LMI (of spectral factorization) even for
unstable A?
Answer : Yes provided (A,C), is detectable.
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The structure of rational all-pass functions

Another application of Lemma 4 is to rational spectral factors of the spectral
density Φ(z) ≡ I; i.e. to rational matrix functions Q(z) = C(zI−A)−1B+D
such that Q(z)Q(z−1)> = I. These are called all-pass functions.
Assume (A,C) is a fixed observable pair so that the pole structure of Q(z)
is fixed. Then C̄ = 0. We shall look for the “square” solutions of the spectral
factorization LMI [

P−APA> −APC>

−CPA> I−CPC>

]
≥ 0

assuming I−CPC> := DD> non singular. This permits to solve for B to get
B =−APC>D−> and leads to the homogeneous Riccati equation

P−A
[
P+PC>(I−CPC>)−1CP

]
A> = 0 (HARE)

which has the trivial solution P = 0, corresponding to Q(z) = D, a constant
unitary matrix. The other solutions parametrize the non-trivial square all-
pass functions with the given denominator.

59



Rational all-pass functions (cont.d)

We shall now assume that A is invertible. Consider the zero-dynamics
matrix

Γ := A−BD−1C = A+APC>(I−CPC>)−1C

using the Riccati equation one derives the invariance relation ΓP = PA−>

so that, if P is an invertible solution

P−1
ΓP = A−> .

So far we don’t know if there are any invertible solutions of the Riccati
equation. By the matrix inversion lemma, they must satisfy

P−A
[
P−1−C>C

]−1
A> = 0

which, since A is invertible turns into P−1 = A−>P−1A−1−A−>C>CA−1

that is into the Lyapunov equation

P−1 = A>P−1A+C>C , (††)

which by observability and unmixing has a unique nonsingular solution
(Theorem 2 ). In case A is asymptotically stable P is positive definite.
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Rational all-pass functions (cont.d)

All other solutions of the homogeneous Riccati equation must be singular.

Theorem 7 Let A be unmixing and nonsingular and (C, A) be observable.
There is a 1:1 correspondence between square all pass rational matrix
functions of the form Q(z) =C(zI−A)−1B+D, defined modulo multiplication
from the right by an arbitrary constant unitary matrix, and solutions P = P>

of the HARE.
Consider the orthogonal direct sum decomposition

Rn = ImP⊕KerP , (⊥)

then ImP is an invariant subspace for Γ and KerP is a left-invariant sub-
space for A which is orthogonal to the reachable subspace of (A, B). The
McMillan degree of Q(z) is then equal to dim{ImP}. In a basis adapted
to the direct sum decomposition (⊥), P = diag{P̂1, 0} and the restrictions
Â−>11 , Γ̂11 of A−> and of Γ to ImP are similar; i.e.

P̂−1
1 Γ̂11P̂1 = Â−>11 .
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Proof

The first statement is just a particularization of Theorem ??.
The orthogonal direct sum decomposition (⊥) holds since P is symmet-
ric. From the invariance relation ΓP = PA−>, it follows that for any v ∈ Rn,
ΓPv ∈ ImP and hence ImP is invariant for Γ. Next, for any x ∈ KerP we
have PA−>x = ΓPx = 0 and hence KerP is an invariant subspace for A−>.
In fact KerP is orthogonal to the reachable subspace for (A, B) as x>B =
−x>APC>D−> = 0 since KerP is also an invariant subspace for A> and
hence x>A belongs to the left nullspace of P.
Since P is symmetric there is an orthogonal basis of eigenvectors in which
P = diag{P̂1, 0} with P̂1 non singular and the invariance relation can be writ-
ten [

P̂1 0
0 0

][
Â−>11 Â−>12
Â−>21 Â−>22

]
=

[
Γ̂11 Γ̂12
Γ̂21 Γ̂22

][
P̂1 0
0 0

]
from which the similarity of Â−>11 to Γ̂11 follows. In this basis Q(z) has a
realization (Ĉ1, Â11, B̂1, D) of dimension equal to dim{ImP}. Since P̂1 is
non singular and satisfies the Lyapunov equation P̂1 = Â11P̂1Â>11 + B̂1B̂>1
this realization must be reachable. 2
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Comments

Some of the above can be obtained by a simple similarity argument based
on the fact that Q(z)−1 = Q(z−1)>. Assume A is invertible and recall the
formula

C(z−1I−A)−1B+D = D−CA−1B−CA−1(zI−A−1)−1A−1B

letting Q(z) = J+H(zI−F)−1G, a minimal realization with F invertible, one
has

Q(z)−1 = J−1− J−1H(zI−Γ)−1GJ−1 , Γ = F−GJ−1H
Q(z−1)> = J>−G>F−>H>−G>F−>(zI−F−>)−1F−>H>

and hence there must exist an invertible T such that

T−1(F−GJ−1H)T = F−> , J−1HT = G>F−> , T−1GJ−1 = F−>H>

These equations determine a unique T which must solve either of the two
dual Lyapunov equations

T = FT F>−GG> , T−1 = F>T−1F−H>H
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Co-analytic spectral factorization

Let Φ+(z) =C(zI−A)−1C̄>+ 1
2Λ0 be the positive real part of a spectral den-

sity. We want to describe the family of all minimal Anticausal (co-analytic)
spectral factors:

Φ(z) = W̄ (z)W̄ (z−1)> , W̄ (z) analytic inside the unit circle .

Consider the family of all analytic spectral factors of the transpose,

Φ
>(z) = W̃ (z)W̃ (z−1)> , so that Φ(z) = W̃ (z−1)W̃ (z)>

and hence there is a 1:1 correspondence between coanalytic spectral fac-
tors of Φ(z) and analytic factors of Φ>(z) given by the formula

W̄ (z) = W̃ (z−1) .

Since we have the decomposition

Φ
>(z) = C̄(zI−A>)−1C>+Λ0+C(z−1I−A)−1C̄>

we can set up a “coanalytic” version of Theorem 3.
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The anticausal (backwards) LMI

Form the linear matrix inequality of Φ>(z)

M̄(P̄) :=
[

P̄−A>P̄A C>−A>P̄C̄>

C−C̄P̄A Λ0−C̄P̄C̄>

]
≥ 0. (7)

Then B̄ and D̄ determined via full rank factorization

M̄(P̄) =
[

B̄
D̄

][
B̄> D̄>

]
yield all coanalytic spectral factors

W̄ (z) = C̄(z−1I−A>)−1B̄+ D̄ .

Under the same regularity assumption the dual LMI is equivalent to the
dual (backward) Algebraic Riccati Inequality

P̄−A>P̄A− (C>−A>P̄C̄>)∆(P̄)−1(C−C̄P̄A) ≥ 0

where ∆(P̄) = Λ0−C̄P̄C̄>.
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Parametrization of all minimal co-analytic
spectral factors

Theorem 8 Let (A,C, C̄, 1
2Λ0) be a minimal realization of Φ+, the positive

real part of Φ(z). Then there is a one-to-one correspondence between
minimal coanalytic spectral factors of Φ(z) and symmetric n×n matrices P̄
solving the dual Linear Matrix Inequality LMI

M̄(P̄) :=
[

P̄−A>P̄A C>−A>P̄C̄>

C−C̄P̄A Λ0−C̄P̄C̄>

]
≥ 0

Corresponding to each solution P̄ = P̄> of the LMI, necessarily positive
definite, there corresponds a minimal coanalytic spectral factor W̄ (z) =

C̄(z−1I−A>)−1B̄+ D̄ where
[

B̄
D̄

]
is the unique (modulo orthogonal trans-

formations) full-rank left factor of M̄(P̄).
Conversely, corresponding to each minimal coanalytic spectral factor hav-
ing minimal realization W̄ (z) = C̄(z−1I−A>)−1B̄+ D̄ there is a unique posi-
tive definite P̄ solving the LMI with C := C̄P̄A+ D̄B̄>.
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Theorem 9 Assume y has a forward representation (5). Then it can also
be represented by the backward system{

x̄(t−1) = A>x̄(t)+ B̄w̄(t)
y(t) = C̄x̄(t)+ D̄w̄(t),

(8)

with state covariance

P̄ := E{x̄(t)x̄(t)>}= P−1.

Where C̄ =CPA>+BD> and B̄ , D̄ are defined, uniquely modulo an orthog-
onal transformation, via a minimum-rank factorization[

B̄
D̄

][
B̄
D̄

]>
=

[
P̄−A>P̄A C>−A>P̄C̄>

C−C̄P̄A Λ0−C̄P̄C̄>

]
,

and w̄ is a normalized white noise with the property that

H−t (w̄)⊥
(
H+

t (x̄)∨H+
t+1(y)

)
for all t ∈ Z .
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Proof

Let x̄(t) := P−1x(t +1), z̄(t) :=
[

x̄(t−1)
y(t)

]
and z̄(t) = ˆ̄z(t | t +1)+ v̄(t)

where ˆ̄z(t | t +1) is the backward one-step predictor

ˆ̄z(t | t +1) := Ê [z̄(t) |H+
t+1(z̄)]

and v̄(t) := z̄(t)− ˆ̄z(t | t+1) is the backward innovation process, which must
be a white noise, i.e., E{v̄(t)v̄(s)′}= V̄ δts, with V̄ of size (n+m)× (n+m)

ˆ̄z(t | t +1) = E [z̄(t) |H+
t+1(z̄)] = Ê [z̄(t) | Xt+1]

= E{z̄(t)x(t +1)>}E{x(t +1)x(t +1)>}−1x(t +1)

=

[
A>

CPA>+DB>

]
P−1x(t +1),

since E{x(t)x(t + 1)>} = PA> and E{y(t)x(t + 1)>} = CPA>+DB>. Con-
sequently,

ˆ̄z(t | t +1) =
[

A>

C̄

]
x̄(t), (9)
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Hence
[

x̄(t−1)
y(t)

]
=

[
A>

C̄

]
x̄(t)+ v̄(t) so that,

E{
[

x̄(t−1)
y(t)

] [
x̄(t−1)> y(t)

]>} = [ A>

C̄

]
P̄
[
A C̄>

]
+ E{v̄(t)v̄(t)>},

consequently P̄ solves the LMI M(P̄)≥ 0 and V̄ is equal to

E{v̄(t)v̄(t)>}=
[

B̄
D̄

][
B̄
D̄

]>
.

If
[

B̄
D̄

]
is full rank, can normalize v̄(t) to w̄(t) :=

[
B̄
D̄

]−L
v̄(t) and get the

backward model in standard form.
w̄(t) is the normalized backward innovation of z̄(t) so that H−t (w̄)⊥H+

t+1(z̄) .
2

69



The anticausal (backwards) Kalman filter

Problem: compute the minimum variance estimate of the state at time t−1
of the linear backward model{

x̄(t−1) = A>x̄(t)+ B̄ w̄(t)
y(t) = C̄ x̄(t)+ D̄ w̄(t)

,

[
B̄
D̄

] [
B̄
D̄

]>
:=
[

Q̄ S̄
S̄> R̄

]
,

given future measurements of {y(s) ; s≥ t} (m-dimensional) from time t on.
Completely symmetric story for the steady-state estimate ˆ̄x(t−1 | t) which
satisfies {

ˆ̄x(t−1 | t) = A> ˆ̄x(t | t +1)+ K̄ ē(t)
y(t) = C̄ ˆ̄x(t | t +1)+ ē(t),

The backward error covariance X̄ = P̄− ˆ̄P where ˆ̄P= E ˆ̄x(t | t+1) ˆ̄x(t | t+1)>,
satisfies the Backward Algebraic Riccati equation

X̄ = A>X̄A− (A>X̄C̄>+ S̄)(R̄+C̄X̄C̄>)−1(C̄X̄A+ S̄>)+ Q̄ ARE
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which has a steady state error variance solution X̄ = E ˜̄x(t) ˜̄x(t)> ≥ 0 which
by the minimum error variance property satisfies

X̄ = P̄− ˆ̄P > 0 , ∀ P̄ = E x̄(t)x̄(t)> solutions of the dual LMI

so that [ ˆ̄P ]−1 > P̄−1 But every P̄−1 ≡ P is a solution of the (causal) LMI and
hence [ ˆ̄P ]−1 is the maximal solution ≡ P+ of the (forward) LMI.



Backward models by coprime factorization

Let W (z) = C(zI−A)−1B+D be a minimal m× p analytic spectral factor.
Intuitively it should be possible to choose a p× p all pass function Q̄(z) to
cancel all the (stable) poles of W (z) so that W̄ (z) :=W (z)Q̄(z) is a coanalytic
spectral factor with spectrum the reciprocal spectrum of W (z).
If we write Q(z) := Q̄(z)−1 then Q(z) is also all pass but with a stable de-
nominator; i.e. is a rational inner function that is analytic and all-pass.
The factorization W̄ (z) = W (z)Q−1(z) is a coprime factorization in RH∞,
the algebra of rational functions which are analytic outside of the unit disk.
It can be shown that the representation of W̄ (z) by a coprime factorization
is unique.
Since W (z) and Q(z) must have the same (stable) poles, we can write

Q(z) = H(zI−A)−1APH>J−>+ J , JJ−> = I +HPH>

with H ∈ Rp×n (assuming (H, A) observable) and P solving the homoge-
neous Riccati equation

P−A
[
P+PH>(I−HPH>)−1HP

]
A> = 0 .
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Backward models by coprime factorization
(cont.d)

Let us assume A invertible and let P = P> > 0 be the (invertible) solution of
the Lyapunov equation (††)

P−1 = A>P−1A+H>H

then the zero dynamics of Q(z) is governed by the matrix Γ = A+APH>(I−
HPH>)−1H which is similar to A−>, namely P−1ΓP = A−>.

(TO BE COMPLETED)
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Homework n. 1

Assume W (z) =C(zI−A)−1B+D is a minimal realization of a minimal de-
gree spectral factor; i.e. (C,A,B) is a minimal triplet and W (z) has no non-
trivial right inner divisors. Find Q(z).

Hint: check (for continuous time coprime factorizations) C.N. Nett, C.A.
Jacobson and M.J. Balas IEEE Trans A.C. vol AC-29 September 1984, pp
831-832.

There should be explicit formulas also for discrete time but I don’t know of
a good precise reference.
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Example

Consider a spectral density Φ(z) with the positive real part

Φ+(z) =
5
3

z− 1
2
+

7
6
.

Then A = 1
2, C̄ = 5

3, C = 1, and Λ0 = 7
3, and the linear matrix inequality

becomes

M(P) =
[ 3

4P 5
3−

1
2P

5
3−

1
2P 7

3−P

]
≥ 0,

which holds if and only if P > 0, 7
3−P > 0 and

detM(P) =−P2+
41
12

P− 25
9

=−(P− 4
3
)(P− 25

12
)≥ 0.

These inequalities hold precisely for P ∈ [43,
25
12], and hence P is the interval

[P−,P+], where P− = 4
3 and P+ = 25

12.
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Since

M(P−) =
[

1 1
1 1

]
,

P = P− yields B = 1 and D = 1 and the minimal spectral factor

W−(z) =
1

z− 1
2
+1 =

z+ 1
2

z− 1
2
,

which clearly is minimum phase. On the other hand,

M(P+) =
[

25/16 5/8
5/8 1/4

]
yielding B = 5

4 and D = 1
2 and the maximum phase spectral factor

W+(z) =
5
4

z− 1
2
+

1
2
=

1+ 1
2z

z− 1
2
.

Finally, let us take a P in the interior of P. With P = 2 ∈ [43,
25
12] we obtain

M(P) =
[

3/2 2/3
2/3 1/3

]
.



Without restriction we may take[
B
D

]
=

[
b1 b2
d 0

]
and then [

B
D

][
B
D

]′
=

[
b2

1+b2
2 b1d

b1d d2

]
=

[
3/2 2/3
2/3 1/3

]
which may be solved to yield d = 1√

3
, b1 = 2√

3
and, choosing one root,

b2 =
1√
6
, thus defining a rectangular spectral factor

W (z) =

 2√
3

z− 1
2
+

1√
3
,

1√
6

z− 1
2

 .

In this example all minimal spectral factors, except W− and W+ which are
scalar, are 1×2 matrix valued.



REALIZATION THEORY
1. The Stochastic Realization Problem from covariance data

◦ Problem Statement

◦ Review of deterministic realization theory

◦ The shift-invariance algorithm

2. The Stochastic Realization Problem from sample covariance data

◦ Early algorithms (Aoki) and critiques

◦ Splitting subspaces and stochastic models

◦ The state space construction by CCA
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Motivations

We know how to compute (A, B,C, D, P) from Φ+(z) =C(zI−A)−1C̄+ 1
2Λ0.

How to compute (C, A, C̄) ? The available data are (estimates of) a finite
covariance sequence

{Λ(τ), ; τ = 0,1, . . . ,ν} ?→C, A, C̄

This is a (deterministic, partial) realization problem.
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Deterministic realization theory

Input-output map (free response form initial conditions built by past u’s at
time zero)

y(t) =
−1∑

k=−∞

Gt−k u(k) , t ≥ 0

Notations y+ :=

y(0)
y(1)

...

 u− :=

u(−1)
u(−2)

...

 In matrix form y+=Hu−, where H

is an infinite Hankel matrix

H :=


G1 G2 G3 . . .
G2 G3 G4 . . .
G3 G4 . . . . . .
. . . . . . . . . . . .


Problem A: When is it true that Gk =CAk−1B for some triplet (A, B,C) and
how to compute them ?
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Deterministic realization theory cont.d

necessary and sufficient condition: H should have finite rank n i.e. admit a
rank n factorization H= ΩΓ:

H :=


CB CAB CA2B . . .

CAB CA2B CA3B . . .

CA2B CA3B . . . . . .
. . . . . . . . . . . .

 =


C

CA
CA2

...

 [B AB A2B . . .
]

then the Input-output map is realized by a minimal system of dimension n
(where D = G0 may be absent){

x(t +1) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t) ,

Sufficiency proof is constructive: Ho-Kalman Algorithm
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The partial realization problem

The Ho-Kalman algorithm assumes knowledge of n and infinite data. One
never has an infinite sequence {Gk}
Problem B:(the partial realization problem) Given a finite sequence {Gk ; k=
1,2, . . . ,ν} find all minimal triplets (A, B,C) such that

Gk =CAk−1B ; k = 1,2, . . . ,ν .

any such minimal triplet (A, B,C) provides a minimal rational extension of
the finite sequence {Gk ; k = 1,2, . . . ,ν}.
In general this problem has infinite solutions.
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Partial realization of a finite covariance
sequence

Consider a sequence of m×m (covariance) matrices

Λ := {Λ1, . . . ,Λ2k},

and the following block-Hankel structures

Hk :=


Λ1 Λ2 · · · Λk
Λ2 Λ3 · · · Λk+1... ... . . . ...
Λk Λk+1 · · · Λ2k−1

 (10a)

Hk+1 :=
[

Λ1 Λ2 · · · Λk
σHk

]
H̄k+1 :=


Λ1
Λ2...
Λk

σHk

 (10b)

where σHk is the shifted Hankel matrix, of the same dimensions of Hk but
with all entries shifted by one time unit i.e. with Λi+1 replacing Λi every-
where.
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Lemma 5 Assume the following equal rank condition holds:

rankHk = rankHk+1 = rank H̄k+1 = n (11)

where n < mk, and let

Hk = ΩkΩ̄
>
k , Ωk, Ω̄k ∈ Rmk×n , (12)

be a factorization of Hk where both factors Ωk, Ω̄k have n linearly inde-
pendent columns. Then there are unique full rank left- and right factors,
Ωk+1, Ω̄>k+1, of Hk+1 and H̄k+1; such that

Hk+1 = Ωk+1Ω̄
>
k , H̄k+1 = ΩkΩ̄

>
k+1 (13)

and unique matrices (C, A, C̄) solving the shift-invariance equations:

Ωk+1 =

[
C

ΩkA

]
, Ω̄k+1 =

[
C̄

Ω̄kA>

]
. (14)
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Proof: By equal rank,

rowspanHk = rowspanHk+1 columnspanHk = columnspan H̄k+1

Hence there exist matrices C, ∆, C̄, ∆̄ such that

[
Λ1 Λ2 · · · Λk

]
=CΩ̄

>
k , σHk = ∆Ω̄

>
k


Λ1
Λ2...
Λk

= ΩkC̄
>, σHk = Ωk∆̄

Since the n rows of Ω̄>k form a basis for rowspanHk+1 and the n columns of
Ωk are a basis for columnspan H̄k+1, C,∆,C̄, ∆̄ are unique.
Likewise, from the last two equalities on the right and (10b), there must
exist unique matrices A, Ā of dimension n× n such that ∆ = ΩkA and ∆̄ =
ĀΩ̄>k so that

σHk = ΩkAΩ̄
>
k = ΩkĀΩ̄

>
k .

That A= Ā follows since from this equation one gets Ωk(A− Ā)Ω̄>k = 0 which
can only happen if A = Ā. Hence Hk+1 and H̄k+1 can be expressed as

Hk+1 =

[
CΩ̄>k

ΩkAΩ̄>k

]
=

[
C

ΩkA

]
Ω̄
>
k := Ωk+1 Ω̄

>
k (15)
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and

H̄k+1 =
[

ΩkC̄> ΩkAΩ̄>k
]
= Ωk

[
C̄> AΩ̄>k

]
:= Ωk Ω̄

>
k+1 . (16)

and since both the factors Ω̄>k and Ωk are of full column rank, (C, A, C̄) must
satisfy the recursions (14).



Then we have the following important result on the uniqueness of partial
realization.

Theorem 10 (Kalman) If and only if the equal rank condition (11) holds,
to each rank factorization (12) of Hk there corresponds a minimal triplet
(A,C,C̄>), solution of the shift invariance equations (14), such that

Λi =CAi−1C̄> for i = 1,2, . . . ,2k

Such a triplet is unique in the following sense. If (A1,C1,C̄>1 ) and (A2,C2,C̄>2 )

are minimal partial realizations corresponding to different rank n factoriza-
tions (12), then there is a nonsingular n×n matrix T such that

A2 = T−1A1T, C2 =C1T, C̄>2 = T−1C̄>1 .

Hence all minimal partial realizations corresponding to different rank n fac-
torizations (12) are related by similarity.

83



The Singular Value Decomposition (SVD)

Theorem 11 Let A ∈ Rm×p of rank n≤min(m, p). Can find two orthogonal
matrices U ∈ Rm×m and V ∈ Rp×p and positive numbers {σ1 ≥, . . . ,≥ σn},
the singular values of A, so that

A =U∆V> ∆ =

[
Σ 0
0 0

]
, Σ = diag{σ1, . . . ,σn}

Full-rank factorization of A

A = [u1, . . . ,un]Σ [v1, . . . ,vn]
> :=Un ΣV>n

where Un,Vn submatrices of U,V keeping only the first n columns

U>n Un = In =V>n Vn
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Proof is based on eigenvalue-eigenvector decomposition of AA> and A>A.

U = [u1, . . . ,um] = normalized eigenvectors of AA>;

V :=
[
v1, . . . ,vp

]
normalized eigenvectors of A>A.

{σ2
1 ≥, . . . ,≥ σ2

n} (non zero) eigenvalues of AA> (or of A>A).

Ax =
n∑

k=1

uk σk〈vk , x〉

In particular on the singular vectors A acts like multiplication

Av j =

n∑
k=1

uk σk〈vk , v j〉= σ j u j

85



Useful Features of the SVD

Range and Nullspace of A:

Im(A) = Im(Un), Ax = 0⇔ x ∈ span(
[
vn+1, . . . ,vp

]
) = ImV⊥n

Approximation properties

Ak :=
k∑

i=1

σi ui v>i , k ≤ n

is the best approximant of rank k of A:

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1

min
rank(B)=k

‖A−B‖2F = ‖A−Ak‖2F = σ
2
k+1+ . . .+σ

2
r
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Matrix Norms

2- norm of A ∈ Rm×p Let ‖x‖ be the Euclidean norm.

‖A‖2 := sup
x 6=0

‖Ax‖
‖x‖

= σ1 (= σMAX(A))

The Frobenius norm ‖A‖F is

‖A‖2F =
∑
i, j

a2
i, j = σ

2
1 + . . .+σ

2
n

Condition number

κ(A) = ‖A‖2‖A−1‖2 =
σMAX(A)
σMIN(A)
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Stochastic Models from a covariance sequence

Given a covariance sequence Λk k = 1,2, . . . ,ν

Problem (Partial) stochastic realization: From {Λk k = 0,1,2, . . . ,ν} want
to compute a minimal realization {A,B,C,D} with |λ (A)|< 1, such that

Λk =CAk−1C̄> , k = 0,1,2, . . . ,ν ,

where

C̄> = AΣC>+BD> Σ = AΣA>+BB> .

N.B.: The model covariance sequence {1
2Λ0, CAk−1C̄> ; k = 1,2, . . . ,} must

be a sequence of positive type
Problem of rational positive extension of Λk k = 1,2, . . . ,ν , of minimal de-
gree.
Rational positive (covariance) extension is a very old problem (Caratheodory,
Schur, Levinson..)
The so-called maximum entropy solution is a model of the AR type of very
high degree (n≥ ν).
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Early subspace identification for time series
[Aoki]

Given observed data (zero mean)

{yt ; t = 0,1,2, . . . ,N}
Algorithm:

1. Form sample covariance estimates

Λ̂k =
1
N

N−k∑
t=0

yt+ky>t , k = 0,1, . . . ,2ν � N

2. Form the sample Hankel matrix

H
Λ̂

:=


Λ̂1 Λ̂2 Λ̂3 . . . Λ̂ν

Λ̂2 Λ̂3 Λ̂4 . . . Λ̂ν−1
Λ̂3 Λ̂4 . . . . . . . . .
. . . . . . . . . . . . . . .

Λ̂ν+1 . . . . . . . . . Λ̂2ν


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Assume ν “large enough”, ideally (ν > n).

3. Compute the SVD

H
Λ̂
=U∆V> ∆ =

[
Σ1 0
0 Σ2

]
where Σ := diag{σ1, . . . ,σn} is the diagonal matrix of dominant singu-
lar values. Σ2 ' 0 are neglected.

4. Rank n factorization

H
Λ̂
'UnΣ1V>n =UnΣ

1/2
1 Σ

1/2
1 V>n := Ω Ω̄

>

5. Impose the structure (and get C,C̄ by inspection)

Ω =


C

CA
CA2

...
CAν

 Ω̄
> =

[
C̄> AC̄> A2C̄> . . . Aν−1C̄>

]



6. Let

↓Ω :=


CA
CA2

...
CAν

 ↑Ω :=


C

CA
CA2

...
CAν−1


Compute A by solving the shift invariance equation

(↓Ω) = (↑Ω)A

Solve by least squares (no exact solution in general)

A = (↑Ω)−L(↓Ω) = (↑UnΣ
1/2
1 )−L(↓UnΣ

1/2
1 ) = Σ

−1/2
1 (↑Un)

>(↓Un)Σ
1/2
1

This provides estimates of C, C̄, A.



Second step

Step 2: Assume that {A,C,C̄, 1
2Λ0} ⇒ Φ+(z) = C [zI−A]−1C̄>+ 1/2Λ0 is

Positive Real.

From the half-spectrum (Φ+(z)) to get a state-space model{
x(t +1) = Ax(t)+Bw(t)

y(t) = Cx(t)+Dw(t) ,

solve the LMI. Just need to compute (B,D).
Recall: W (z) :=C(zI−A)−1B+D is a spectral factor Φ(z) =W (z)W (1/z)>
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Innovation model identification

To get {
x̂(t +1) = Ax̂(t)+Ke(t)

y(t) = Cx̂(t)+ e(t)

Solve the ARE and find the minimal solution P−=P>− > 0. This is the unique
stabilizing solution.

P = APA>+(C̄>−APC>)(Λ0−CPC>)−1(C̄−CPA>),

K =
[
C̄>−AP−C>

]
∆(P−)−1

∆(P−) = Λ0−CP−C> .
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Critiques

Main drawback: with real data the estimates Λ̂k are in general rather poor !
The parameters {A,C,C̄} computed by the realization algorithm may not
satisfy the positivity condition that Φ+(z) must be the causal part of a
power spectrum: i.e. the condition that

Φ+(e jθ )+Φ+(e− jθ )> =W (e jθ )W (e− jθ )> ≥ 0

may not hold.
This prevents solvability of the Riccati equation.
May try to increase N and ν ... but there may be no “true” finite-dim. system
generating the data.
If the truncated matrix ↑ Ω is not of full rank n and /or ↓ Ω does not belong
to its column space, then A is not uniquely determined. A = (↑ Ω)†(↓ Ω)

involves a pseudo inverse and is not unique.
Finally use of the Hankel matrix H

Λ̂
is not optimal. (Will see this later on)
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Markovian splitting subspaces

The state space X (say at t = 0) of any linear stochastic system with output
y is a Markovian splitting subspace for y:

(H(y)−∨X−)⊥ (H(y)+∨X+) | X. (17)

This implies that {Xt} is a Markovian family and that the past and the future
spaces of the process y are conditionally orthogonal to the state space X
(at t = 0), i.e.,

H(y)− ⊥H(y)+ | X . (18)

Theorem 12 If X is a Markovian splitting subspace then

E [λ |H(y)−∨X− ] = E [λ | X] for all λ ∈H(y)+ (19)

or, equivalently,

E [λ |H(y)+∨X+] = E [λ | X] for all λ ∈H(y)−. (20)
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Consequently, X serves as a “memory” or “sufficient statistics” which con-
tains everything from the past which is needed in predicting the future and
everything from the future which is needed in predicting the past.

Theorem 13 Any choice of basis in a Markovian splitting subspace pro-
vides the state vector of a linear stochastic system with output y.

Example 2 The predictor spaces

X+/− := E [H(y)+ |H(y)−] and X−/+ := E [H(y)− |H(y)+]

are minimal splitting subspaces.



The predictor spaces

X+/− := span {E [y(t) |H(y)−] ; t = 1,2,3 . . . , }

is spanned by the forward predictors of the output given the past (at time
zero). Take any basis vector say x−(0) in X+/−.
Then x−(t) is the state of an innovation representation (i.e. a steady state
Kalman filter) of y.
Dually take any basis vector say x+(0) in X−/+. Then x+(t) is the state of a
backward innovation representation (i.e. a backward steady state Kalman
filter) of y.

Special bases in X+/− and X−/+ can be constructed by Canonical Cor-
relation Analysis of the past and future spaces of y.
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Canonical correlation analysis

Given two finite-dimensional subspaces H1, H2 of second order zero-mean
random variables of dimension n and m, one wants to find two orthonormal
bases, {u1, . . . ,un} for H1 and {v1, . . . ,vm} for H2, such that

E{uk v j}= σk δk j, k = 1, . . . ,n, j = 1, . . . ,m.

This is the same as requiring that the covariance matrix of the two random
vectors u := (u1, . . . ,un)

> and v := (v1, . . . ,vm)
> be diagonal; i.e.,

E{uv>}=


σ1 0 . . . 0 . . . 0
0 σ2 . . . 0 . . . 0
... . . . . . . ...
0 σr . . . 0
0 0 . . . 0 . . . 0

 , r ≤min(n,m)

where we want σ1,σ2, . . . ,σr nonnegative and ordered in decreasing mag-
nitude. Note that all σk ≤ 1 since the random variables uk, v j have unit
variance (norm). In fact say, σ1 = 1 if and only if u1 and v1 are parallel and
hence coincide.
The variables (u1, . . . ,un) and (v1, . . . ,vm) are called canonical variables.
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Canonical angles

Since σk ≤ 1 , ; k = 1, . . . ,r we can define canonical (or principal) angles, θk,
between the subspaces H1 and H2 by setting

cosθk := σk , ; k = 1, . . . ,r

We have σ1 < 1 if and and only if the (first canonical) angle between H1
and H2 is positive, which is equivalent to H1∩H2 = {0}
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Construction of the canonical variables

Choose u and v as orthonormal bases in H1 and H2. By definition

E [uk |H2] = E [uk | v] = σkvk, k = 1,2, . . .min(n,m),

This is like doing SVD to the Orthogonal Projection operator from H1 onto
H2

Ê [ · |H2] : H1 → H2

Want a matrix representation of this operator. Choose arbitrary bases x, y
in H1 and H2. Then for arbitrary ξξξ = a>x ∈H1,

Ê [ξξξ |H2] = a>E{xy>}Σ−1
y y, Σy := E{yy>}.

So in the chosen bases the representation of Ê [ · |H2] is matrix multiplica-
tion (from the left)

a>→ a>E{xy>}Σ−1
y = a>ΣxyΣ

−1
y
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A Warning

Note that in order to express the inner product of random elements in
H1, H2 in terms of their coordinates, we must introduce appropriate weights
to form the inner products in the coordinate spaces. In fact, the inner prod-
uct of two elements ξi = a>i x ∈H1, i = 1,2, induces in Rn the inner product

〈a1, a2〉Σx := a>1 Σx a2, Σx := E{xx>}.

Similarily, there is an inner product 〈b1,b2〉Σy := b>1 Σy b2 corresponding to
the basis y for H2.
In particular, the SVD needs to be done in the weighted inner product
spaces !

To obtain the usual Euclidean inner product in Rn, the bases need to be
orthonormal !. Only in this case the matrix representation of the adjoint
of Ê [· |H2] is the transpose of its matrix representation.
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Computing the CCA in coordinates

Let Lx and Ly be the lower triangular Cholesky factors of the covariance
matrices Σx and Σy, respectively; i.e., Lx L>x = Σx, Ly L>y = Σy and intro-
duce orthonormal bases in H1 and H2:

νννx := L−1
x x, νννy := L−1

y y
Then, in this orthonormal basis

Ê [a>νννx |H2] = Ê [a>νννx | νννy] = a>H νννy

where H is the n×m matrix

H := E{νννxννν
>
y }= L−1

x E{xy>}(L>y )−1

Compute the singular value decomposition of H

H =UΣV> , UU> = Im, VV> = In
Then the canonical variables are

u :=U>νννx, v :=V>νννy.

and the canonical correlation coefficients of the subspaces H1 and H2 are
the (nonzero) singular values of H.
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CCA of infinite past and future subspaces

First represent past and future H(y)− and H(y)+ as spanned by infinite
vectors

y−=


y(−1)
y(−2)
y(−3)

...

 , y+=


y(0)
y(1)
y(2)

...

 , H∞ := E{y+y>−}=


Λ1 Λ2 Λ3 . . .
Λ2 Λ3 Λ4 . . .
Λ3 Λ4 Λ5 . . .
... ... ... . . .

 ,
Let L− and L+ be the lower triangular Cholesky factors of the infinite block
Toeplitz matrices

T− := E{y−y>−}= L−L>− T+ := E{y+y>+}= L+L>+
and let orthonormal bases in H(y)− and H(y)+ be

ννν := L−1
− y− ν̄νν := L−1

+ y+
Then, in this orthonormal bases, H := Ê [ · |H(y)−] : H(y)+→H(y)−

has the matrix representation

Ĥ∞ := E{ν̄ννννν
>}= L−1

+ H∞(L−)−1 6= H∞ .
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Note that the normalization of the block Hankel matrix H∞ is necessary in
order for the singular values to become the canonical correlation coeffi-
cients; i.e., the singular values of H. In fact, if we were to use the unnor-
malized Hankel matrix representation H∞, instead, as may seem simpler
and more natural, the transpose of H∞ would not be the matrix representa-
tion of H∗ in the same bases, a property which is crucial in singular value
decomposition above. This is because H∞ corresponds to bases which are
not orthonormal.
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A Digression on

Principal Components Analysis

of Deterministic Systems

We shall discuss special bases for deterministic state space systems (A, B,C, D).
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Gramians

Assume: Eigenvalues of A strictly less than 1: |λ (A)|< 1, (A,B) reachable
+ (C,A) observable. Let

Γ∞ :=
[
B AB A2B . . .

]
, Ω

>
∞ :=

[
C> C>A> C>(A>)2 . . .

]
The Reachability and Observability Gramians,

Π :=
+∞∑
0

AkBB>(A>)k = Γ∞ Γ
>
∞ ∆ :=

+∞∑
0

(A>)kC>CAk = Ω
>
∞Ω∞ ,

are solutions of the dual Lyapunov equations

Π = AΠA>+BB> , ∆ = A>∆A+C>C .

Theorem 14 The eigenvalues of ∆Π are all positive and invariant under
similarity.

Π̂ = T−1
ΠT−>, ∆̂ = T>∆T
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The singular values of a linear system

Consider the Hankel matrix of a deterministic linear minimal system (A, B,C)

of dimension n

H∞ :=


CB CAB CA2B . . .

CAB CA2B CA3B . . .

CA2B CA3B . . . . . .
. . . . . . . . . . . .

= Ω∞ Γ∞

Consider eigenvalues-eigenvectors of ∆Π

∆Π vk = λ
2
k vk ; k = 1,2, . . . ,n .

Since H>∞H∞ = Γ>∞Ω>∞Ω∞Γ∞ ,

H>∞H∞(Γ
>
∞vk) = Γ

>
∞∆Πvk = Γ

>
∞λ

2
k vk = λ

2
k (Γ

>
∞vk)

Theorem: The squares of the n nonzero singular values of the Hankel
matrix H∞ are the eigenvalues of ∆Π.
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Interpretation of the Gramians

Assume we can only use finite energy controls:

‖u‖22 :=
+∞∑
k=0

u(k)>u(k)< ∞

Energy gain of the state x(0) =
∑+∞

0 AkBu(−k) := Γ∞ u

max
‖u‖≤1

‖x(0)‖2

‖u‖2
= max
‖u‖≤1

〈u,Γ∗∞Γ∞u〉
‖u‖2

= ‖Γ∗∞Γ∞‖2 = ‖Π‖2 = λmax(Π)

Diagonalize:

U>c ΠUc⇒ diag{λc,1, . . . ,λc,n} λc,1 ≥, . . . ,≥ λc,n > 0

Change coordinates xc(0) := U>c x(0). Along the k-th eigenvector the en-
ergy gain is λc,k

‖x1,c(0)‖
‖xn,c(0)‖

=
λ1c
λnc

may be very large: the effect of the input on certain directions in the state
space nearly invisible⇒ bad conditioning !

105



Interpretation of the Gramians cont.d

Dual meaning of the observability Gramian: By stability the output y(t) =
CAtx(0) ; t = 0,1, . . . is in `2, then :

y = Ω∞ x(0) , ‖y‖2 = x(0)>Ω
>
∞Ω∞ x(0)

Then

max
‖x(0)‖≤1

〈x(0), ∆x(0)〉
‖x(0)‖2

= ‖∆‖2 = λmax(∆)

Diagonalization:

U>o ∆Uo⇒ diag{λo,1, . . . ,λo,n} λo,1 ≥, . . . ,≥ λo,n > 0

Change coordinates xo(t) :=U>o x(t). Energy of the outputs corresponding
to (orthogonal) state eigenvectors

‖y1,o‖
‖yn,o‖

=
λ1,o
λn,o

may be very large: the effect of some state direction nearly invisible⇒ bad
conditioning !
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Deterministic balancing

Changing bases can make things better

Π̂ = T−1
ΠT−T , ∆̂ = T>∆T

Definition 2 A stable linear system is in Balanced form if both Π̂ and ∆̂ are
diagonal and equal.

Every linear system with |λ (A)| < 1, (A,B) reachable + (C,A) observable
can be transformed to balanced form.

Algorithm :

1. Compute Π and ∆, solutions of the two dual Lyapunov equations.
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2. Compute the SVD

∆ =UΛoU>

where Λo is the diagonal matrix of eigenvalues of ∆

3. Change basis T1 := Λ
−1/2
o U> so that ∆̂ = T1∆T>1 = I ;

then compute

Π̂ =UΛ
1/2
o ΠΛ

1/2
o U>

4. Compute the SVD

Π̂ =V Λ
2V>

where Λ2 is diagonal matrix with the (ordered) eigenvalues of Π̂

5. Second change of basis defined by T2 := V Λ1/2 so as to make Π̄ :=
T−1

2 Π̂T−T
2 = Λ, diagonal.



6. With this change of basis

∆̄ = T>2 ∆̂T2 = Λ
1/2V>IV Λ

1/2 = Λ

The Gramians are diagonal and equal Π̄ = ∆̄ = Λ

MATLAB command

[Ab,Bb,Cb] = BALREAL(A,B,C)

returns a balanced state-space

realization of the system (A,B,C).



Model reduction by balanced truncation

How to approximate a “Large” model (assumed as. stable + reach + obs)
by a lower dimensional one{

x(t +1) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t)

Bring it to balanced form: Gramians Π = ∆ = Λ diagonal. Let Λ be parti-
tioned

Λ =

[
Λ1 0
0 Λ2

]
Λ2 n2×n2 made of small singular values ( Λ1 >> Λ2 ) to be neglected.
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Balanced truncation

[

x1(t +1)
x2(t +1)

]
=

[
A11 A12
A21 A22

][
x1(t)
x2(t)

]
+

[
B1
B2

]
u(t)

y(t) =
[
C1 C2

][x1(t)
x2(t)

]
+Du(t)

Approximate by n1-dimensional “principal subsystem”{
x1(t +1) = A11x1(t)+B1u(t)
y(t) = C1x1(t)+Du(t)

Theorem 15 System (A11, B1,C1) is as. stable and minimal. If λn1 > λn1+1,

‖G(e jθ )−G1(e
jθ )‖∞ ≤ 2

n∑
k=n1+1

λk
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CCA of a finite dimensional process

Now, assume that y can be realized by a finite dimensional system of di-
mension n. Then the infinite block Hankel matrix

H∞ := E{y+y>−}=


Λ1 Λ2 Λ3 . . .
Λ2 Λ3 Λ4 . . .
Λ3 Λ4 Λ5 . . .
... ... ... . . .

 ,
where Λk = E{y(t + k)y(t)>} = CAk−1C̄>, has rank n and admits a factor-
ization

H∞ =


C

CA
CA2

...




C̄
C̄A>

C̄(A>)2
...


>

:= Ω∞ Ω̄
>
∞ , C̄ =CPA>+DB>

The normalized Ĥ∞ has a singular-value decomposition Ĥ∞ =U
[

Σ 0
0 0

]
V>
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CCA of a finite dimensional process cont.d

Since rank Ĥ∞ = rankH∞, Ĥ∞ has exactly n nonzero singular values, the
canonical correlation coefficients

Σ = diag{σ1,σ2,σ3, . . . ,σn}

which are arranged in decreasing order 1≥ σ1 ≥ σ2 ≥ σ3 . . .≥ σn > 0 .
σk’s are the cosines of the principal angles between the past H(y)− and
the future H(y)+. We have σ1 < 1 if and and only if H(y)−∩H(y)+ = 0.
Can show that this holds if and only if the spectral density of y is coercive.
U ∈ R∞×∞,V ∈ R∞×∞ have orthonormal columns

U>U = I =V>V .

(can be made rigorous as operators in `2). Rotate the orthonormal basis ν̄νν

in H(y)+ and ννν in H(y)− to recover the canonical vectors

u :=V>ννν , v :=U>ν̄νν , Evu> =

[
Σ 0
0 0

]
.
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Canonical bases in the predictor spaces

Convenient bases in X+/− and X−/+ are obtained by C.C.A. of the infinite
past and future subspaces.

Theorem 16 Let y be realized by a finite dimensional model.Then

X+/− = span{u1,u2, . . . ,un}, X−/+ = span{v1,v2, . . . ,vn}.
i.e. the first n left canonical vectors u1,u2, . . . ,un of H constitute an or-
thonormal basis of the predictor space X+/−, while v1,v2, . . . ,vn form an
orthonormal basis of X−/+.

Proof :

H− = Ê [H+ |H− ]⊕ [H−∩ (H+)⊥] = X+/−⊕N− State Space plus past Junk
H+ = Ê [H− |H+ ]⊕ [H+∩ (H−)⊥] = X−/+⊕N+ State Space plus future Junk

Past Junk N− is the subspace of past variables which are orthogonal to the
future. The projection of the future onto this subspace is zero.
X+/− is precisely the subspace of random variables in H− having nonzero
correlation with the future H+.
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X+/− is the range space of the operator Ê [ · |H− ] restricted to H+

X−/+ is the range space of the operator Ê [ · |H+ ] restricted to H−

N− = H−∩ (H+)⊥ = span{un+1,un+2,un+3, . . .}= Ker Ê [ · |H+ ]

N+ = H+∩ (H−)⊥ = span{vn+1,vn+2,vn+3, . . .}= Ker Ê [ · |H+ ]

are the nullspaces (kernels) of the restricted projections Ê [ · | H+ ] and
Ê [ · |H− ].

H(y) = H−∨H+ = N−⊕H2⊕N+ ,

where H2 := X+/−∨X−/+ (has dimension 2n).
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Balanced canonical bases

Balanced canonical bases

z = Σ
1/2u =


σ

1/2
1 u1

σ
1/2
2 u2...

σ
1/2
n un

 , z̄ = Σ
1/2v =


σ

1/2
1 v1

σ
1/2
2 v2...

σ
1/2
n vn

 (21)

Clearly z is a basis in X+/− and z̄ is a basis in X−/+, and they have the
property that

E{zz>}= Σ = E{z̄z̄>},

Will show that this is a sort of “balancing” property for stochastic systems
(same Gramian). As for deterministic systems this will be an Important
property for doing model reduction. In fact important for order estimation.
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Homework

May seem more natural to keep the normalized vectors u and v as state
variables. Show that this choice leads to different realization parameters
(A,C, C̄ ) of Φ(z)+.

Instead z and z̄ are particular bases in X+/− and X−/+ which lead to the
same realization parameters (A,C, C̄ ).
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How do we compute the canonical correlation
coefficients and the canonical vectors ?

Assume we are given the covariance sequence {Λk}. Need to compute
eigenvalues/eigenvectors of Ĥ>∞ Ĥ∞ or Ĥ∞Ĥ>∞ . Recall

T− := E{y−y>−}= L−L>− T+ := E{y+y>+}= L+L>+

Then

Ĥ>∞ Ĥ∞ = (L−)−1H>∞ L−>+ L−1
+ H∞(L−)−>

= (L−)−1
Ω̄∞ Ω

>
∞ (T+)−1

Ω∞ Ω̄
>
∞(L−)

−>

Ĥ∞Ĥ>∞ = (L+)−1H∞(L−)−>(L−)−1H>∞ L−>+
= (L+)−1

Ω∞ Ω̄
>
∞ (T−)−1

Ω̄∞ Ω
>
∞L−>+
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C.C.A. and Riccati equations

Theorem 17 Let P− and P+ be the minimal (stabilizing) solutions of the
two dual Riccati inequalities (in fact of the dual LMI’s)

P = APA>+(C̄>−APC>)∆(P)−1(C̄>−APC>)> ≥ 0
P̄ = A>P̄A+(C>−A>P̄C̄>)∆(P̄)−1(C−C̄P̄A) ≥ 0

Then

P− = Ω̄
>
∞(T−)

−1
Ω̄∞ , P̄+ = Ω

>
∞(T+)

−1
Ω∞ .

Theorem 18 The eigenvalues of P−P̄+ are the squares of the canonical
correlation coefficients of the finite dimensional process y.

Proof : Let Ĥ>∞ Ĥ∞ v = σ2 v. Since

Ω̄
>
∞(L−)

−> Ĥ>∞ Ĥ∞ = Ω̄
>
∞(L−)

−> (L−)−1 H>∞ L−>+ L−1
+ H∞(L−)−>

= Ω̄
>
∞ (T−)−1

Ω̄∞ Ω
>
∞ (T+)−1

Ω∞ Ω̄
>
∞(L−)

−>

= P−P̄+ Ω̄
>
∞(L−)

−>

it follows that Ω̄>∞(L−)
−> v is an eigenvector of P−P̄+ with eigenvalue σ2.
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Proof: Hankel matrix and Riccati equations

A forward-backward pair of stochastic realizations of the same process y{
x(t +1) = Ax(t)+Bw(t)
y(t) =Cx(t)+Dw(t) ,

{
x̄(t−1) = A>x̄(t)+ B̄w̄(t)
y(t) = C̄x̄(t)+ D̄w̄(t),

where x̄(t) := P−1x(t + 1) , P̄ := E x̄(t)x̄(t)> = P−1, C̄ = CPA>+DB> etc.
Then

y+ =


y(0)
y(1)
y(2)

...

=


C

CA
CA2

...

x(0)
⊥
+


D 0 . . . 0

CB D 0 . . . 0
CAB CB D . . . 0
. . . . . . 0

w+ := Ω∞x(0)
⊥
+ Ψ∞w+,

y− =


y(-1)
y(-2)
y(-3)

...

=


C̄

C̄A>

C̄(A>)2
...

 x̄(-1)
⊥
+


D̄ 0 ... 0

C̄B̄ D̄ 0 ... 0
C̄A>B̄ C̄B̄ D̄ ... 0
... . . . 0

 w̄− := Ω̄∞x̄(-1)
⊥
+ Ψ̄∞w̄− ,
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Note that w+ ⊥ H−(x, y)⊂H−(w̄−) so that

H∞ := E{y+y>−}=


C

CA
CA2

...




C̄
C̄A>

C̄(A>)2
...


>

:= Ω∞ Ω̄
>
∞

Since x̄(−1) := P−1x(0) so Ex(0)x̄(−1)> = Ex(0)x(0)>P−1 = I .
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Hankel matrix and Riccati equations cont.d

Rewrite

y− = Ω̄∞P−1x(0)
⊥
+ Ψ∞w̄− , y+ = Ω∞P x̄(−1)

⊥
+ Ψ̄∞w+

Classical estimation formulas

E [x(0) |H−(y) ] = E [x(0) | y− ] = E {x(0)(y−)>}(T−)−1 y−

But E{y−x(0)>}= Ω̄∞ and so

E [x(0) |H−(y) ] = Ω̄
>
∞(T−)

−1 y− (22)

This is the s.s. Kalman filter estimate ! Hence

P− = Var{E [x(0) |H−(y) ]}= Ω̄
>
∞(T−)

−1
Ω̄∞ .

Dually,

P̄+ = Var{E [ x̄(−1) |H+(y) ]}= Ω
>
∞(T+)

−1
Ω∞ .
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The Stochastic Gramians

Consider

P− = Var{E [x(0) |H−(y) ]}= Ω̄
>
∞(T−)

−1
Ω̄∞ .

P̄+ = Var{E [ x̄(−1) |H+(y) ]}= Ω
>
∞(T+)

−1
Ω∞ .

These are the stochastic analogs of the recostructibility and observabil-
ity Gramians. Note that they depend only on the parameters of Ω∞, Ω̄∞

and T−, T+. In they fact depend only on (A,C, C̄, 1
2Λ0) since the two dual

Riccati equations depend only on these parameters.

Proposition 6 The stochastic reconstructibilityand observability Gramians,
P− and P̄+ don’t depend on the particular state space model (realization)
but depend only on the realization (A,C, C̄, 1

2Λ0) of Φ+(z).
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Stationary stochastic (Positive-Real) Balancing

Let (A,C, C̄, 1
2Λ0) be a minimal realization of Φ(z)+ and look at the dual

Riccati equations

P = APA>+(C̄>−APC>)(Λ0−CPC>)−1(C̄−CPA>)
P̄ = A>P̄A+(C>−A>P̄C̄>)(Λ0−C̄P̄C̄>)−1(C−C̄P̄A)

Definition 3 One says that the system (A,C, C̄, 1
2Λ0) is in stochastic or

Positive-Real balanced form if the two minimal solutions P−, P̄+, are di-
agonal and equal.

Idea: balancing observability with recostructability i.e. reconstructing he
state at time zero from the future evolution of y. Riccati equations now play
the role of the Lyapunov equations

Π = AΠA>+C̄>C̄ , ∆ = A>∆A+C>C ,

Here P−, P̄+ have interpretation as (stochastic) observability and recostructibil-
ity Gramians.
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Stationary stochastic (Positive-Real) Balancing

Recall that the forward and backward steady state Kalman filter realizations{
x̂(t +1) = Ax̂(t)+Ke(t)
y(t) = C x̂(t)+ e(t)

{
ˆ̄x(t−1) = A> ˆ̄x(t)+ K̄ē(t)
y(t) = C̄ ˆ̄x(t)+ ē(t),

depend only on (A,C, C̄, 1
2Λ0) and are the same for all minimal (forward and

backward) realizations. The state covariances are related by E{x̄(t)x̄(t)>}=
P̄ = P−1.
A change of basis (A,C, C̄>, )⇒ (T−1AT,CT, T−1C̄>, ) induces a change
of basis in all realizations, in particular on the Kalman filters. The state
covariances transform according to P̂− = T P−T> , ˆ̄P+ = T−>P̄+T−1 .

Theorem 19 There is an essentially unique T which brings the system
(A,C, C̄, 1

2Λ0) into stochastically balanced form. In this basis

P̂− = T P−T> = Σ = T−>P̄+T−1 = ˆ̄P+
where Σ is the diagonal matrix of canonical correlation coefficients. Hence
the CCA procedure produces automatically stochastic balanced realiza-
tions.
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Stochastic model reduction from balancing

Assume we have a stationary process of very high order n. Do canonical
correlation analysis. Pick n-dimensional canonical bases z, z̄ in the predic-
tor spaces so that stationary canonical correlation coefficients

Var{z} = Var{z̄}= diag{σ1,σ2, . . . ,σn}= P− = P̄+
Pick the first k< n canonical correlation coefficients and define k-dimensional
subvectors

z1 =


σ

1/2
1 u1

σ
1/2
2 u2...

σ
1/2
k uk

 , z̄1 =


σ

1/2
1 v1

σ
1/2
2 v2...

σ
1/2
k vk


by which define a k-dimensional reduced system with Σ1 = diag{σ1, . . . ,σk}
and 

A1 = Ez1(t +1)z1(t)>Σ
−1
1 ,

C1 = Ey(t)z>1 Σ
−1
1 ,

C̄1 = Ey(t−1)z1(t)> .
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Stationary stochastic model reduction 2

Get a reduced-degree half-spectrum Φ1(z)=C1(zI−A1)
−1C̄>1 + 1

2Λ0. Clearly
we get “principal submatrices” of the original (A,C, C̄)

A =

[
A1 A12
A21 A2

]
, C =

[
C1 C2

]
, C̄ =

[
C̄1 C2

]
Questions:

1. Is A1 also stable ?

2. Is (A1,C1, C̄1) still a minimal triplet ?

3. Is Φ1(z) still positive real ?

4. Is (A1,C1, C̄1) still in (stochastic) balanced form ?

Third condition is crucial: only if Φ1(z) is positive real we can compute a
stochastic model of reduced the complexity.
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Stationary stochastic model reduction: Proof

Theorem 20 If (A,C, C̄, 1
2Λ0) is positive real and in stochastic balanced

form, then the reduced degree function Φ1(z) is positive real. In particular
A1 is stable. In general (A1,C1, C̄1) is not in balanced form.

Proof : Since Φ+(z) is positive real, and Σ = diag{Σ1, Σ2} solves the LMI,

M(Σ) =

Σ1−A1Σ1A>1 −A12Σ2A>12 ∗ C̄>1 −A1Σ1C>1 −A12Σ2C′2
∗ ∗ ∗

C̄1−C1Σ1A>1 −C2Σ2A>12 ∗ Λ0−C1Σ1C>1 −C2Σ2C>2

≥ 0,

where the blocks which do not enter the analysis are marked with an as-
terisk. Consequently,

M1(Σ1)−
[

A12
C2

]
Σ2

[
A12
C2

]>
≥ 0, where M1(Σ1)=

[
Σ1−A1Σ1A>1 C̄>1 −A1Σ1C>1
C̄1−C1Σ1A>1 Λ0−C1Σ1C>1

]
Therefore, M(Σ1)≥ 0 is the LMI corresponding to the reduced triplet (A1,C1,C̄1).
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BASIC IDEA OF SUBSPACE IDENTIFICATION

We are given a “long” trajectory of a finite dimensional process (zero mean
second order stationary)

{y0,y1,y2, . . . ,yN′}, yt ∈ Rm

Assume we can also observe a state trajectory {x0,x1,x2, . . . ,xN′ } of an
underlying model, generating the data
Every sample trajectory {yt}, {xt} of the system must satisfy the model
equations, so there exist a corresponding noise trajectory {wt} s.t.{

xt+1 = Axt +Bwt

yt =Cxt +Dwt , t = 0,1,2, . . . ,N′

Form the “tail” matrices Y N
t , XN

t ,

Y N
t := [ yt, yt+1, yt+2, . . . , yt+N]

XN
t := [ xt, xt+1, xt+2, . . . , xt+N]

We assume N′ large enough so that we can form tail matrices of the same
length N +1.
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The Idea of subspace identification

Then can write [
XN

t+1
Y N

t

]
=

[
A
C

]
XN

t +

[
B
D

]
W N

t

Interpret as Linear Regression ! Solve by Least Squares :

min
A,C
‖
[

XN
t+1

Y N
t

]
−
[

A
C

]
XN

t ‖

getting
ˆ[A
C

]
N

:=
1
N

[
XN

t+1
Y N

t

]
(XN

t )>
{

1
N

XN
t (XN

t )>
}−1

Also for the corresponding backward model get: ˆ̄CN :=
1
N

Y N
t−1(X

N
t )>
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Asymptotics

If the generating processes are second order ergodic,

lim
N→∞

1
N

Y N
t (XN

s )> = Ey(t)x(s)>

Theorem 21 If the underlying processes y, x are second order ergodic,

and the limit limN→∞

1
N

XN
t (XN

t )> is invertible,

lim
N→∞

ˆ[A
C

]
N
=

[
A
C

]
, lim

N→∞

ˆ̄CN = C̄

i.e. we get consistent estimates of A,C, C̄.

Proof: see equation (4).
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Basic assumption on the data: the limit

lim
N→∞

1
N

Y N
t+τ (Y

N
t )> := Λτ

exists for all τ ≥ 0 and is independent of t. If the data are compatible with
second order ergodicity (no periodic trends etc.) Λτ is the true covariance.
Then as N→ ∞ the family {Yt ; t ≥ 0} of infinite tail matrices where

Yt := [ yt, yt+1, yt+2, . . . , ]

behaves (to second order) like a w-stationary stochastic process !
For infinite tail matrices can use the “stochastic” notation:

EYt+τ Y>t ≡ lim
N→∞

1
N

Y N
t+τ (Y

N
t )> = Λτ

Can set up a isometric isomorphism between H(y) and the inner product
space spanned by the rows of {Yt ; t ≥ 0}.

{y(t) ; t ≥ 0} ⇐⇒ {Yt ; t ≥ 0}
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Interpretation of the Least squares estimates (N→ ∞):
L.S. formulas with semi-infinite tail matrices

ˆ[A
C

]
:= E

[
Xt+1

Yt

]
X>t

{
EXtX>t

}−1

ˆ̄C := EYt−1X>t

are exactly the same formulas as (4).



How to get a state sequence ?

CONSTRUCT THE STATE FROM THE OBSERVED OUTPUT SAMPLES
Can construct a sample estimate of X+/− and a canonical basis by sample
canonical correlation analysis. Use exactly the same procedure as that
done for random variables. Just substitute random variables y(t) by long
(ideally semi-infinite) tail sequences Y N

t . Below for simplicity we shall omit
the superscript N.

Sample CCA Algorithm: Given observed data {yt ; t = 0,1,2, . . . ,N′} ,

1. Form sample covariance estimates

Λ̂τ =
1
N

N−τ∑
t=0

yt+τy>t ,=
1
N

Yτ [Y0]
>

τ = 0,1, . . . ,2ν +1� N
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2. Form the sample Hankel matrix

Hν+1,ν+1 :=


Λ̂1 Λ̂2 Λ̂3 . . . Λ̂ν+1
Λ̂2 Λ̂3 Λ̂4 . . . Λ̂ν+2
Λ̂3 Λ̂4 . . . . . . . . .
. . . . . . . . . . . . . . .

Λ̂ν+1 . . . . . . . . . Λ̂2ν+1


Assume ν “large enough”, ideally should be that (ν > n) but here we
assume ν very large. Define past and future strings at “time” ν +1

Y−
ν+1 :=


Yν

Yν−1
. . .
Y0

 , Y+
ν+1 :=


Yν+1
Yν+2
. . .

Y2ν+1

 both of dimension m(ν+1)×N

Formally: Hν+1,ν+1 =
1
N

Y+
ν+1(Y

−
ν+1)

>.



3. Form the Toeplitz matrices

T−
ν+1 :=


Λ̂0 Λ̂1 Λ̂2 . . . Λ̂ν

Λ̂>1 Λ̂0 Λ̂1 . . . Λ̂ν−1
Λ̂>2 Λ̂>1

. . . . . . . . .
. . . . . . . . . . . . . . .

Λ̂>ν . . . . . . . . . Λ̂0

 T+
ν+1 :=


Λ̂0 Λ̂>1 Λ̂>2 . . . Λ̂>ν
Λ̂1 Λ̂0 Λ̂>1 . . . Λ̂>

ν−1
Λ̂2 Λ̂1

. . . . . . . . .
. . . . . . . . . . . . . . .

Λ̂>ν . . . . . . . . . Λ̂0


4. Compute (Cholesky) factors

T−
ν+1 = L−

ν+1(L
−
ν+1)

>, T+
ν+1 = L+

ν+1(L
+
ν+1)

>

5. Normalization:

Ĥν+1,ν+1 = (L+
ν+1)

−1Hν+1,ν+1 (L
−
ν+1)

−>

6. SVD :

Ĥν+1,ν+1 =
[
Ûν+1 Ũν+1

] [Σ̂ 0
0 Σ̃

] [
V̂ν+1 Ṽν+1

]>



7. Order estimation: Choose n so that Σ̂� Σ̃. Then we have a rank
factorization

Hν+1,ν+1 =Ων+1 Ω̄
>
ν+1 , Ων+1 =L+

ν+1Ûν+1Σ̂
1/2 , Ω̄

>
ν+1 = Σ̂

1/2V̂>
ν+1L−

ν+1

8. Canonical Variables

Ŷ−
ν+1 = (L−

ν+1)
−1Y−

ν+1 , Ŷ+
ν+1 = (L+

ν+1)
−1Y+

ν+1

Uν+1 = V̂>
ν+1Ŷ−

ν+1 Vν+1 = Û>Ŷ+
ν+1 ,

9. Balancing

Zν+1 := Σ̂
1/2 V̂>

ν+1 Ŷ−
ν+1 = Σ̂

1/2 V̂>(L−
ν+1)

−1Y−
ν+1 = Ω̄

>
ν+1 (T

−
ν+1)

−1Y−
ν+1,

The last formula is the sample analog of (22). Note that in principle we
would need infinite past data.



10. Compute Zν the state at time ν If Y−1 were available we would have

Zν = Ω̄
>
ν+1 (T

−
ν+1)

−1
σ(Y−

ν+1) where σ(Y−
ν+1) =


Yν−1
Yν−2
. . .
Y0

Y−1

 =

[
Yν

Y−1

]

approximate by deleting Y−1:

11. Compute Ω̄ν :=↑ Ω̄ν+1: delete the last block of m rows from Ω̄ν+1. Let
Tν be the principal mν×mν submatrix of Tν+1 then

Zν := Ω̄
>
ν (T

−
ν )−1Y−ν

is the Canonical Variable at time ν . Still this has finite memory. In
theory should involve the infinite past.

12. Solve by Least-Squares to get A,C[
Zν+1

Yν

]
=

[
A
C

]
Zν +

[
K
I

]
Êν



13. Compute C̄

C̄ =
1
N

Yν Z>
ν+1 .

This provides estimates of C, C̄, A.



Need to deal with data on a finite interval

The CCA procedure as if infinite Yk were available, induces some errors.
We must do the finite data setting right: constructing stationary models
given finite data (Partial realization).
Will first do CCA and state construction based on finite histories of the
process; after we shall translate the procedure in terms of time series data.
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Motivation of the finite data setting

Meaning of Finite Data: we have a finite string of observed data {y0,y1,y2, . . . ,yN}
assume N very large so that

1
N +1

N∑
t=0

yt+ky>t = Λ̂k , k = 1,2, . . . ,T

are a “good approximation” of the true covariance lags, {Λ(0),Λ(1), . . . ,Λ(T )}
However the sample estimates are poor if k is large. Need to bound T so
that T << N. Rule of thumb is T ≤ (1/50)N.
Key point: having only a finite set of (estimated) covariance lags,

{Λ0,Λ1, . . . ,ΛT},
is exactly equivalent to having a finite chunk of random variables extracted
from y:

{y(0),y(1),y(2), . . . ,y(T )},

Can pretend we have observations of y on the finite interval [0, T ].
Will initially pretend these are true covariances of some p.n.d. process. In
particular they form a block-Toeplitz matrix which is positive definite.
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Constructing the state from finite history

We want to do a geometric construction: construct a state space realization
using only the finite chunk of available random variables of the process.

{y(0), y(1), . . . ,y(t), . . . ,y(T )}

Let t be a “present time” between time 0 and T (to simplify notations T = 2t).
Start from finite past and future vectors and a Hankel matrix of covariance
data

y−t :=


y(t−1)
y(t−2)

...
y(0)

 , y+t :=


y(t)

y(t +1)
...

y(T )

 , H=E{y+y>−}=


Λ1 Λ2 . . . Λt
Λ2 Λ3 . . . Λt+1... ... . . . . . .

Λt+1 Λt+2 . . . ΛT

 ,
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Models describing finite data must be
non-stationary !

What to expect: Non-stationary state space models of the type{
x(t +1) = Ax(t)+B(t)w(t) ,

y(t) = Cx(t)+D(t)w(t)

defined on the finite interval [0, T ]. The state must be Markov on a finite
interval. The noise process in the Kalman Filter realization must be the
normalized one-step prediction error given data on a finite interval.

Both turn out to be non-stationary processes. Note however that (A,C, C̄ )

must be constant since y is stationary so its covariance still must admit
stationary realizations

Λk =CAk−1C̄

with constant parameters (C, A, C̄).
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Splitting subspaces for finite data

Present and past Hilbert spaces of random variables at time t,

Y−t := span{y(k) 0≤ k < t}, Y+
t := span{y(k) t ≤ k ≤ T}

Theorem 22 The finite interval forward and backward predictor spaces,

X̂+/−(t) := span t≤k≤T {E [y(k) |Y−t ]} and X̂−/+(t)= span0≤k<t {E [y(k) |Y+
t ]}

are minimal state spaces for y on [0, T ]; i.e. letting X̂ be either X̂+/− or
X̂−/+, and

X̂−t := span{X̂(s) ; 0≤ s < t } , X̂+
t := span{X̂(s) ; t ≤ s≤ T }

the Markovian splitting property holds

Y−t ∨ X̂−t ⊥ Y+
t ∨ X̂+

t | X̂(t) .

Therefore any choice of basis in either X̂+/− or X̂−/+ will define a state
space model for y on [0, T ]. Dimension will vary with t.
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Constructing the state from finite data

Assume y has a minimal stationary realization with state vector x(t) (or
x̄(t)) of dimension n.

Theorem 23 (Invariance Theorem) Suppose that n≤ t ≤ T −n. Then

x̂(t) := E [x(t) | Y−t ], ˆ̄x(t) := E [ x̄(t) | Y+
t ]

are bases for X̂+/−(t) and X̂−/+(t). All x’s which project to the same
x̂ describe models with the same minimal triplet (A,C,C̄) . Dually all x̄
which project to the same ˆ̄x describe models with the same minimal triplet
(A>,C̄,C).
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Transient Kalman filter as a state space model

Take the state of any minimal stationary realization{
x(t +1) = Ax(t)+Bw(t) ,

y(t) = Cx(t)+Dw(t)

Then x̂(t) = E [x(t) | Y−t ] is a basis x̂(t) in X̂+/−(t); i.e. is the state of a
transient Kalman filter state-space model of y on [0,T ]:{

x̂(t +1) = A x̂(t)+K(t) ê(t) , x̂(0) = 0
y(t) = C x̂(t)+ ê(t)

To get a basis in X̂+/−(t) don’t need to know the stationary model. Predic-
tor of finite future of y based on finite past of y :

X̂+/−(t) = span{E
[
y(k) | y−t

]
; t ≤ k ≤ T}

Predicted finite future vector

ŷ+t := E
[
y+t | y

−
t
]
= Ωt x̂(t) , Ω

>
t =

[
C> A>C> . . . (A>)T−tC>

]
139



Transient Kalman filter as a state space model
(cont’d)

State covariance E x̂(t)x̂(t)> = P(t) can be computed by solving a Riccati
Difference Equation (RDE)

P(k+1)=AP(k)A>+(C̄>−AP(k)C>)∆(P(k))−1(C̄>−AP(k)C>)>, 0≤ k≤ t ,

where ∆(P(k)) = Λ0−CP(k)C>, with initial condition P(0) = 0.
A,C, C̄ are parameters of the stationary model; Λk =CAk−1C̄>.

Later we will see how to compute a transient K.F. realization by finite inter-
val CCA of y, without having (or assuming) a stationary model.
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Transient Backward Kalman filter as a state space
model

Take the state of any minimal backward stationary realization{
x̄(t−1) = A>x̄(t)+ B̄w̄(t) ,

y(t) = C̄x̄(t)+Dw̄(t)

Then ˆ̄x(t)= E [ x̄(t) |Y+
t ] is a basis in X̂−/+(t); i.e. is the state of a backward

transient Kalman filter state-space model of y on [0,T ]:{
ˆ̄x(t−1) = A> ˆ̄x(t)+ K̄(t) ˆ̄e(t) , ˆ̄x(T ) = 0

y(t) = C̄ ˆ̄x(t)+ ˆ̄e(t)

To get a basis in X̂−/+(t) don’t need to have a stationary model. Backward
predictor of finite past of y based on finite future of y :

X̂−/+(t) = span{E
[
y(k) | y+t

]
; 0≤ k < t}

Back-predicted finite past vector

ŷ−t := E
[
y−t | y

+
t
]
= Ω̄t ˆ̄x(t) , Ω̄

>
t :=

[
C̄> AC̄> . . . At−1C̄>

]
141



Backward Kalman filtering cont.d

The backward Kalman gain is given by

K̄(t) = (C>−A>P̄(t)C̄>)(Λ0−C̄P(t)C̄>)−1

where P̄(t) = E ˆ̄x(t) ˆ̄x(t)> is the solution at time t of the Backward Riccati
Difference Equation (BRDE)

P̄(k−1)=A>P̄(k)A+(C>−A>P̄(k)C̄>)(Λ0−C̄P̄(k)C̄>)−1(C>−A>P̄(k)C̄>)> ,

solved backwards with end condition P̄(T ) = 0.
Later we will see how to compute a transient backward K.F. realization by
finite interval CCA of y, without having (or assuming) a stationary model.
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A,C, C̄ from the state

The state x̂(t) of the transient Kalman filter model contains all the informa-
tion needed for reconstructing the minimal triplet (A,C,C̄), and the same
holds for the backward Kalman filter state ˆ̄x(t). This is of importantance in
subspace identification, as we shall see.

Proposition 7 Let x̂(t) be the state of the forward transient Kalman filter
realization, then

A = E{x̂(t +1)x̂(t)>}P(t)−1 (23a)
C = E{y(t) x̂(t)>}P(t)−1 (23b)
C̄ = E{y(t) x̂(t +1)>}, (23c)

Likewise, let ˆ̄x(t) be the state of the backward transient Kalman filter real-
ization, then

A> = E{ ˆ̄x(t−1) ˆ̄x(t)>}P̄(t)−1 (24a)
C = E{y(t) ˆ̄x(t−1)>} (24b)
C̄ = E{y(t) ˆ̄x(t)>}P̄(t)−1, (24c)
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A,C, C̄ from the state; Proof

Same proof as for stationary models. Multiply from the right by x(t)> and
take expectation {

x̂(t +1) = A x̂(t)+K(t) ê(t) ,
y(t) = C x̂(t)+ ê(t)

Since ê(t) = y(t)− E [y(t) | Y−t ] ⊥ Y−t and x̂(t) = E [x(t) | Y−t ] ,

E ê(t)x̂(t)> = 0
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Doing C.C.A. of FINITE past and future

The canonical correlation coefficients of a stationary process y defined on
Z are for the infinite past and future histories of y; in fact are the singular
values of an infinite Hankel matrix. In practice we only have a finite se-
quence of covariances and can only form a finite Hankel matrix.
Assume we have finite past and future data at some generic time t,

y−t =


y(t−1)
y(t−2)

...
y(0)

 , y+t =


y(t)

y(t +1)
...

y(T )

 ,
Let say T = 2t; CCA involves SVD (after normalization) of the finite Hankel
matrix

Ht+1,t = E{y+y>−}=


Λ1 Λ2 . . . Λt
Λ2 Λ3 . . . Λt+1... ... . . . . . .

Λt+1 Λt+2 . . . ΛT

 ,
In general with different t we have past and future vectors of different di-
mension. Will get rectangular Hankel matrices of different dimensions.
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CCA of a finite dimensional process cont.d

Let T−t and T+
t+1 be the block Toeplitz matrices

T−t = E{y−t (y−t )>}, T+
t+1 = E{y+t (y+t )>}.

and let L−t (L−t )>=T−t , L+t+1(L
+
t+1)

>=T+
t+1. Then Ĥt+1,t =(L+t+1)

−1Ht+1,t(L
−
t )−>

has a singular-value decomposition

Ĥt+1,t =Ut+1

[
Σt 0
0 0

]
V>t ,

where we assume there are n nonzero singular values: the canonical cor-
relation coefficients at time t, arranged in decreasing order

1≥ σ1(t)≥ σ2(t)≥ σ3(t) . . .≥ σn(t)> 0 .

Ut+1,Vt are orthonormal matrices U>t+1Ut+1 = I =V>t Vt .
Rotate the orthonormal basis vector ν̄νν(t) in Y+

t and ννν(t) in Y−t to recover
the canonical vectors

u(t) :=V>t ννν(t), v(t) :=U>t+1ν̄νν(t) , Ev(t)u(t)> =

[
Σt 0
0 0

]
.
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CCA and finite interval balancing

Compute canonical correlation coefficients of finite past and future spaces
at time t and construct Balanced canonical bases

ẑ(t) =


σ1(t)1/2u1(t)
σ2(t)1/2u2(t)...
σn(t)1/2un(t)

 , ˆ̄z(t) =


σ1(t)1/2v1(t)
σ2(t)1/2v2(t)...
σn(t)1/2vn(t)


Fact: ẑ(t) is a basis in X̂+/−

t and ˆ̄z(t) is a basis in X̂−/+t

These bases have the Finite interval balancing property

E{ẑ(t)ẑ(t)>}= Σt = E{ ˆ̄z(t) ˆ̄z(t)>},

So Σt is the state covariance of both forward and backward Kalman filter
realizations. What are the parameters of these realizations?
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Stationary (A,C,C̄) parameters from finite
interval CCA

Use the formulas (23) and (24)

A = E{ẑ(t +1)ẑ(t)>}Σ−1
t (25a)

C = E{y(t) ẑ(t)>}Σ−1
t (25b)

C̄ = E{y(t) ẑ(t +1)>}, (25c)

A> = E{ ˆ̄z(t−1) ˆ̄z(t)>}Σ−1
t (25d)

C = E{y(t) ˆ̄z(t−1)>} (25e)

C̄ = E{y(t) ˆ̄z(t)>}Σ−1
t , (25f)

No need to solve Riccati Equation! the solution Σ(t) is obtained by CCA.
But Σt > 0 is only the Transient solution of the RDE at time t !!
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Coherent bases

Hence we need to compute ẑ(t +1). In principle should re-do CCA at time
t +1. Doing CCA for shifted finite past and future data

y−t+1 =


y(t)

y(t−1)
...

y(0)

 , y+t+1 =


y(t +1)
y(t +2)

...
y(T )

 , (T = 2t)

Involves normalized SVD of the Hankel matrix of dimension mt×m(t +1),

Ht,t+1 = E{y+t+1( y−t+1)
>}=


Λ1 Λ2 . . . Λt Λt+1
Λ2 Λ3 . . . Λt+1 Λt+2... ... . . . . . . ...
Λt Λt+1 . . . ΛT−1 ΛT


By CCA we get a basis at time t +1, say ẑ(t +1).
Warning: need the two bases ẑ(t+1) and ẑ(t) to be coherent: they should
yield time-invariant parameters (A,C,C̄) independent of time t.
Problem: doing SVD at two different times we may get time-varying
realizations.
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Bases and Hankel factors

Proposition 8 Assume the Hankel matrix at some time t has rank n and
let

Ht = Ωt Ω̄
>
t

be a rank factorization. There is a one-to-one correspondence between
rank factorizations of Ht and choices of bases in the finite-interval predictor
spaces X̂+/−(t) and X̂−/+(t). Given a rank factorization the stochastic
n-vectors

x̂(t) := Ω̄
>
t (T−t )−1y−t , ˆ̄x(t) := Ω

>
t (T+

t )−1y+t (26)

are bases in X̂+/−(t) and X̂−/+(t) yielding dual realizations with the same
triplet (A,C,C̄) uniquely determined by the factorization.
Conversely, given two such dual bases x̂(t) and ˆ̄x(t), there are matrices Ωt
and Ω̄t such that

E [y+t | Y
−
t ] = Ωt x̂(t), E [y−t | Y

+
t ] = Ω̄t ˆ̄x(t), (27)

and Ht = ΩtΩ̄
>
t is a rank n factorization of Ht. The factors Ωt and Ω̄t are

the observability and constructibility matrices corresponding to the triplet
(A,C,C̄) of the two bases.
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Coherent Hankel factors

Start with a large Hankel matrix Ht+1,t+1 of rank = n and let Ht+1,t+1 =

Ωt+1Ω̄>t+1 be a rank n factorization. Assume that the matrices Ωt, Ω̄t deter-
mined by chopping off the last block of m rows of Ωt+1, Ω̄t+1 :

Ωt =↑Ωt+1 , Ω̄t =↑ Ω̄t+1

still have rank n. Then the (shifted) Hankel sub-matrices Ht,t+1 and Ht+1,t
obtained by deleting the last block row or the last block column in Ht+1,t+1
admit unique coherent rank n factorizations

Ht+1,t = Ωt+1Ω̄
>
t , Ht,t+1 = ΩtΩ̄

>
t+1

where one large factor stays the same. In fact, this follows from

Ht+1, t = Ht+1, t+1

[
Imt
0

]
= Ωt+1 Ω̄

>
t+1

[
Imt
0

]
,

Ht,t+1 =
[
Imt 0

]
Ht+1,t+1 =

[
Imt 0

]
Ωt+1 Ω̄

>
t+1 .
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Coherent bases from Hankel factors

Theorem 24 Assume the rank of Ωt and of Ω̄t is still equal to n, then

x̂(t +1) := Ω̄
>
t+1(T

−
t+1)

−1y−t+1, x̂(t) := Ω̄
>
t (T−t )−1y−t (28)

are coherent bases in X̂+/−(t +1) and X̂+/−(t) and, similarly

ˆ̄x(t−1) := Ω
>
t−1(T

+
t−1)

−1y+t−1,
ˆ̄x(t) := Ω

>
t (T+

t )−1y+t (29)

are coherent bases in X̂−/+(t − 1) and X̂−/+(t). Both of which yield the
same coefficients (A,C,C̄) as (28).

The proof follows from the fact that Ωt+1 , Ω̄t+1 have the standard struc-
ture of reconstructibility and observability matrices with the same triplet
(A,C,C̄). Naturally, rankΩt = rank Ω̄t = n if t is large enough.
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The finite-data CCA Algorithm

1. With the data form the stacked tail matrices (we use past and future
strings of equal length but the procedure works in general)

Y−t+1 :=


Yt

Yt−1...
Y0

 , Y+
t+1 :=


Yt+1
Yt+1...
Y2t+1



2. Form the (approximately) Toeplitz matrices

T−t+1 :=
1
N

Y−t+1(Y
−
t+1)

> T+
t+1 :=

1
N

Y+
t+1(Y

+
t+1)

>

3. Compute (Cholesky) factors

T−t+1 = L−t+1(L
−
t+1)

>, T+
t+1 = L+t+1(L

+
t+1)

>
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4. Normalization:

Ŷ−t+1 := (L−t+1)
−1Y−t+1 Ŷ+

t+1 := (L+t+1)
−1Y+

t+1

5. SVD + Order estimation:

Ĥt+1, t+1 =
1
N

Ŷ+
t+1(Ŷ

−
t+1)

> =
[
Ût+1 Ũt+1

] [Σ̂t+1 0
0 Σ̃t+1

] [
V̂t+1 Ṽt+1

]>
Choose n so that Σ̂t+1� Σ̃t+1

6. Rank Factorization

Ht+1, t+1 = Ωt+1Ω̄
>
t+1 = L+t+1Ût+1Σ̂

1/2
t+1

[
L−t+1V̂t+1Σ̂

1/2
t+1

]>
7. Canonical Variables at time t +1

Zt+1 := Σ̂
1/2
t+1V̂>t+1 Ŷ−t+1 = Σ̂

1/2
t+1V̂>t+1(L

−
t+1)

>Y−t+1 := Ω̄
>
t+1 (T

−
t+1)

−1Y−t+1,



8. Compute Ω̄t: chop off the last block of Ω̄t+1

Ω̄t =↑
[

L−t+1V̂t+1Σ̂
1/2
t+1

]
,

9. Canonical Variables at time t

Zt := Ω̄
>
t (T−t )−1Y−t

10. Solve by Least-Squares to get A,C[
Zt+1

Yt

]
=

[
A
C

]
Zt +

[
K(t)

I

]
Êt

11. Compute C̄

C̄ =
1
N

Yt Z>t+1 .



The partial realization algorithm

Go through the same first 6 steps of the previous CCA algorithm

1. Form Ωt+1, Ω̄t+1 in particular let Ωt+1 = L+t+1Ût+1Σ̂
1/2
t+1 and compute

Ωt by chopping off the last block of m rows of Ωt+1 so that

Ht,t+1 = Ωt Ω̄
>
t+1

2. Compute C, A by shift-invariance:

C =
[
Im 0 . . . 0

]
Ωt+1 , ↓ Ωt+1 = Ωt A

3. Compute C̄

C̄ =
[
Im 0 . . . 0

]
Ω̄t+1 .

The two procedures lead to the same formulas for the estimates of (A,C,C̄).
However numerically are not exactly equivalent.
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Estimate the B,D parameters

We have the stationary parameters (A,C,C̄) and Λ̂0 ' Λ0

Solve the Algebraic Riccati Equation

P = APA>+(C̄>−APC>)(Λ0−CPC>)−1(C̄−CPA>) (ARE)

To get the minimal (stabilizing) solution P−

K =
[
C̄>−AP−C>

]
R(P−)−1 R(P−) = Λ0−CP−C> = D−D>−

Equivalently B− = KD−

The ARE has a solution iff (A,C,C̄,Λ0) is positive real !. To be ad-
dressed later.
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Numerical aspects

The LQ factorization in subspace identification

In the algorithms above, many steps involve computations with data matri-
ces with a very large number of columns!

Proposition 9 Assume that U ∈ Rn1×N and Y ∈ Rn2×N. Then there are
matrices Q1, Q2 with Q>1 Q1 = In1, Q>2 Q2 = In2 and Q>1 Q2 = 0 such that[

U
Y

]
=

[
L11 0
L21 L22

][
Q>1
Q>2

]
,

where and L11, L22 are lower triangular.

The rows of Q>1 form an orthonormal basis for the rowspace U; hence

Ê [Y | U] = Y Q1

[
Q>1 Q1

]−1
Q>1 = L21Q>1

Ê
[
Y | U⊥

]
= Y Q2

[
Q>2 Q2

]−1
Q>2 = L22Q>2 .
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Using the LQ factorization

In particular, taking U = Y−t+1 and Y = Y+
t+1, one sees that Ŷ−t+1 =

√
N Q>1

and

T−t+1 =
1
N

L11L>11, T+
t+1 =

1
N
{L12L>12+L22L>22},

which greatly facilitates the computation of the Cholesky factors. Moreover
we have

H(t +1, t +1) = E Y+
t+1(Y

−
t+1)

> = E Y+
t+1(L

−
t+1Ŷ−t+1)

> = L21(L
−
t+1)

>,

which with a minimum amount of computation leads to the normalized Han-
kel matrix Ĥ(t+1, t+1) so that the SVD decomposition can be done directly
on (L+t+1)

−1L21.
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The question of positivity

For generic data there is no guarantee that (A,C,C̄) obtained by the above
procedures is positive real. The question has nothing to do with sample
variability. We shall examine it in a probabilistic setting. Consider two
situations

1. The underlying process y has no finite dimensional realization.

2. The underlying process y has a finite dimensional realization of very
large dimension.

If y has a realization of dimension n small enough so that rankHt = n then
the realization procedure recovers a positive real triplet (A,C,C̄). This
means that the statistical algorithm in this case recovers a a positive real
estimated triplet (A,C,C̄) asymptotically for N→ ∞.
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Finite-interval Positivity

Definition 4 The system (A,C, C̄, Λ0) is positive real on the interval [0, T ]
if the Toeplitz matrix

TT :=


Λ0 Λ>1 Λ>2 . . . Λ>T
Λ1 Λ0 Λ>1 . . . Λ>T−1
. . . . . . . . . . . . . . .
ΛT ΛT−1 . . . Λ1 Λ0

 , Λk =CAk−1C̄

is positive definite.

Consider a stationary process sequence {y(0), y(1), . . . ,y(t), . . . ,y(T )} with
covariances Λk =CAk−1C̄ ; k = 0,1, . . . ,T . Then TT is positive definite.
We have shown that y can be described on the finite interval [0, T ] by a
non-stationary state space model{

x(t +1) = Ax(t)+B(t)w(t) ,
y(t) = Cx(t)+D(t)w(t) , Var{w(t)}= Ip

For example the transient Kalman filter model.
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Finite-interval Positivity cont.d

For any such model

E
[

x(t +1)−Ax(t)
y(t)−Cx(t)

] [
x(t +1)−Ax(t)

y(t)−Cx(t)

]>
=

[
B(t)
D(t)

] [
B(t)
D(t)

]>
≥ 0

Then, using the Markov property and Ey(t)x(t+1)>= C̄ (constant) we see
that P(t) := Ex(t)x(t)> satisfies[

P(t +1)−AP(t)A> C̄>−AP(t)C>

C̄>−CP(t)A> Λ0−CP(t)C>

]
=

[
B(t)
D(t)

] [
B(t)> D(t)>

]
≥ 0 .

Hence there is a matrix function P(t) (symmetric and positive definite)
which satisfies the time varying LMI

M(P(t))≥ 0

on the interval [0, T ].
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Finite-interval Positive-Realness

Theorem 25 The system (A,C, C̄, Λ0) is positive real on the interval [0, T ],
or equivalently, the finite sequence {Λ0, Λk =CAk−1C̄ ; k = 1, . . . ,T} is pos-
itive real, if and only if there exist a symmetric and positive definite matrix
function P(t) satisfying the time varying Linear Matrix Inequality

M(P(t)) :=
[

P(t +1)−AP(t)A> C̄>−AP(t)C>

C̄>−CP(t)A> Λ0−CP(t)C>

]
≥ 0 .

on the interval [0, T ].

Note: The sequence Λk =CAk−1C̄> ; k = 1, . . . can be extended as an infi-
nite sequence. However there is no guarantee that if it is positive real on
the interval [0, T ] it will be still positive real on a larger interval. In particular
there is no guarantee that it will be positive real as an infinite sequence;
i.e. that C(zI−A)−1C̄+ 1

2Λ0 will be a positive real function.
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Finite-interval stochastic model reduction

In practice we only operate with finite data. Assume the data are generated
by a true system of high dimension n. We pick only the first k < n canonical
correlation coefficients at time t and define k-dimensional subvectors

ẑ1(t) =


σ1(t)1/2u1(t)
σ2(t)1/2u2(t)...
σk(t)1/2uk(t)

 , ˆ̄z1(t) =


σ1(t)1/2v1(t)
σ2(t)1/2v2(t)...
σk(t)1/2vk(t)


Get a reduced-degree system anyway. half-spectrum . Questions:

1. Is A1 also stable ?

2. Is (A1,C1, C̄1) a minimal triplet ?

3. Is (A1,C1, C̄1) still positive real on [0, T ] ?

4. Is (A1,C1, C̄1) still in (stochastic) balanced form ?
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Third condition is crucial: only if (A1,C1, C̄1) still positive real on [0, T ] we
have a stochastic model of reduced complexity.

Theorem 26 If (A,C, C̄, 1
2Λ0) is positive real on [0, T ] and in stochastic bal-

anced form, then the reduced degree system (A1,C1, C̄1) is still positive
real on [0, T ].

in general (A1,C1, C̄1) is not in balanced form. Don’t know if A1 is always
stable.



Homework 2

Read Katayama’s book pages 227-229. Comment on Remark 8.1 and
Remark 8.2.
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Order estimation

Minimize Akaike-type criterion

NIC(n) :=
nMAX∑

k=n+1

σ̂
2
k −d(n)

logN
N

where d(n) = number of additional free parameters in a model of order
nMAX > n.

Consistency If data are generated by a true model of order n0 and N → ∞

the minimum NIC estimate of n is consistent:

n̂ → n0 with probability one.

164



Statistical properties

Subspace identification ' Estimation by the method of moments.

• Consistency If data are generated by a true model.

• Asymptotic distribution/Variance of A,C will see general formulas
later on.

• Asymptotic Efficiency ?? don’t know. Depends on the estimates of
Λk; if they are M.L. then the estimates are also M.L.

Open problems if the generating process has a p.d. component.
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Estimation of the Covariance matrix

The covariance matrix

TT :=


Λ0 Λ>1 Λ>2 . . . Λ>T
Λ1 Λ0 Λ>1 . . . Λ>T−1
. . . . . . . . . . . . . . .
ΛT ΛT−1 . . . Λ1 Λ0

 , Λk =CAk−1C̄

must be a block-Toeplitz matrix. The sample estimates like

T−t :=
1
N

Y−t (Y−t )> T+
t :=

1
N

Y+
t (Y+

t )>

are only asymptotically Toeplitz. Not efficient. Should impose the structure
from the beginning. Sample estimate the Λk’s and then form the Toeplitz
matrices
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Generalization to processes with a p.d.
component

Will see this at the end.
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SUBSPACE IDENTIFICATION
FROM INFINITE/FINITE INPUT-OUTPUT DATA

Outline of the next three lectures:

1. State space models with inputs, decomposition, innovations etc

2. Basic idea of susbspace identification with infinite data

3. State construction for stationary processes. Oblique projections.

4. Infinite data Conditional Canonical Correlation Analysis (CCA). Stochastic Balancing

5. Realization of deterministic systems with infinite/finite data

6. Models with finite data

7. State construction of stochastic systems with inputs from finite data

8. Finite interval realization of stationary stochastic systems with inputs

9. Subspace identification algorithms: CCA, N4SID, MOESP.

10. Consistency and ill-conditioning

11. The asymptotic variance
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State space models with input signals

u = {u(t,ω)} discrete-time stationary p-dimensional zero-mean random
signal in t ∈ [t0,+∞).{

x(t +1) = Ax(t)+Bu(t)+Gw(t) x(t0) = x0
y(t) = Cx(t)+Du(t)+ Jw(t), t ≥ t0

A,B,C,D,G,J constant matrices, {x(t)} is the state process of dimension
n, and {w(t)} is a normalized white noise process. Standing assumptions:
|λ (A)|< 1 (causality), (A, [B, G ]) reachable and (A,C) observable.

N.B: We are not interested in modelling the input {u(t)}.

Assumption: there is no feedback from y to u. This is the same as: the
processes {u(t)} and {w(t)} are completely uncorrelated.
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The Deterministic-Stochastic decomposition

State Space Model for y: parallel of two models (in general Non Minimal!)

Stochastic Model
{

xs(t +1) = Axs(t) + Gw(t)
ys(t) = Cxs(t) + Jw(t)

Deterministic Model
{

xd(t +1) = Axd(t)+Bu(t)
yd(t) = Cxd(t)+Du(t)

y(t) = ys(t) + yd(t) =C [xs(t)+xd(t)] +Du(t)+ Jw(t)

Both models have the same dimension; not true in general.
NB. xs(t) uncorrelated with u ⇒ xs(t) uncorrelated with xd !
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Relation with ARMAX

+

+ y(t)yd(t)u(t)

ys(t)

-��
��
-C(zI−A)−1B+D-

?

Deterministic system + “stochastic error” decomposition :

y(t) =
[
C(zI−A)−1B+D

]
u(t)+

[
C(zI−A)−1G+ J

]
w(t)

:= F(z)u(t) + G(z)w(t)

NB: F(z) and G(z) realized with the same (A,C) pair. In general these
are non-minimal realizations.

F(z) and G(z) are rational. Can be written as a ratio of polynomial matrices
with the same denominator

F(z) = A(z)−1 B(z); G(z) = A(z)−1 C(z)
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where

A(z) = Izν +

ν∑
1

Ak zν−k B(z) =
ν∑
1

Bk zν−k C(z) =C0zν +

ν∑
1

Ck zν−k

Hence the joint state space model of {y(t)} has an I/O description by the
ARMAX model

y(t)+
ν∑
1

Ak y(t− k) =
ν∑
1

Bk u(t− k)+C0 w(t)+
ν∑
1

Ck w(t− k) .

This may also be a redundant parametrization.



Deterministic/Stochastic identification

(No feedack!) With infinite data can project the joint model on H(u) and
get a Deterministic Model for yd(t) = E{y(t) | H(u)},{

xd(t +1) = Axd(t)+Bu(t)
yd(t) = Cxd(t)+Du(t)

Identification of this deterministic system is a Realization problem starting
from i/o time series data. See Katayama book.
Then identify a stochastic model for the stochastic disturbance

ys(t) = y(t) − yd(t) = E{y(t) | H(u)⊥}

Nice idea with infinite data but does not work very well with finite data.
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The joint innovation model

Steady state Kalman filter: x̂(t +1) = E{x(t +1) | y(s), u(s)s≤ t}

Innovation process (of y) : ê(t) = y(t)−Cx̂(t)−Du(t) white noise ![
x̂(t +1)

y(t)

]
=

[
A B
C D

] [
x̂(t)
u(t)

]
+

[
K
I

]
e(t)

Even if there is feedback from y to u : e(t) ⊥ x̂(t) u(τ), ∀τ ≤ t[
A B
C D

]
= E{

[
x̂(t +1)

y(t)

] [
x̂(t)
u(t)

]>
}

(
E{
[

x̂(t)
u(t)

] [
x̂(t)
u(t)

]>
}

)−1

Parameters are uniquely determined by the basis x̂(t) !
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Consistent subspace Identification problem

Problem : Assume the data are generated by a true stochastic system of
order n. From observed input-output time series

{y0,y1,y2, . . . ,yN}, yt ∈ Rm {u0,u1,u2, . . . ,uN}, ut ∈ Rp

find estimates (in a certain basis)
ˆ[

A B
C D

]
N

such that (consistency)

lim
N→∞

ˆ[
A B
C D

]
N
=

[
A B
C D

]
modulo change of basis
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Basic idea of subspace identification 1

Assume we can observe also a state trajectory {x0,x1,x2, . . . ,xN}, corrre-
sponding to the I/O data

{y0,y1,y2, . . . ,yN}, yt ∈ Rm {u0,u1,u2, . . . ,uN}, ut ∈ Rp

Form the “tail” matrices Yt, Xt,Ut

Yt := [ yt, yt+1, yt+2, . . .]
Xt := [ xt, xt+1, xt+2, . . .]
Ut := [ ut, ut+1, ut+2, . . .]

Every sample trajectory {yt}, {xt}, {ut} of the system must satisfy the
model equations, so [

Xt+1
Yt

]
=

[
A B
C D

][
Xt
Ut

]
+

[
K
I

]
Et
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Basic idea of subspace identification 2

[
Xt+1

Yt

]
=

[
A B
C D

][
Xt
Ut

]
+

[
K
I

]
Et

Linear Regression ! Solve by Least Squares :

min
A,C,B,D

‖
[

Xt+1
Yt

]
−
[

A B
C D

][
Xt
Ut

]
‖

getting

ˆ[
A B
C D

]
N

:=
1
N

[
Xt+1

Yt

][
Xt
Ut

]>{ 1
N

[
Xt
Ut

][
Xt
Ut

]>}−1
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Basic idea of subspace identification 3

ˆ[
A B
C D

]
N

:=
1
N

[
Xt+1

Yt

][
Xt
Ut

]>{ 1
N

[
Xt
Ut

][
Xt
Ut

]>}−1

Theorem 27 If the data are second order ergodic, there is no feedback
and the inverse exists:

lim
N→∞

ˆ[
A B
C D

]
N
=

[
A B
C D

]
(†)

the method provides consistent estimates of A, B,C, D.

Proof: Same as for time-series seen before. Note that the inverse must
exist at lest for N→ ∞.
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Second order ergodicity

For N → ∞ sample covariances converge to true covariances, say

1
N

N∑
k=0

{yt+k u>s+k}=
1
N

YtU>s → E{y(t)u(s)>} N → ∞

For N→∞ the sample covariances can be substituted by the true ones.

Assuming N “very large” numerical sequences behave like random vari-
ables: just take sample averages instead of expectations!

y(t)⇔ Yt, u(t)⇔Ut, etc.
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State sequence construction

Need to construct the state from input-output data.

First do when infinite past data are (theoretically) available at time t: want
just to construct the state of the

Steady state Kalman filter: x̂(t) = E{x(t) | y(s), u(s) ; s < t}

Innovation process (of y) : ê(t) = y(t)−Cx̂(t)−Du(t) white noise ![
x̂(t +1)

y(t)

]
=

[
A B
C D

] [
x̂(t)
u(t)

]
+

[
K
I

]
e(t)

Pick basis vector in the state space of this model : Generalize previous
procedure by conditional CCA .
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Geometry: Oblique projections

Consider a static situation. Let X = span{x}, U = span{u}, say finite di-
mensional random vectors in some Hibert space H.
Assume X∩U = {0}. Then any v in X+U (direct sum) has a unique de-
composition into Oblique projections:

v = Ax+Bu = E ||U{v | X}+ E ||X{v | U}
We know how to compute A and B when the sum is orthogonal;
e.g. Ax = E [v | X ] = E

{
vx>

}
E
{

xx>
}−1 x.

Theorem 28 Assume X∩U = {0} and x and u are bases. Then

Ax = E ||U{v | X}= Σvx|u Σ
−1
xx|u x Bu = E ||X{v | U}= Σvu|x Σ

−1
uu|x u ,

where Σvx|u, Σxx|u, Σuu|x are conditional covariances.

Let v |u⊥ := v−E {v | u} , x |u⊥ := x−E {x | u} , u | x⊥ :=u−E {u | x}

Σvx|u = E(v | u⊥)(x | u⊥)> , Σxx|u = E(x | u⊥)(x | u⊥)>
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Notations:

v |u⊥ := E
{

v | u⊥
}

:= v−E {v | u} , x |u⊥ := E
{

x | u⊥
}

:= x−E {x | u}

Σvx|u := E
[
E
{

v | u⊥
}

E
{

x | u⊥
}>]

, Σxx|u := E
[
E
{

x | u⊥
}
E
{

x | u⊥
}>]

Recall: in the Gaussian case both v | u⊥, x | u⊥ and their product are in-
dependent of U so the conditional covariance, given u is the same as their
(unconditional) covariance.
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Proof of the Oblique projection formula

To get Ax do orthogonal projection of v onto X+U and then set u = 0

E ||U{v | X}=
[
E
{

vx>
}

E
{

vu>
}][ E

{
xx>

}
E
{

xu>
}

E
{

ux>
}

E
{

uu>
} ]−1[

x
0

]
Use matrix inversion lemma[

A B
C D

]−1
=

[
∆−1 −∆−1BD−1

−D−1C∆−1 D−1+D−1C∆−1∆−1BD−1

]
where ∆ = A−BD−1C. See Katayama p. 274. There is also a geometric
proof.
RULE: Oblique projection E ||U{v | X} is same as orthogonal projec-
tion of E

{
v | U⊥

}
onto E

{
X | U⊥

}
but with argument x in place of

x | U⊥.
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Geometry: Conditionally Markovian subspaces

Standing assumption on the input process. Let

U+
t := span {u(s) ; s≥ t } U−t := span {u(s) ; s < t }

Assume:

U+
t ∩ U−t = {0} , ∀ t sufficient richness

Means that the random variables {u(t) ; t ∈Z} form a basis for H(u); u must
be p.n.d. with a coercive spectral density.

Definition 5 Let w be a white noise with w ⊥ u (no feedback). Say that x
is a Conditionally Markov process if

x(t +1) = Ax(t)+Bu(t)+Gw(t) , |λ (A)|< 1

Let Xt := span {x1(t), x2(t) . . . ,xn(t)} then

E ||U+
t

{
X+

t | X
−
t ∨Xt

}
= E ||U+

t

{
X+

t | Xt
}
.

Xt is a Conditionally (or Oblique) Markovian subspace.
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Proof

By causality x(t) ∈ span {u(s), w(s), ; s < t } so that Xt ⊂ U−t ⊕W−t . Since
X−t+1 = X−t ∨Xt ⊂ U−t ⊕W−t

X−t+1 ∩U+
t = {0}

(because W⊥ U⇒W∩U = {0}). Projecting

x(t + k) = Akx(t)+TBu+t +TGw+
t k > 0

onto X−t+1+U+
t you get Akx(t)+TBu+t . Hence

E ||U+
t

{
X+

t | X
−
t ∨Xt

}
= E ||U+

t

{
X+

t | Xt
}

2

Backward notion involving E ||U−t and x̄(t−1) etc. left as an exercise.
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Geometry: Conditionally Markovian subspaces
cont.d

Proposition 10 The oblique Markovian property is equivalent to

E{Xt+1 | X−t+1∨U−t+1}= E{Xt+1 | Xt +Ut}

that is

Xt+1 ⊥ X−t+1∨U−t+1 | Xt +Ut

Let x(t), x(t +1) be stationary bases and let

Gw(t) := x(t +1)− E{x(t +1) | X−t+1∨U−t+1}

(w is white noise: normalized joint innovation process of x). Then by the
proposition above,

x(t +1) = Ax(t)+Bu(t)+Gw(t) .
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Geometry: Oblique Markovian splitting
subspaces

Definition 6 . The subspace Xt is an Oblique Markovian splitting sub-
space if

E ||U+
t

{
Y+

t ∨ X+
t | Y

−
t ∨ X−t ∨Xt

}
= E ||U+

t

{
Y+

t ∨ X+
t | Xt

}
Theorem 29 The subspace Xt is a finite dimensional Oblique Markovian
splitting subspace iff for any basis x(t) we have a representation{

x(t +1) = Ax(t)+Bu(t)+Gw(t)
y(t) =Cx(t)+Du(t)+ Jw(t)

where |λ (A)|< 1.

Same proof as for the Markov case with x̃(t+1) :=
[
x(t +1) y(t)

]> in place
of x(t +1). Define the joint innovation as[

G
J

]
w(t) :=

[
x(t +1)

y(t)

]
− E

{[
x(t +1)

y(t)

]
| X−t+1∨Y−t ∨U−t+1

}
Xt is a “Conditional state space given U+

t ”.
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The (forward) oblique predictor space of a
stationary process

Assume we have histories starting from t = −∞. Consider state spaces in
the joint past

Xt ⊂ Pt := Y−t ∨ U−t = span {y(s), s < t, u(s), s < t }

Definition 7 The (forward) oblique predictor space

X+/−
t = span {E‖U+

t
{y(t +h) | Pt}; h = 0,1, . . . ,n}= E‖U+

t
{Y+

t | Pt};

Theorem 30 The (forward) oblique predictor space is the minimal oblique
splitting subspace contained in the past. The state space model corre-
sponding to a basis x̂(t) is the stationary innovation model{

x̂(t +1) = Ax̂(t)+Bu(t)+Ke(t)
y(t) = Cx̂(t)+Du(t)+ e(t) .

where e(t) = y(t)− E{y(t) | Pt ∨Ut}.
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Verification

Take an observable innovation model

y(t +h) = CAh x̂(t) +
∑h−1

k=0 CAh−1−kBu(t + k)+Du(t +h)

+
∑h−1

k=0 CAh−1−kK e(t + k)+ J e(t +h)

since e(t + k) ⊥ Pt:

E{y(t +h) | Pt ∨ U+
t } = E{y(t +h) | Pt ∨ U[t, t+h)}

= CAh x̂(t) +
∑h−1

k=0 CAh−1−kBu(t + k)+Du(t +h)

= E‖U+
t
{y(t +h) | Pt } + E‖Pt {y(t +h) | U[t, t+h]}

Hence E‖U+
t
{y(t +h) | Pt } = CAh x̂(t) , h = 0,1, . . . so that

E‖U+
t
{Y+

t | Pt } = span {CAh x̂(t) ; h = 0,1, . . .}= X+/−
t .

QED
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Constructing the state of a stationary model

Choose a basis in the oblique predictor space. If y admits a finite dimen-
sional realization, can use finite future spaces with n large enough,

X+/−
t = span{E‖U+

t
[y(t +h) | Pt] ; h= 0,1,2, . . .} = E‖U[t, t+n]

{Y[t, t+n] |Y
−
t ∨U−t }

but for stationarity the past spaces need to be infinite !
Each basis yields a minimal innovation model (Steady state Kalman filter)[

x̂(t +1)
y(t)

]
=

[
A B
C D

] [
x̂(t)
u(t)

]
+

[
K
I

]
e(t)

Once a basis is given, can solve for A, B,C, D and then from the residual
vector compute Λ = Var{e(t)} and K. This (in theory !) under certain non-
singularity conditions which will be discussed later.
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Stationary conditional CCA

Can compute a basis in X+/−
t by conditional CCA. X+/−

t is the range
space of the oblique projection operator E‖U+

t
[ · | Pt] restricted to Y+

t .
Pick a basis in Pt:

p(t) :=
[

u−t
y−t

]
[∞×1 past observations]

and future inputs u+t (this may be finite of same length as y+t ). Recall:
oblique projection is like orthogonal projection of y+t | (u

+
t )⊥ onto pt | (u+t )⊥.

Cross covariance is the Conditional Hankel Matrix

Hy+p|u+ := E
[
E
{

y+t | (u
+
t )⊥

}
, E
{

p(t) | (u+t )⊥
}>]

Assume this has finite rank n ⇒ y+t and u+t can be taken to be finite di-
mensional vectors.
Do SVD of the normalized conditional covariance matrix.
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Conditional CCA Algorithm

Cholesky factors

Ty+y+|u+ := Var
[
E
{

y+t | (u
+
t )⊥

}]
= L+L>+,

Tpp|u+ := Var
[
E
{

p(t) | (u+t )⊥
}]

= L−L>−

Do SVD of the normalized conditional Hankel matrix

Ĥy+p|u+ := L−1
+ Hy+p|u+ L−>−

Rank n SVD (or order estimation)

Ĥy+p|u+ :=
[
Û Ũ

] [Σ̂ 0
0 Σ̃

] [
V̂ Ṽ

]> ' Û Σ̂V̂>

Canonical state vector

z(t) = Σ̂
1/2V̂>L−1

− p(t)
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From unnormalized Hankel factorization get the extended observability ma-
trix

Ωt = L+Û Σ̂
1/2

Then from (27)

E‖U+
t
[y+t | Pt ] = Ωt z(t) ,

and

E [y+t | Pt ∨U+
t ] = E‖U+

t
[y+t | Pt ]+ E‖Pt [y

+
t | U

+
t ] = Ωt z(t)+TBu+t .

From Ωt±1 can update the state to get z(t±1).



ONLY FINITE DATA ARE AVAILABLE!

The The infinite past p(t) spanning Y(−∞,t)∨U(−∞,t) is not available !!
Will see later that approximate conditional CCA using available finite past
data yields biased estimates. Bias may be large if the zeros of the true
system are close to the unit circle. With real data the approximation leads
to errors (bias) in the estimate which do not→ 0 as N→ ∞.

For consistency with finite regression data: Need finite-interval (non-
stationary) stochastic realization.
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Finite-interval innovation models

Must use (random) “data” on a finite-interval [t0,T ] only. Project a stationary
model onto Y[ t0, t )∨U[ t0,T ] ≡ P[ t0, t )∨U[ t,T ].
The estimate

x̂(t) := E
[
x(t) | P[ t0, t )∨U[ t,T ]

]
satisfies the transient conditional Kalman filter equation

x̂(t +1) = Ax̂(t)+Bu(t)+K(t)ê(t)
y(t) = Cx̂(t)+Du(t)+ ê(t)
x̂(t0) = E

[
x(t0) | U[t0 T ]

]
How to construct x̂(t) ?

Is x̂(t) a basis in some predictor space? e.g E‖U[t,T ]

[
Y[ t,T ] | P[ t0, t )

]
?

Cannot use E
[
Y[ t,T ] | P[ t0, t )

]
either; would introduce innovation of u !!
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The non-causal component of the transient K.F.
state

Project the state of a stationary model (by feedback-free Y[t0, t )∩U[t,T ]= {0})

E
[

x(t) | P[t0, t )∨U[t,T ]

]
=

= E‖U[t,T ]

[
x(t) | P[t0, t )

]
+ E‖P[t0, t )

[
x(t) | U[t,T ]

]
= x̂causal(t) + u+t −dependent part

If you keep only the oblique projection along U[t,T ] you miss one piece of
the transient state!
The stationary conditional CCA applied to finite past data gives a causal
basis, approximation of the transient Kalman state x̂(t) with error depend-
ing on the initial condition.
On [t0, t] the steady state Kalman filter realization obeys

x(t +1) = (A−KC)x(t)+(B−KD)u(t)+Ky(t) , x(t0) = x0 ∈ Pt0

so that

E‖P[t0, t)
{x(t) | U[t,T )}= (A−KC)t−t0E‖P[t0, t)

{x(t0) | U[t,T )} .
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Error analysis of conditional CCA with finite
past data

The stationary conditional CCA procedure applied to finite past data pro-
vides an approximation of the transient Kalman state vector x̂(t) with error
depending on the initial condition.
The term

E‖P[t0, t)
{x(t) | U[t,T )}= (A−KC)t−t0E‖P[t0, t)

{x(t0) | U[t,T )},

tends to zero when t− t0→ ∞, if |λ (A−KC)|< 1; i.e. the (true) system has
no zeros on the unit circle.
In our case t − t0 is fixed and often quite small. If there are zeros close
to the unit circle, the stationary conditional CCA procedure applied to finite
data, y+t and pt ∈P[t0, t) may produce a state differing considerably (for t−t0
finite) from the transient K.F. state x̂(t).
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A basic step of finite-interval subspace
methods

Don’t know how to construct transient Kalman filter state x̂(t) from finite
data. Conditional CCA may yield biased estimates. Need a different route.
Project future outputs of a stationary model (state vector x(t) ) on the finite
data space, (future horizon: k = T − t)

y(t)
y(t +1)

...
y(T )

 =


C

CA
...

CAk

x(t) +


D 0 0

CB D 0
... . . . . . .

CAk−1B · · · CB D




u(t)
u(t +1)

...
u(T )



+


I 0 0

CK I 0
... . . . . . .

CAk−1K · · · CK I




e(t)
e(t +1)

...
e(T )


y+t = Ωkx(t) + Hd u+t + Hs e+t

Want to project on finite data spaces so as to kill the last two pieces. In this
way get a term which looks like Ωkx(t). From this can recover the column
space of Ωk.
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Recovering Ωk

Compute the output predictor based on all available data at time t

ŷ+t := E




y(t)
y(t +1)

...
y(t + k)

 | P[t0, t )+U[t,T ]

= Ωk x̂(t) + Hd u+t

To kill the u+t -dependent term, take oblique projection along U[t,T ]:

E‖U[t,T ]

[
ŷ+t | P[t0, t )

]
= Ωk x̃(t)

where x̃(t) is the causal component of the K.F. state : x̃(t) := E‖U[t,T ]

[
x̂(t) | P[t0, t )

]
Hence if

E{x̃(t) x̃(t)>}> 0 (consistency condition) ,

we can recover the column space of Ωk from the oblique projection along
U[t,T ] of the finite data predictors ŷ+t .
This idea is used in the N4SID algorithm.

197



THE VAN OVERSCHEE-DE MOOR MODEL

The Pseudostate : x̄(t) := Ω
−L
k ŷ+t = x̂(t) +Ω

−L
k Hdu+t substitute x̂(t)

into the K.F. equation to get the linear recursion[
x̄(t +1)

y(t)

]
=

[
A
C

]
x̄(t)+

[
K1
K2

]
u+t
⊥
+

[
K(t)

I

]
ê(t) (∗)

K1 K2 are known (complicated) linear functions of (A,C) and (B,D).
Solve (*) for the unknown parameters in terms of the data x̄(t) and u+t using
the oblique projection formulas[

A
C

]
Σx̄x̄|u+ =

[
Σx̄1x̄|u+
Σȳx̄|u+

]
[
K1
K2

]
Σu+u+|x̄ =

[
Σx̄1u+|x̄
Σyu+|x̄

]
Conditional Covariances (Notation: x̄1 ≡ x̄(t +1)) :

Σx̄ x̄|u+ = E{
[
x̄(t)−E (x̄(t) | u+t )

][
x̄(t)−E (x̄(t) | u+t )

]>} = Σx̂ x̂|u+

Σu+u+|x̄ = E{
[
u+t −E(u+t | x̄(t))

][
u+t −E(u+t | x̄(t))

]>} etc.
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The N4SID algorithm

[vanOverschee-DeMoor-94]

1. Predictor matrix based on joint input-output data

Ŷ[ t,T−1 ] := E
[
Y[ t,T−1 ] | Y[ t0, t )∨U[ t0,T ]

]
(projection onto the joint rowspace).

2. Compute the oblique projection along U[ t,T ]

Ẑ[t,T−1 ] := E‖U[t,T ]

[
Ŷ[ t,T−1 ] | Y[ t0, t )∨U[ t0, t )

]
to get an estimate of Ωk X̃t (causal part of X̂t)

3. Estimate the order and the observability matrix Ωk by SVD factorization
keeping in Σ only the “relevant” singular values

Ẑ[t,T−1 ] =UΣV> Ωk :=UΣ
1/2 , X̃t = Σ

1/2V>
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4. The “Pseudostate” X̄t := Ω
−L
k Ŷ[ t,T−1 ] obeys the recursion[

X̄t+1
Yt

]
=

[
A
C

]
X̄t +

[
K1
K2

]
U[ t,T ]

⊥
+

[
K(t)

I

]
Êt

5. Need to compute a coherent pseudostate at time t +1 :

X̄t+1 := Ω
−L
k Ŷ[ t+1,T ]

(slight variation: use all future data Ŷ[ t,T ] to compute X̄t and Ŷ[ t+1,T ] to
compute X̄t+1)

6. Solve by LS for the unknown parameters (A,C) and (K1,K2)

7. Estimate (B, D) inverting the functions (K1,K2) (see the book by van
Ovrschee and De Moor).



The “Robust” N4SID algorithm

The crucial step in N4SID is the computation of Ẑ[t,T−1 ] by oblique pro-
jection along U[t,T ]. Oblique projection may be ill-conditioned and poor
estimates of Ω may result. Try to use only orthogonal projections !
Orthogonal decomposition of the data space at time t

P[t0, t)+U[t,T ] = P[t0, t)⊕ E {P[t0, t) | U
⊥
[t,T ]}

where

E {P[t0, t) | U
⊥
[t,T ]}= span

{
p(t)− E {p(t) | u+t } ; p(t) ∈ P[t0, t)

}
(same general idea used earlier to compute oblique projections by orthog-
onal projections). Notation:

U⊥[t,T ] ≡ E {P[t0, t) | U
⊥
[t,T ]}

orthogonal complement of U[t,T ] in the ambient space P[t0, t)+U[t,T ] (which
varies with t). Compute instead

ẑ+t := E {ŷ+t | U
⊥
[t,T ]} = Ωk E {x̃(t) | U⊥[t,T ]} := Ωk x̂c(t).

The Ωk is in a different basis (keep the same symbol for simplicity). See
next slide for comments on x̂c(t).
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Remark about Robust N4SID algorithm

Note: from the oblique decomposition of x̂(t):

x̂(t) = E‖U[t,T ]

[
x(t) | P[t0, t )

]
+ E‖P[t0, t )

[
x(t) | U[t,T ]

]
= x̃(t) + part in U[t,T ]

define

x̂c(t) := E {x̂(t) | U⊥[t,T ]}= E {x̃(t) | U⊥[t,T ]} .

Note that x̂c(t) is not equal to x̃(t) which ∈ P[t0, t ), being an oblique projec-
tion.
While x̃(t) satisfies a transient Kalman Filter recursion with zero initial con-
ditions there is no simple recursion for x̂c(t).
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“ MOESP” [ Verhaegen 93-94]

1. Project orthogonally onto Y[t0, t )∨U[t0,T ]

ŷ+t := E
[
y+t | P[t0, t )∨U[t,T ]

]
= Ωkx̂(t) + Hd u+t

2. Project onto the orthogonal complement U⊥
[t,T ]

ẑ+t := ŷ+t − E
[
ŷ+t | U[t,T ]

]
= Ωk x̂c(t)

x̂c(t) = x̂(t)− E
[
x̂(t) | U[t,T ]

]
3. Factorize ẑ+t , i.e. the matrix Zc

[t,T ]
:= E

[
Ŷ[ t,T ] | U⊥[t,T ]

]
by SVD

Zc
[t,T ] =

[
Û Ũ

] [Σ̂ 0
0 Σ̃

] [
V̂>

Ṽ>

]
' Û Σ̂

1/2
Σ̂

1/2V̂>

to get an estimate of the order n and of Ωk e.g. Ω̂k = Û Σ̂1/2.
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4. Estimate (A,C) from the estimated observability matrix by the “shift-
Invariance method”.

5. Construct a matrix Ω̂⊥k such that Ω̂⊥k Ω̂k = 0. For example Ũ>.

6. Compute

Ω̂
⊥
k ŷ+t = Ω

⊥
k Hd u+t + noise

7. Once (A,C) are estimated, Hd is a linear function of (B,D) : can
rewrite this as

Ω̂
⊥
k Ŷ+

t = L(A,C)vec(B,D) + noise

Estimate (B,D) by linear regression.
Efficient implementation via L-Q factorization. See e.g. Katayama’s book
p. 157-159.



MOESP ≡ “robust” N4SID with orthogonalized
regressors

“Robust” N4SID computes Ω̂k as in MOESP by SVD of the orthogonal
projection Zc

[t,T ]
= E

[
Y[t,T ] |U⊥[t,T ]

]
. Then use the same definition of X̄t so

that after redefining K1,K2, get the same recursion[
X̄t+1

Yt

]
=

[
A
C

]
X̄t +

[
Kc

1
Kc

2

]
U[ t,T ]

⊥
+

[
K(t)

I

]
Êt

Solve by least squares: the parameters can be gotten by the same oblique
projection formula. Note

Σx̄ x̄|u+ = Σx̂ x̂|u+ = Σx̂c,x̂c ← E X̂c
t (X̂

c
t )
> .

Can show that you get exactly the same estimates of (A,C). (see Chiuso-
Picci 2004).
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Consistency and conditioning

For N→ ∞ the estimates tend to satisfy[
A
C

]
Σx̂x̂|u+ =

[
Σx̄1x̄|u+
Σȳx̄|u+

] [
K1
K2

]
Σu+u+|x̄ =

[
Σx̄1u+|x̄
Σyu+|x̄

]
The Conditional Covariances:

Σx̂x̂|u+ and Σu+u+|x̄ must be non-singular !

(First is the Jansson-Wahlberg consistency condition). More generally:
Σx̂c x̂c (= Σx̂x̂|u+) may be ill-conditioned ⇒ computation of the parameters
(A,C) of the regression will be ill-conditioned: random fluctuation er-
rors in the sample covariance data are amplified.
Σx̂x̂|u+ ill-conditioned ⇔ subspaces X̂t and U[ t,T ] are “nearly parallel”.

Similar analysis holds for (K1,K2) and Σu+u+|x̄.

204



Conditioning of subspace identification

The conditioning of the problem (*) is determined by the singular values of
the conditional covariances Σx̂x̂|u+ and Σu+u+|x̄ . Let

Π := E
[
u+t x̂(t)>

]
Π̄ := E

[
u+t ˆ̄x(t)>

]
Λu = Cov

[
u+t
]

Normalized Cross-Covariance Matrices

Π̂ := L−1
u+ΠL−>x̂

ˆ̄
Π := L−1

u+Π̄L−>x̄

The singular values of Π̂ are cosines of the canonical angles between X̂t

and U[ t,T ]. From well-known expressions of the error covariances follows
that

Σx̂x̂|u+ = Σx̂x̂−Σx̂u+Σ
−1
u+u+Σ

>
x̂u+ = Lx̂

[
I− Π̂

>
Π̂

]
L>x̂
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Condition numbers

Recall κ(A) := σmax(A)/σmin(A) is the relative error amplification coef-
ficient in the solution of Ax = b.

Theorem 31

κ

(
Σx̂x̂|u+

)
≤ κ (Σx̂)

1−σ2
min(Π̂)

1−σ2
max(Π̂)

κ

(
Σu+u+|x̄

)
≤ κ (Λu)

1

1−σ2
max(

ˆ̄
Π)

The bounds are sharp.

If σmax{X̂t, U[ t,T ]} ' 1 ⇒ Σx̂x̂|u+ very ill conditioned !
κ (Λu)'maxω Φu(ω)/minω Φu(ω). If u is white noise κ (Λu) = 1.
If Φu(ω)' 0, locally (poor excitation), then κ (Λu) large.

206



Conditioning of subspace identification cont.d

In the stationary setting x̂d(t) is uncorrelated with x̂s(t) (by feedback-free).
Hence

Π := E
[
u+t x̂(t)>

]
= E

[
u+t x̂d(t)

>
]

:= Πd

• singular values of Π̂ = singular values of Π̂d ≡ E
[

u+t x̂d(t)>
]

cosines of
the canonical angles of the spaces spanned by u+t and the determin-
istic state x̂d(t)

• singular values of Π̄≡ E
[
u+t ˆ̄x(t)>

]
cosines of the canonical angles of

the spaces spanned by u+t and x̄(t)

• conditioning of the input κ
(
Λu+

)
large when the amplitude of the spec-

trum of u varies widely
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Conditioning in the stationary setting

Asymptotics for T − t0→ ∞, everything stationary.
Given an input with assigned spectrum Φu. Which deterministic systems
F(z) = C(zI − A)−1B + D have the SMALLEST canonical angles of (the
spaces spanned by) u+t and xd(t) (worst conditioning of the identification
problem) ??

σk(Xd,U+) cosines of Canonical Angles between the subspaces

U+ and Xd := span {xd(0)} ⊂ U−

Theorem 32

σk(Xd,U+)≤ σk(U−,U+) , k = 1,2, . . .

Maximal when

σk(Xd,U+) = σk(U−,U+) k = 1,2, . . . ,nd

if and only if the first nd principal directions of U− for the pair of sub-
spaces (U−,U+) span Xd.
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Probing inputs

Theorem Assume u has given rational spectral density matrix
Φu. The maximal canonical correlation coefficients σk(X,U+)
are obtained when, and only when there are nd principal zeros
of the spectral density matrix Φu of u cancelling all the poles
of the deterministic transfer function F(z) =C(zI−A)−1B+D.

How to deal with ill-conditioning? Sometimes Decoupling + Orthogonaliza-
tion helps.
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Estimation of the stochastic parameters 1

Recall the Pseudostate in the (robust) Van Overschee-De Moor model
x̄(t) := Ω

−L
k ŷ+t = x̂(t) +Ω

−L
k Hdu+t ) substitute the expression of x̂(t) into

the transient Kalman Filter to get the linear recursion[
x̄(t +1)

y(t)

]
=

[
A
C

]
x̄(t)+

[
Kc

1
Kc

2

]
u+t +

[
K(t)

I

]
ê(t)

The residues of the Least Squares estimates

min
A,C,Kc

1,K
c
2

‖
[

X̄t+1
Yt

]
−
[

A Kc
1

C Kc
2

][
X̄t

U[ t,T ]

]
‖

say [̂
K̂(t)

I

]
N

Êt :=
[

X̄t+1
Yt

]
−

̂[A Kc
1

C Kc
2

]
N

[
X̄t

U[ t,T ]

]
for N→ ∞

1
N

[̂
K̂(t)

I

]
N

ÊtÊ>t

[̂
K̂(t)

I

]>
N
→
[

K̂(t)
I

]
Λ̂(t)

[
K̂(t)

I

]>
=

[
Q(t) S(t)
S(t)> Λ(t)

]
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A warning

In the literature people often say that since they are obtained as residual
variance, i.e. by construction[

Q(t) S(t)
S(t)> Λ(t)

]
≥ 0 (†)

the matrices Q(t), S(t), Λ(t) can be taken as estimates of the steady state
noise parameters Q, S, R.
However we can prove that the matrix (†) will converge to a positive definite
limit when t → ∞, only if we assume that the data are generated by a true
system of order n.
For generic data, although (†) holds for a finite t, there is no guarantee
that the matrix will converge to anything nor that the limit will be positive
definite.
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Estimating P(t)

Recall: the causal component of the K.F. state x̃(t) := Ω
−L
k ẑ+t satisfies

the Kalman recursion with zero initial conditions.
Recall Ẑ[t,T ] is the oblique projection of Ŷ[t,T ] onto the joint past space.
From SVD

Ẑ[t,T ] = UΣ
1/2

Σ
1/2V> = Ωk X̃t

get

X̃t = Σ
−1/2V>

After having estimated B, D can subtract from x̃(t) the u-dependent mean,
µ(t) =

∑t−1
i=0 Ak−1−iBu(t0 + i ). Compute:

X̃t − ΓkU[t0, t) , Γk =
[
Ak−1B . . . B

]
from which estimate the state covariance P(t)= E(x̃(t)−µ(t))(x̃(t)−µ(t))>

as

P̂(t) =
1
N

[
X̃t − ΓkU[t0, t)

][
X̃t − ΓkU[t0, t)

]>
.
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Estimating P(t); Alternative route

From SVD of Ẑc
[t,T ] (orth. projection) obtain Ω

−L
k = Σ−1/2U>; can compute

X̂t = Ω
−L
k

(
Ŷ[t,T ]−HdU[t,T ]

)
(this follows from x̂(t) = Ω

−L
k
(

ŷ+t −Hdu+t
)
)

After having estimated B, D can subtract from x̂(t) the u-dependent mean,
µ(t) =

∑t−1
i=0 Ak−1−iBu(t0 + i ). To this end compute:

X̂t − ΓkU[t0, t) , Γk =
[
Ak−1B . . . B

]
This state covariance P(t) = E(x̂(t)−µ(t))(x̂(t)−µ(t))> satisfies the same
Riccati difference equation but with nonzero initial condition:

P(t0) = E
{
E [x(t0) | U[t0,T ] ] E [x(t0) | U[t0,T ] ]

>
}

can also be estimated as

P̂(t) =
1
N

[
X̂t − ΓkU[t0, t)

][
X̂t − ΓkU[t0, t)

]>
.
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Estimation of the stochastic parameters 2

Problem 1 Assume y is described by a (minimal) stationary model of order
n, (may take in innovation form){

x(t +1) = Ax(t)+Bu(t)+Gw(t)
y(t) =Cx(t)+Du(t)+ Jw(t)

and that we know (A,C B, D) and, for some fixed t > t0, the transient Kalman
filter parameters [

K(t)
I

]
Λ(t)

[
K(t)

I

]>
=

[
Q(t) S(t)
S(t)> Λ(t)

]
,

and the state covariance P(t).
Can we compute the steady state Kalman gain and steady state innovation
variance of the model?
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Getting the stochastic steady state parameters

Solution: Since K(t) = (C̄>−AP(t)C>)Λ(t)−1 we can get

C̄> = K(t)Λ(t)+AP(t)C>

and consider the Riccati Difference equation on s≥ 0,

P(s+1) = AP(s)A> + (C̄>−AP(s)C>)
(

Λ0−CP(s)C>
)−1

(C̄>−AP(s)C>)>

with initial condition P(0) = P(t).
If (A,C, C̄, Λ0) is positive real and P(t) is a (true) transient state covariance
then

lim
s→+∞

P(s) = P− .

From this compute K, Λ. Naturally this applies only for N→ ∞.
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Homework n. 3

The key step in estimation of the stochastic parameters is to get the C̄
matrix (in the right basis). Once you have estimates of A,C, C̄ (and of
Λ0 of course) it is immediate to find the steady state innovation model
parameters K, Λ by solving the ARE (in case it is solvable).

Describe how you would setup a “backward” subspace algorithm to identify
the A>, C̄ parameters of the dual backward transient Kalman filter model,
based on finite data U[t0,T ]∨Y[t,T ].
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Numerical aspects

Cannot be discussed here. Based on extensive use of L-Q factorization.
See the reference list.

Katayama (2011) shows how to get the stochastic parameters in the MOESP
algorithm via L-Q factorization.

Software: there is a version of N4SID in Ljung’s system identification tool-
box. Don’t know the actual algorithm used in here.
Also there is a MATLAB MOESP-based toolbox.
Better software written by A. Chiuso. Ask him if you need it.
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Asymptotic variance of A,C

Theorem 33 Assume consistency. Under standard assumptions on the
true innovation noise, the estimation errors ÃN := ÂN−A, C̃N := ĈN−C are
asymptotically Normal,

lim
N→∞

N E
{

vec
(
ÃN
)

vec
(
ÃN
)>}

=
{

Σ
−1
x̂cx̂c
⊗ [M Hs]

}
·

·
∑
|τ|≤k

Σx̂cx̂c(τ)⊗Σē+ē+(τ) ·
{

Σ
−1
x̂cx̂c
⊗ [M Hs]

}>
lim

N→∞
N E

{
vec
(
C̃N
)

vec
(
C̃N
)>}

=
{

Σ
−1
x̂cx̂c
⊗ [RHs]

}
·

·
∑
|τ|<k

Σx̂cx̂c (τ)⊗Σe+e+(τ) ·
{

Σ
−1
x̂cx̂c
⊗ [RHs]

}>
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NOTATIONS

M :=
[
K Ω†

]
−A
[
Ω† 0n×m

]
R :=

[
Im 0m×m(k−1)

]
−CΩ

†

Ω the observability matrix in a certain basis.

Hs : =


I 0 . . . 0 0

CK I . . . 0 0
... . . . ...

CAk−1K CAk−2K . . . CK I



e+t :=


e(t)

e(t +1)
...

e(T −1)

 ē+t :=
[

e+t
e(T )

]

Σe+ e+(τ) := E{e+t+τ (e
+
t )>} Σ ē+ē+(τ) = E{ē+t+τ (ē

+
t )>}
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Formula Valid for N4SID, MOESP, and also CCA.

• Σ
−1
x̂cx̂c

= Σ
−1
x̂x̂|u+ Very “large” for ill-conditioned problems, the variance of

the estimation errors will also be large.

• No (or white) input: Σx̂x̂|u+ ≡ Σx̂x̂
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PREVIOUS AVAILABLE RESULTS

[Bauer, Bauer-Ljung, Bauer-Jansson]: asymptotic formulas valid for N→∞

AND p := t − t0 (past data horizon), tending to infinity with N at a certain
rate

Estimates neglect transient due to FINITE-INTERVAL DATA. Consistency
only for p→ ∞

Different asymptotic formulas for different methods, CCA, MOESP, N4SID
etc. Complicated and difficult to use.

Aymptotic formulas should be valid for FINITE p and “transient” estimates
( in practice can only regress on finite past). Stationary approxim’s are
biased for finite p.
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Application: asymptotic variance of eigenvalues

Assume for simplicity that A has simple eigenvalues.

There is an eigenvalue λ i of A such that the difference between the i-the
eigenvalue of ÂN, λ̂ i

N, and λ i, satisfies

λ̂
i
N−λ

i '
v>i ÃNui

v>i ui
+O(‖ ÃN‖2)

where vi and ui are the normalized left and right eigenvectors of A corre-
spoding to λ i.

NE(λ̂ i
N−λ

i)2 =
1

(v>i ui)2
(u>i ⊗v>i )NE

{
vec
(
ÃN
)

vec
(
ÃN
)>}

(ui⊗vi)

Note that (v>i ui)
2 is the square of the cosine of the angle between the two

eigenvectors and is equal to one if the matrix A is symmetric (in which case
vi = ui).
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Asymptotioc variance of (B,D)

The vectorized parameter estimates vec(K̂1,N) vec(K2,N) form an asymp-
totically Gaussian sequence

AsVar
(√

Nvec(K̂1,N)
)

= Ḡ
{∑

|τ|≤k Σu+u+|x̄(τ)⊗Σe+e+(τ)
}

Ḡ>

AsVar
(√

Nvec(K̂2,N)
)

= G
{∑

|τ|<k Σu+u+|x̄(τ)⊗Σe+e+(τ)
}

G>

G := Σ
−1
u+u+|x̄⊗ [RHs] , Ḡ := Σ

−1
u+u+|x̄⊗ [M H̄s]

R and M being as before, and,

Σū+ū+|x̄(τ) := E{ ˜̄u+t+τ ( ˜̄u+t )>}, Σe+e+(τ) = E{e+t+τ (e
+
t )>}

ũ+t+τ the τ-steps ahead stationary shift of the random vector ũ+t := u+t −
E
[
u+t | x̄(t)

]
.
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SUBSPACE IDENTIFICATION WITH FEEDBACK

Preliminary material on feedback between stationary processes in Chap 7
of my book in Italian.

+
+

+

+

y? u

e

? �

-����
-F(z)-����

-

6

?

G(z)
?

+ F(∞) = 0.
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PROBLEMS WITH STATE CONSTRUCTION

y(t +h) =CAhx(t)+ “terms in U+
t ”+ “terms in E+

t ” h = 0,1, . . . ,k

Classical (N4SID, CVA, MOESP) construct the state space via the oblique
projection

E‖U+
t

[
Y+

t | Y
−
t ∨U−t

]
Needs E+

t ⊥U+
t which is equivalent to Absence of Feedback from y to u.

(Granger)

Need an alternative way to construct the state space, see the discus-
sion in Ljung-McKelvey 1996
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REMEDY (Jansson 2003/Chiuso-Picci 2004)

FACT: x(t) is also the state space of the predictor model{
x(t +1) = (A−KC)x(t)+Bu(t)+Ky(t)

ŷ(t | t−1) = Cx(t)

ŷ(t +h | t) =C(A−KC)hx(t)+ “terms in U+
t ∨Y+

t ”

X+/−
t = E‖U+

t ∨Y+
t

[
Ŷ+

t |U
−
t ∨Y−t

]
Jansson 2003 Compute predictor space removing the effect of undesired
terms pre-estimating Markov parameters of predictor using an ARX model.
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“PREDICTOR IDENTIFICATION ALGORITHM:

1. Compute the oblique predictors

ŷ(t +h | t) := E‖U[t,t+h)∨Y[t,t+h)

[
y(t +h) | Y[t0, t)∨U[t0, t)

]

2. Compute X̂+/−
t as “best” n-dimensional approximation of the space

spanned by ŷ(t +h | t), h = 0, ..,k, repeat for X̂+/−
t+1

3. Solve regression in the least squares sense to get Â, B̂, Ĉ, K̂.
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COMMENTS:

• The classical subspace procedure to construct the state space turns
out to be WRONG if data are collected in closed-loop.

• Subspace methods based on the predictor model work also with
feedback !

• Predictor is always stable (joint spectrum bounded away from zero
⇒ |λ (A−KC)|< 1.)

• Ideally predictor space can be constructed without any assumption on
feedback channel.
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REMARKS

1. Predictor identification “ideally” yields consistent estimators

2. Practically need to work with finite past starting from a certain time t0.

3. If number of data points ([yt,yt+1, ..,yt+N]) N→ ∞, but t− t0 fixed and
finite Consistency not guaranteed.

4. “Transient” predictors (transient Kalman filter) involve also the dynam-
ics of u !
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