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Università di Perugia

Via Vanvitelli, 1 - 06123 Perugia, Italy
bista@dmi.unipg.it

2 : Istituto di Informatica e Telematica, CNR
Via G.Moruzzi 1, 56124 Pisa, Italy
E-mail: Stefano.Bistarelli@iit.cnr.it

3 : Dipartimento di Matematica Pura ed Applicata
Via Trieste, 63 - 35121 Padova
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Abstract. Preferences and uncertainty are common in many real-life problems.
In this paper, we focus on bipolar preferences and on uncertainty modelled via
uncontrollable variables, and we assume that uncontrollable variables are speci-
fied by possibility distributions over their domains. To tackle such problems, we
concentrate on uncertain bipolar problems with totally ordered preferences, and
we eliminate the uncertain part of the problem, while makingsure that some de-
sirable properties hold about the robustness of the problemand its relationship
with the preference of the optimal solutions. We also consider several semantics
to order the solutions according to different attitudes with respect to the notions
of preference and robustness.

1 Introduction

Real-life problems present several kinds of preferences and may be affected by uncer-
tainty. In this paper, we focus on problems with positive andnegative preferences with
uncertainty.

Bipolar preferences [23, 18, 1–3, 13, 14, 7, 8, 10] and uncertainty [19, 15, 28, 20] ap-
pear in many application fields, such as satellite scheduling, logistics, and production
planning. Moreover, in multi-agent problems, agents may express their preferences in a
bipolar way, and variables may be under the control of different agents. To give a spe-
cific example, just consider a conference reviewing system,where usually preferences
are expressed in a bipolar scale. Uncertainty can arise for the number of available con-
ference rooms at the time of the acceptance decision. The goal could be to select the
best papers while ensuring that they all can be presented.

Bipolarity is an important topic in several domains, e.g., psychology [27, 24, 11],
multi-criteria decision making [23], and more recently also in AI (in areas such as
argumentation [18, 1] and qualitative reasoning [2, 3, 13, 14]). Preferences on a set of
possible choices are often expressed in two forms: positiveand negative statements. In



fact, in many real-life situations agents express what theylike and what they dislike,
thus often preferences are bipolar.

In this paper, to handle bipolarity, we use the formalism presented in [7, 8, 10].
Related but different formalisms to achieve a similar goal can be found in [23, 1–3, 13,
14]. The considered formalism generalizes to positive and negative preferences the soft
constraints formalism [6], which is able to model problems with one kind of preferences
(i.e., negative preferences). Thus, each partial instantiation within a constraint will be
associated to either a positive or a negative preference. For example, when buying a
house, we may like very much to live in the country, but we may also not like to have to
take a bus to go to work, and be indifferent to the color of the house. Thus we will give
a preference level (either positive, or negative, or indifference) to each feature of the
house, and then we will look for a house that has the best combined preference overall.

Another important feature, which arises in many real world problems, is uncertainty.
In [23, 1–3, 13, 14] the authors handle bipolarity but not thepresence of uncertainty. In
this paper, we consider both bipolarity and uncertainty. Wemodel uncertainty by the
presence ofuncontrollablevariables. This means that the value of such variables will
not be decided by us, but by Nature or by some other agent. Thusa solution of such
problems will not be an assignment to all the variables but only to the controllable ones.
A typical example of an uncontrollable variable, in the context of satellite scheduling
or weather prediction, is a variable representing the time when clouds will disappear.
A more general setting in which uncertainty occurs are scheduling problems, which
constrain the order of execution of various activities, andwhere the durations of some
activities may be uncertain [15]. In this case the goal is to define a schedule which is
the most robust with respect to the uncertainty.

Although we cannot choose the value for such uncontrollablevariables, usually
we have some information on the plausibility of the values intheir domains. In [19]
the information over uncontrollable variables, which is not bipolar, is given in terms
of probability distributions. In this paper, we model this information by a possibility
distribution over the values in the domains of such variables. Possibilities are useful
when probability distributions are not available, and provide upper and lower bounds to
probabilities [28].

In this paper we focus on problems with this kind of uncertainty, and that contain
positive and negative preferences. We call themuncertain bipolar problems. To tackle
such problems, we generalize to bipolar preferences the approach to handle fuzzy pref-
erences (that are a special kind of negative preferences) and uncertainty presented in
[26, 25]. In particular, we generalize to the bipolar context the notions of preference
and robustness for the solutions, as well as properties thatsuch notions should respect
in relation to the solution ordering, and the procedure usedto compute preference and
robustness degrees. First, we generalize the approach presented in [26] to uncertain
bipolar problems where the set of the positive preferences and the set of the negative
preferences are closed intervals ofR. Then, we use abstraction techniques and Galois
connection properties [5] to generalize the procedure alsoto uncertain bipolar problems
where the set of positive/negative preferences are generictotally ordered sets.

Our approach follows the one presented in [26]. More precisely, given an uncertain
bipolar problem, the uncontrollable part of the problem is removed and new constraints



on the controllable part are added. Thus, we obtain a bipolarproblem without uncer-
tainty and with additional constraints. Such additional constraints are considered to
define the robustness of the problem. Starting from this problem, we define the prefer-
ence and the robustness of the solutions of the initial uncertain problem, and we show
that they satisfy some desired properties. Moreover, we consider some semantics that
use such notions to order the solutions, and we show that theysatisfy desired proper-
ties on the solution ordering. In particular, they allow us to distinguish between highly
preferred solutions which are not robust, and robust but notpreferred solutions. Also,
they guarantee that, if there are two solutionss ands′ with the same robustness (resp.,
the same preference), and the preference (resp., the robustness) ofs is better than the
preference (resp., the robustness) ofs′, thens is considered better thans′.

The paper is structured as follows. Section 2 provides the readers with the main no-
tions about positive, negative, and bipolar properties, bipolar preference problems, soft
constraint problems with uncertainty and their properties, as well as the approach of
[26] for removing uncertainty in uncertain fuzzy CSPs. Then, Section 3 introduces the
notion of uncertain bipolar problems, while Section 4 defines some desirable properties
of such problems. Section 5 describes the approach to solve uncertain bipolar problems,
while Section 6 defines the notions of preference and robustness of such problems, and
relates them to the properties proposed in Section 4. Section 7 studies some possible se-
mantics for uncertain bipolar problems. Then, Section 8 extends the overall approach to
more general bipolar preference structures, and Section 9 summarizes the main results
and gives some hints for possible lines of future work.

This paper is a revised and extended version of [9]. In particular, while [9] shows
only a procedure for handling bipolar preference problems where the sets of positive
and negative preferences are two closed intervals ofR, this paper proposes also a pro-
cedure to handle bipolar problems where the set of positive/negative preferences are
generic totally ordered structures, by using abstraction techniques and galois connec-
tions properties [5].

2 Background

We now give some basic notions on bipolar preference problems [7, 8, 10] and on un-
certain soft (fuzzy) problems [26, 25].

2.1 Negative preferences

Bipolar preference problems [7, 8, 10] are based on a bipolarpreference structure, which
allows to handle both positive and negative preferences. This structure contains two
substructures, one for each kind of preferences.

When dealing with negative preferences, two main properties should hold: combi-
nation should bring to worse preferences, and indifferenceshould be better than all the
other negative preferences. These properties can be found in a c-semiring [6], which is
the structure used to represent soft constraints.

A c-semiringis a tuple(A, +,×,0,1) where:A is a set and0,1 ∈ A; + is commu-
tative, associative, idempotent,0 is its unit element, and1 is its absorbing element;× is



associative, commutative, distributes over+, 1 is its unit element and0 is its absorbing
element. Consider the relation≤S over A such thata ≤S b iff a + b = b. Then:≤S is
a partial order;+ and× are monotonic on≤S; 0 is its minimum and1 its maximum.
Informally, the relation≤S gives us a way to compare (some of the) tuples of values
and constraints. In fact, whena ≤S b, we will say thatb is better than a.

Given a c-semiringS = (A, +,×,0,1), a finite setD (the domain of the variables),
and an ordered set of variablesV , a soft constraint is a pair〈def, con〉 wherecon ⊆ V
anddef : D|con| → A. Therefore, a soft constraint specifies a set of variables (the
ones incon), and assigns to each tuple of values ofD of these variables an element of
A. A soft constraint satisfaction problem(SCSP), denoted by〈S, V, C〉, is a set of soft
constraintsC based on the c-semiringS, which is defined over a set of variablesV . For
example, fuzzy CSPs [21] are SCSPs that can be modeled by choosing the c-semiring
SFCSP = ([0, 1], max, min, 0, 1).

In a c-semiring there is an element which combined with everyother preference
returns such a preference, i.e., there is an element that acts as indifference. Such an ele-
ment is1. In fact,∀a ∈ A, a×1 = a. Moreover, in a c-semiring holds a desired property
for negative preferences, that is, the combination betweenpreferences is worse than the
considered preferences (in fact,∀a, b ∈ A, a × b ≤ a, b). This interpretation is very
natural when considering, for example, the weighted c-semiring (R+, min, +, +∞, 0),
where preferences are real positive numbers interpreted ascosts. Such costs are com-
bined via the sum (+) and the best costs are the lower ones (min). In this case prefer-
ences are costs and thus negative preferences, and the sum ofthe cost costs is worse in
general than these costs, since we want to minimize the sum ofthe cost.

The interpretation above is also natural when considering,the fuzzy c-semiring
([0, 1], max, min, 0, 1), where preferences are in[0, 1], are combined via the minimum
operator and the best preferences are the higher ones (max). In fact, in this case the
combination of preferences is worse in general than these preferences, since it is equal
to the worst one of these preferences w.r.t. the ordering induced by the additive operator
(that is,max) of the c-semiring.

From now on, a standard c-semiring will be used to model negative preferences,
denoted as:(N, +n,×n,⊥n,⊤n).

2.2 Positive preferences

When dealing with positive preferences, two main properties should hold: combination
should bring to better preferences, and indifference should be lower than all the other
positive preferences.

These properties can be found in apositive preference structure[7, 8, 10], which is
a tuple(P , +p, ×p, ⊥p, ⊤p) s.t.P is a set and⊤p, ⊥p∈P ; +p, the additive operator, is
commutative, associative, idempotent, with⊥p as its unit element (∀a ∈ P , a+p ⊥p=
a) and⊤p as its absorbing element (∀a ∈ P , a +p ⊤p = ⊤p); ×p, the multiplicative
operator, is associative, commutative and distributes over +p (a ×p (b +p c) = (a ×p

b) +p (a ×p c)), with ⊥p as its unit element and⊤p as its absorbing element1.

1 The absorbing nature of⊤p can be derived from the other properties.



The additive operator of this structure has the same properties as the corresponding
one in c-semirings, and thus it induces a partial order overP in the usual way:a ≤p b
iff a +p b = b. This allows to prove that+p is monotonic (∀a, b, d ∈ P s.t.a ≤p b,
a×p d ≤p b×p d) and that+p is the least upper bound in the lattice(P,≤p) (∀a, b ∈ P ,
a ×p b ≥p a +p b ≥p a, b).

On the other hand,×p has different properties w.r.t.×n: its absorbing element is
now the best element in the ordering(⊤p), while its unit element, that can model in-
difference, is the worst element(⊥p). These are exactly the desired properties for com-
bination and indifference of positive preferences. An example of a positive preference
structure is(ℜ+,max,sum,0,+∞), where preferences are positive real numbers ag-
gregated withsum and compared withmax (i.e., the best preferences are the highest
ones). Another example is([0, 1],max,max,0,1), where preferences are positive real
numbers aggregated and compared withmax.

2.3 Bipolar preferences

When we deal with both positive and negative preferences, the same properties de-
scribed above for a single kind of preferences should continue to hold. Moreover, all
the positive preferences should be better than all the negative ones and there should exist
an operator which allows for the compensation between positive and negative prefer-
ences. These properties can be obtained by considering the bipolar preference structure
presented below, that links the previous two structures by setting the highest negative
preference to coincide with the lowest positive preferenceto model indifference.

A bipolar preference structure[7, 8, 10] is a tuple(N , P, +, ×, ⊥, 2, ⊤) where,
(P, +|P , ×|P , 2, ⊤) is a positive preference structure;(N, +|N , ×|N , ⊥, 2) is a c-
semiring;+ : (N ∪ P )2 −→ (N ∪ P ) is an operator s.t.an + ap = ap, ∀an ∈ N and
ap ∈ P ; it induces a partial ordering onN ∪ P : ∀a, b ∈ P ∪ N , a ≤ b iff a + b = b;
× : (N ∪ P )2 −→ (N ∪ P ) (called thecompensation operator) is a commutative and
monotonic (∀a, b, c ∈ N ∪ P , if a ≤ b, thena × c ≤ b × c) operator.

In the following, we will write+n instead of+|N and+p instead of+|P . Similarly
for ×n and×p. When× is applied to a pair in(N ×P ), we will sometimes write×np.

Note that the compensation operator may not be associative.This is due to the fact
that one wants to leave complete freedom to choose the positive and negative algebraic
structures. However, in some situations associativity could be desirable. In such a case
one can build a bipolar structure with associative compensation operator, by following
the procedure presented in [8, 10].

From the monotonicity of the compensation operator it follows that the combination
of a positive and a negative preference is a preference whichis higher than, or equal to,
the negative one and lower than, or equal to, the positive one.

An example of bipolar structure is the tuple (N=[−1, 0], P=[0, 1], +=max, ×,
⊥=−1, 2=0, ⊤=1), where× is such that×p= max,×n=min and×np=sum. Negative
preferences are between -1 and 0, positive preferences between 0 and 1, compensation
is sum, and the order is given by max. In this case× is not associative.

Note that, when the preferences are totally ordered, operators×n and×p described
here correspond resp. to thet-normandt-conormconsidered in [22], and requiring that



the compensation operator is associative, then it corresponds to theuninorm operator
considered in [22].

2.4 Bipolar preference problems

A bipolar constraint is a constraint where each assignment of values to its variables
is associated to one of the elements in a bipolar preference structure. Given a bipolar
preference structureS = (N, P, +,×, ⊥, 2,⊤), a finite setD (the domain of the
variables), and an ordered set of variablesV , a bipolar constraintis a pair〈def, con〉
wherecon ⊆ V anddef : D|con| → (N ∪P ). A bipolar CSP(BCSP)〈S, V, C〉 is a set
of variablesV and a set of bipolar constraintsC overV defined on the bipolar structure
S.

An RBCSP〈S, V, C1, C2〉 is a BCSP over the bipolar structureS, where the set of
variables isV and the set of bipolar constraints isC1 ∪ C2.

Given a subset of variablesI ⊆ V , and a bipolar constraintc = 〈def, con〉, the
projection ofc over I, written c ⇓I , is a new bipolar constraint〈def ′, con′〉, where
con′ = con ∩ I anddef(t′) =

∑

{t|t↓con′=t′} def(t). In particular, the scope,con′, of
the projection constraint contains the variables thatcon andI have in common, and thus
con′ ⊆ con. Moreover, the preference associated to each assignment tothe variables
in con′, denoted witht′, is the best one among the preferences associated bydef to
any completion oft′, t, to an assignment tocon. The notationt ↓con′ indicates the
subtuple oft on the variables ofcon′. For example, ifcon = X ∪ Y , con′ = X , and
t = (X = a, Y = b), thent ↓X= a.

A solutionof a BCSP〈S, V, C〉 is a complete assignment to all variables inV , says.
Its overall preference isovpref(s) = ovprefp(s)× ovprefn(s) = (p1 ×p . . .×p pk)×
(n1 ×n . . . ×n nl), where, fori := 1, . . . , k, pi ∈ P , for j := 1, . . . , l, nj ∈ N ,
and∃〈defi, coni〉 ∈ C such thatpi = defi(s ↓coni

) and∃〈defj , conj〉 ∈ C such
thatnj = def(s ↓conj

). Hence the preference of a solution is obtained by combining
all the positive preferences associated to its projectionsover the constraints on one
side, all the negative preferences associated to its projections over the constraints on
the other side, and then compensating the two preferences soobtained. This definition
is in accordance with the classical tool used in bipolar decision making, namely with
cumulative prospect theory [27].

A solutions isoptimalif there is no other solutions′ with ovpref(s′) > ovpref(s).
Given a bipolar constraintc = 〈def, con〉 and one of its tuplet, it is possible to

define two functionspos andneg as follows:

pos(c)(t) =

{

def(t) if def(t) ∈ P ,

2 otherwise,

neg(c)(t) =

{

def(t) if def(t) ∈ N,

2 otherwise.

In other words, given a constraintc and one of its tuplet, pos(c)(t) (resp.,neg(c)(t))
returns the preference given byc for the tuplet if it is positive (resp., negative) and
indifference otherwise.



Example 1.Figure 1 shows an example of a BCSP. It is defined on the same bipolar
preference structure considered before, that is,〈N = [−1, 0], P = [0, 1], + = max, ×,
⊥= −1, 2 = 0, ⊤ = 1〉, where× is s.t.×p = max, ×n = min and×np = sum. It is
composed by four variables, that is,x, y, z1 andz2, and by the three bipolar constraints
〈q, {x, z1}〉, 〈t, {x, z2}〉 and 〈f, {x, y}〉. The domain ofx andy is {a, b}, while the
domain ofz1 andz2 is {a, b, c}. One of the solutions of such a BCSP iss = (y =
b, x = a, z1 = a, z2 = b). To compute its preference, we must consider the preferences
of all the projections ofs in the various constraints, i.e., the preference+0.8 of (y =
b, x = a) in 〈f, {x, y}〉, the preference−0.5 of (x = a, z1 = a) in 〈q, {x, z1}〉, and
the preference−0.3 of (x = a, z2 = b) in 〈t, {x, z2}〉. Thusovpref(s) = (−0.5 ×n

−0.3) ×np 0.8 = min(−0.5,−0, 3) + 0.8 = −0.5 + 0.8 = +0.3. In this example an
optimal solution iss′ = (y = b, x = a, z1 = b, z2 = c) with preferenceovpref(s′) =
+0.8. Let us now show how functionspos andneg defined above work on the constraint
c1 = 〈q, {x, z1}〉 and on the tuplest1 = (x = a, z1 = a) andt2 = (x = a, z1 = b). For
t1 we havepos(c1)(t1) = 0 andneg(c1)(t1) = −0.5, and fort2 we havepos(c1)(t2) =
+0.8 andneg(c1)(t2) = 0. 2

t(a,a) = −0.4
t(a,b) = −0.3
t(a,c) = +0.8 

t(b,a) = +0.3
t(b,b) = −0.4
t(b,c) = +0.1

q(a,a) = −0.5
q(a,b) = +0.8
q(a,c) = −0.3

q(b,a) = −0.2
q(b,b) = +0.5
q(b,c) = +0.4  z1

y

Dx=Dy={a,b}
Dz =Dz ={a,b,c}1 2

x
f(a,a) = −0.4
f(a,b) = −0.5
f(b,a) = +0.8
f(b,b) = +0.7

 z2

Fig. 1.A BCSP.

2.5 Uncertainty in soft constraint problems

Uncertain soft constraint satisfaction problems (USCSPs)[26, 25] are soft constraint
problems where some variables are uncontrollable, i.e., they are not under the user’s
control. They can model many real-life problems, such as scheduling and timetabling.
For example, they can model the problem of scheduling some tasks, knowing that the
duration of some of those is uncertain, and only vaguely known [15], or the problem
of deciding how many training sessions to perform in a tutorial, without knowing the
effective number of participants, but knowing only an approximately number of these
participants [16]. Contrarily to classical constraint problems, in USCSPs we cannot
decide how to assign the variables to make the assignment optimal, but we must assign



values to the controllable variables, denoted withVc, guessing what Nature will do with
the uncontrollable variables, denoted withVu.

If the uncontrollable variables are equipped with additional information on the like-
lihood of their values, like in our case, such an informationcan be used to infer new
soft constraints over the controllable variables, which express the compatibility of the
controllable part of the problem with the uncontrollable one. This information can be
used to define the notion of optimal solution. It is assumed that there is no observability
over uncertain events before decision.

An USCSP is thus defined as a set of variables, which can be controllable or un-
controllable, and a set of soft constraints over these variables. Moreover, the domain
of every uncontrollable variable is equipped with a possibility distribution, that speci-
fies, for every value in the domain, the degree of plausibility that the variable takes that
value.

More formally, apossibility distributionπ associated to a variablez with domain
AZ is a mapping fromAZ to a totally ordered scaleL (usually[0, 1]) such that∀a ∈
AZ , π(a) ∈ L and∃ a ∈ AZ such thatπ(a) = 1, where1 is the top element of the
scaleL [28].

An uncertain soft constraint satisfaction problem(USCSP) is a tuple〈S, Vc, Vu, π,
Cc, Ccu, Cu〉 whereS is a c-semiring,Vc = {x1, . . . xn} is a set of controllable vari-
ables,Vu = {z1, . . . zk} is a set of uncontrollable variables,π = {π1, . . . , πk} is a set
of possibility distributions overVu, such that everyzi ∈ V u has possibility distribution
πi with scale[0, 1], Cc is the set of constraints that involve only variables ofVc, Ccu is
a set of constraints that involve at least a variable inVc and a variable inVu, and that
may involve any other variable ofVc ∪ Vu, andCu is the set of constraints that involve
only variables ofVu.

Notice that when the set of uncontrollable variables, i.e.,Vu, is empty, then the sets
of constraints involving variables inVu, i.e.,Ccu andCu, are empty, and the USCSP
corresponds to a soft constraint problem〈S, Vc, Cc〉, as defined in Section 2.1.

When the chosen semiring isSFCSP = 〈[0, 1], max, min, 0, 1〉, the definition of
an USCSP models an Uncertain Fuzzy CSP (UFCSP), that corresponds, when there are
no uncontrollable variables, to an FCSP, as defined in Section 2.1.

Example 2.Figure 2 shows an example of an UFCSP. Each constraint is defined by
associating a preference level (in this case between0 and1) to each assignment of its
variables to values in their domains. The setVc of the controllable variables is composed
by x, y, andw, while the setVu of the uncontrollable variables contains onlyz. The
values in the domain ofz are characterized by the possibility distributionπZ . The set
of constraintsCc is composed by the constraint〈q, {x, w}〉, which relatesx andw via
the preference functionq. The set of constraintsCcu is composed by the constraint
〈f, {x, y, z}〉, which is defined on variablesx, y, andz by the preference functionf ,
while the setCu is empty. 2

Given an assignmentt to all the variables of an USCSP, its overall preference is
computed by combining, via the× operator, the preference levels of its subtuples in the
selected constraints. More formally, given an USCSPQ = 〈S, Vc, Vu, π, Cc, Ccu, Cu〉,
let t be an assignment to all the variables ofQ, then itsoverall preferenceis the value
ovpref(t) =

∏

{〈defi,coni〉∈Cc∪Ccu∪Cu}
defi(t ↓coni

).
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   1 f(z=3, x=1, y=1)=0.3

f(z=4, x=1, y=1)=0.5
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f(z=4, x=1, y=2)=0.6

f(z=3, x=2, y=1)=0.5

f(z=4, x=2, y=1)=0.4

f(z=3, x=2, y=2)=0.1

f(z=4, x=2, y=2)=0.6

q(x=1, w=5)=0.4

q(x=1, w=6)=0.3
q(x=2, w=5)=0.9
q(x=2, w=6)=0.2

.
.

Fig. 2. An UFCSP.

A solution of an USCSP is a complete assignment to all its controllable variables.
More formally, given an USCSPQ = 〈S, Vc, Vu, π, Cc, Ccu, Cu〉, asolutionof Q is a
complete assignment to all the variables ofVc.

2.6 Preference, robustness, and desirable properties for USCSPs

In [26], a solutions of an USCSP is associated to both a preference degree, written
pref(s), and a degree of robustness, writtenrob(s). The preference degree summarizes
all the preferences in the controllable part and it can be really obtained for some assign-
ment to the uncontrollable variables decided by the Nature.The robustness of a solu-
tion, that measures what is the impact of Nature on the preference obtained by choosing
that solution, is assumed to be dependent both on the preferences in the constraints
connecting both controllable and uncontrollable variables tos and on such possibility
distributions.

Two desirable properties for the notion of robustness that have been considered in
[25, 26] for USCSPs and in [17] for UFCSPs are the following.

Property P1. Given solutionss ands′ of an USCSP,〈S, Vc, π, Vu, Cc, Ccu〉, where ev-
ery variablevi in Vu is associated to a possibility distributionπi, if for every constraint
〈def, con〉 ∈ Ccu and for every assignmenta to the uncontrollable variables incon,
def((s, a) ↓con) ≤S def((s′, a) ↓con), then it should be thatrob(s) ≤S rob(s′).

In other words, if we increase the preferences of any tuple involving uncontrollable
variables, solution should have a higher value of robustness.

Property P2. Take a solutions of the USCSPsQ1 = 〈S, Vc, Vu, π1, Cc, Ccu〉 and
Q2 = 〈S, Vc, Vu, π2, Cc, Ccu〉. Assume for every assignmenta to variables inVu,
π2(a) ≤ π1(a). Then it should be thatrobπ1

(s) ≤S robπ2
(s), whererobπ1

is the
robustness computed in the problemQ1, androbπ2

is the robustness computed in the



problemQ2.

In other words, if we lower the possibility of any value of theuncontrollable variables,
solution should have a higher value of robustness.

To understand which solutions are better than others in an USCSP, in [26] it is con-
sidered a solution ordering, say≻, which is reflexive and transitive that should depend
on the notions of robustness and preference as follows [26]:

Property P3. Given two solutionss and s′ of an USCSP, ifrob(s) = rob(s′) and
pref(s) >S pref(s′), it should be thats ≻ s′.

Property P4. Given two solutionss ands′ of an USCSP such thatpref(s) = pref(s′),
androb(s) >S rob(s′), then it should be thats ≻ s′.

In other words, two solutions which are equally good with respect to one aspect (ro-
bustness or preference degree) and differ on the other should be ordered according to
the discriminating aspect.

Property P5. Given two solutionss ands′, an USCSPQ = 〈S, Vc, Vu, π, Cc, Ccu〉,
such thatovpref(s, a) >S ovpref(s′, a), ∀a assignment toVu, then it should be that
s ≻ s′.

In other words, if two solutionss ands′ are such that the overall preference of the
assignment(s, a) to all the variables is better than or equal to one of(s′, a) for all the
valuesa of the uncontrollable variables, thens should be considered better than the
other one.

2.7 Removing uncertainty in UFCSPs: preferences, robustness and semantics

In [26] a method is presented to remove uncontrollable variables from uncertain fuzzy
CSPs preserving as much information as possible. Starting from this method, both a
degree of preference and a degree of robustness for a solution are defined, and it is
shown that these degrees satisfy the desirable properties mentioned above.

Removing uncertainty. The procedure presented in [26] to remove uncertainty in
UFCSPs, that is called AlgorithmSP, works as follows. It takes as input an UFCSP
Q = 〈S, Vc, Vu, π, Cc, Ccu〉, where every variablezi ∈ Vu has a possibility distribu-
tion πi and whereS is the fuzzy c-semiring and returns an RFCSP that is similar to an
FCSP but has two sets of constraints rather than one. More precisely, an RFCSP is a
tuple〈S, Vc, C1, C2 〉 such that〈S, Vc, C 〉, whereC = C1 ∪ C2, is an FCSP.

The RFCSPQ′ returned bySP is obtained fromQ by eliminating its uncontrol-
lable variables and the fuzzy constraints inCcu relating controllable and uncontrollable
variables, and by adding new fuzzy constraints only among these controllable variables
that we callCproj (the fuzzy projection constraints) andCrob(the fuzzy robustness con-
straints), that encode (some of) the information contained in the uncontrollable part



Algorithm 1 : SP
Input : Q = 〈S,Vc, Vu, π, Cc, Ccu〉: an UFCSP;
Output : Q′ = 〈S, Vc, C

∗

c , Crob〉: an RFCSP;
Crob ← ∅;
Cproj ← ∅;
foreach constraintc ∈ Ccu do

Crob ← Crob∪ ComputeFuzzyRobustnessConstraint(c);
Cproj ← Cproj∪ ComputeFuzzyProjectionConstraint(c);

C∗

c ← Cc ∪ Cproj ;
Q′ ← 〈S, Vc, C

∗

c , Crob〉;
return Q′;

of the problem. In particular, it addsCproj to Cc, while it keepsCrob separate. More
precisely, given a constraintc = 〈def, con〉 in Ccu such thatcon ∩ Vc = X and
con ∩ Vu = Z,

– its corresponding robustness contraint inCrob, obtained by applying the proce-
dureComputeFuzzyRobustnessConstraint(c), returns a fuzzy constraint〈def ′, X〉
where,∀tX assignment toX ,

def ′(tX) = mintZ∈AZ
max(def(tX , tZ), 1 − πZ(tZ))).

– its corresponding projection constraint inCproj , obtained by applying the proce-
dureComputeFuzzyProjectionConstraint(c), is the constraint〈def ′′, X〉, where

def ′′(tX) = max{a∈AZ}|πZ(a)>0def(tX , tZ).

Preference, robustness and semantics in UFCSPs.In [26] the problem returned by
the algorithmSPis used to define the preference and the robustness of a solution in an
UFCSP. More precisely, given a solutions of an UFCSPQ, letQ′ = 〈S, Vc, C∗

c , Crob〉,
whereC∗

c = Cc ∪ Cproj , the RFCSP obtained fromQ by algorithmSP,

– thepreferenceof s is pref(s) = min{〈def,con〉∈C∗

c}
def(s ↓con)

– the robustness ofs is rob(s) = min{〈def,con〉∈Crob}def(s ↓con).

In other words, the preference (resp., robustness) of a solution is obtained by combining
the preferences of the appropriate subtuples of the solution over the constraints inC∗

c ,
i.e., in Cc ∪ Cproj (resp., inCrob). In [26] it is shown that the desirable properties on
the robustness (i.e., Property P1 and Property P2) presented previously hold.

Since a solution of an UFCSP is associated to a preference anda robustness degree,
in [26] various semantics are defined to order the solutions which depend on the attitude
w.r.t. these two notions. In the following we will describe those that we will consider in
this paper.

– Riskysemantics: givenA1 = (pref1, rob1) andA2 = (pref2, rob2), A1 ≻Risky

A2 iff pref1 > pref2 or (pref1 = pref2 androb1 > rob2). Informally, the idea
is to give more relevance to the preference that can be reached in the best case
considering less important a high risk of being inconsistent.



– Safesemantics: givenA1 = (pref1, rob1) andA2 = (pref2, rob2), A1 ≻Safe A2
iff rob1 > rob2 or (rob1 = rob2 andpref1 > pref2). The idea is to give more
importance to the robustness level that can be reached considering less important
having a high preference.

– Diplomaticsemantics: givenA1 = (pref1, rob1) andA2 = (pref2, rob2), A1 ≻Dipl

A2 iff ( pref1 ≥ pref2 androb1 ≥ rob2) and (pref1 > pref2 or rob1 > rob2).
The idea is that a pair is to be preferred to another only if it wins both on preference
and robustness, leaving incomparable all the pairs that have one component higher
and the other lower.

In [26] it is shown that for Risky, Safe and Diplomatic semantics the desired properties
on solution ordering (i.e., Properties P3 and P4) presentedpreviously hold. Also, they
prove that Property P5 is satisfied only by≻Risky .

3 Uncertain bipolar problems

Uncertain bipolar problems (UBCSPs) are characterized by aset of variables, each of
which can be controllable or uncontrollable, and by a set of bipolar constraints. Thus,
an UBCSP is a BCSP where some of the variables are uncontrollable. Moreover, the
domain of every uncontrollable variable is equipped with a possibility distribution, that
specifies, for every value in the domain, the degree of plausibility that the variable takes
that value. Hence, an UBCSP is also an USCSP where every constraint is bipolar. More
formally,

Definition 1 (UBCSP). An uncertain bipolar CSP is a tuple〈S, Vc, Vu, π, Cc, Ccu〉,
where

– S = (N, P, +,×,⊥, 2,⊤) is a bipolar preference structure and≤S is the ordering
induced by operator+;

– Vc = {x1, . . . xn} is a set of controllable variables;
– Vu = {z1, . . . zk} is a set of uncontrollable variables;
– π = {p1, . . . pk} is a set of possibility distributions overVu. In particular, every

zi ∈ Vu has possibility distributionπi with scale[0, 1];
– Cc is the set of bipolar constraints that involve only variables ofVc;
– Ccu is a set of bipolar constraints that involve at least a variable in Vc and a

variable inVu and that may involve any other variable of(Vc ∪ Vu).
– Cu is the set of bipolar constraints that involve only variables ofVu.

For simplicity we will assume thatCu is empty and thus we will omit it in the tuple
when we refer to an UBCSP. IfCu 6= ∅, we can translate every constraint of typeCu in
a new constraint of typeCcu, thus obtaining an UBCSP withCu = ∅. This can be done
by using a procedure similar to the one used for UFCSPs in [26].

Given an assignmentt to all the variables of an UBCSP, its overall preference (see
Section 2) is computed by combining, via the× operator, first all the positive prefer-
ences of its subtuples in the selected constraints, then allthe negative preferences of
its subtuples in the selected constraints, and finally the two resulting preferences. More
formally, using the notation presented in this section,



Definition 2 (overall assignment preference).Given an UBCSPQ = 〈S, Vc, Vu, π, Cc,
Ccu〉, let t be an assignment to all the variables ofQ, then its overall preference is the
valueovpref(t) = ovprefp(t)×ovprefn(t), whereovprefp(t) =

∏

{〈defi,coni〉∈Cc∪Ccu}

pos(defi)(t ↓coni
), andovprefn(t) =

∏

{〈defi,coni〉∈Cc∪Ccu}
neg(defi)(t ↓coni

).

A solution of an UBCSP is a complete assignment to all its controllable variables.
More formally,

Definition 3 (solution). Given an UBCSPQ = 〈S, Vc, Vu, π, Cc, Ccu〉, a solution of
Q is a complete assignment to all the variables ofVc.

Example 3.An example of an UBCSP is the one presented in Figure 3 (a). It is like the
one in Figure 1, except that now variablesz1 andz2 are uncontrollable and characterized
by two possibility distributionsπ1 andπ2. More formally, such an UBCSP is defined by
the tuple〈S, Vc = {x, y}, Vu = {z1, z2}, π = {pi1, π2}, Cc, Ccu}〉. We recall that the
bipolar structure is〈N = [−1, 0], P = [0, 1], + = max, ×, ⊥= −1, 2 = 0, ⊤ = 1〉,
where× is s.t.×p = max, ×n = min and×np = sum. The set of constraintsCc

contains〈f, {x, y}〉, whileCcu contains〈q, {x, z1}〉 and〈t, {x, z2}〉. Figure 3 (a) shows
the positive and the negative preferences within such constraints and the possibility
distributionsπ1 andπ2 over the domains ofz1 andz2. 2

4 Preference, robustness, and desirable properties in UBCSPs

Given a solutions of an UBCSP, we will associate to it a degree of preference, say
pref(s), and a degree of robustness, sayrob(s) that generalize those given for USCSPs
in [26]. Moreover, we will show that these notions satisfy the following generalized
version of the desirable properties for USCSPs described inSection 2.6:

Property BP1. Given solutionss ands′ of an UBCSP,〈S, Vc, π, Vu, Cc, Ccu〉, where
every variablevi in Vu is associated to a possibility distributionπi, if for every con-
straint 〈def, con〉 ∈ Ccu and for every assignmenta to the uncontrollable variables in
con, def((s, a) ↓con) ≤S def((s′, a) ↓con), then it should be thatrob(s) ≤S rob(s′).

Property BP2. Take a solutions of the UBCSPsQ1 = 〈S, Vc, Vu, π1, Cc, Ccu〉 and
Q2 = 〈S, Vc, Vu, π2, Cc, Ccu〉. Assume for every assignmenta to variables inVu,
π2(a) ≤ π1(a). Then it should be thatrobπ1

(s) ≤S robπ2
(s), whererobπ1

is the
robustness computed in the problemQ1, androbπ2

is the robustness computed in the
problemQ2.

Property BP3. Given two solutionss ands′ of an UBCSP, ifrob(s) = rob(s′) and
pref(s) >S pref(s′), it should be thats ≻ s′.

Property BP4. Given two solutionss and s′ of an UBCSP such thatpref(s) =
pref(s′), androb(s) >S rob(s′), then it should be thats ≻ s′.

Property BP5. Given two solutionss ands′, an UBCSPQ = 〈S, Vc, Vu, π, Cc, Ccu〉,



such thatovprefp(s, a) >S ovprefp(s
′, a) andovprefn(s, a) >S ovprefn(s′, a) ∀a

assignment toVu, then it should be thats ≻ s′

Notice that the new desirable properties for bipolar preferences are similar to the
ones given for USCSPs in [26]. Two differences are that they consider an UBSCP rather
than an USCSP and that, as preference ordering, they consider ≤S , that is the ordering
induced by the additive operator of the bipolar preference structure of the considered
UBSCP and not the ordering induced by the additive operator of the c-semiring of the
considered USCSP. Another difference is in Property BP5 where not only the negative
overall preferences are considered (as in USCSPs), but alsothe positive overall prefer-
ences.

5 Removing uncertainty from UBCSPs over closed real intervals

We now show how to extend the approach shown in [25, 26] to dealwith UFCSPs, i.e.,
problems with fuzzy preferences and uncertainty (see Section 2.7), to UBCSPs over
real intervals, i.e., problems with bipolar preferences and uncertainty where the set of
the positive preferences and the set of the negative preferences are two closed intervals
of R (or structures isomorph to it)2. Starting from the generalization of this approach,
we will define robustness and preference degrees and we will show that they satisfy the
properties which are considered desirable (see Theorems 1,2, 3, 4, and 5).

Our procedure, that we call AlgorithmB-SP, takes as input an UBCSPQ = 〈S, Vc,
Vu, π, Cc, Ccu〉, where every variablezi ∈ Vu has a possibility distributionπi and
S = 〈N, P, +, ×, ⊥, 2, ⊤〉 is any bipolar preference structure whereN andP are
two closed intervals ofR (or structures isomorph to them) and it returns an RBCSP. We
recall that an RBCSP is similar to a BCSP but has two sets of constraints rather than
one (see Section 2.4).

Algorithm 2 : B-SP
Input : Q = 〈S,Vc, Vu, π, Cc, Ccu〉: an UBCSP;
Output : Q′ = 〈S, Vc, C

∗

c , Crob〉: an RBCSP;
Crob ← ∅;
Cproj ← ∅;
foreach constraintc ∈ Ccu do

Crob ← Crob∪ ComputeRobustnessConstraint(c);
Cproj ← Cproj∪ ComputeProjectionConstraint(c);

C∗

c ← Cc ∪ Cproj ;
Q′ ← 〈S, Vc, C

∗

c , Crob〉;
return Q′;

2 Notice that the procedure that we propose holds also for intervals of Q, and it can be easily
adapted also to handle closed intervals ofZ.



The RBCSPQ′ returned byB-SPis obtained fromQ by eliminating its uncontrol-
lable variables and the bipolar constraints inCcu relating controllable and uncontrol-
lable variables, and by adding new bipolar constraints onlyamong these controllable
variables that we callCproj andCrob. In particular, it addsCproj to Cc, while it keeps
Crob separate. More precisely,Cproj (the projection constraints) is the set of constraints
obtained applying to every constraintc in Ccu of Q the procedureComputeProjection-
Constraint(c), that will be described in Section 5.2, whileCrob (the robustness con-
straints) is the set of constraints obtained applying to every constraint c in Ccu of Q
the procedureComputeRobustnessConstraint(c), that will be described in Section 5.1.
In Sections 5.1 and 5.2 we will see that these new constraintswill encode (some of) the
information contained in the uncontrollable part of the problem.

As in [26] for the fuzzy case, starting from this problemQ′, we define the preference
degree of a solution considering the preference functions of the constraints inCc ∪
Cproj , and the robustness degree of a solution considering the preference functions of
the constraints inCrob.

Notice that AlgorithmB-SPis similar to AlgorithmSP [26] described in Section
2.7. However, it takes in input an UBCSP rather than an UFCSP,it returns an RBCSP
rather than an RFCSP, and it uses different procedures for computing robustness and
projection constraints that depend on specific properties of the bipolar preference struc-
ture of the considered UBCSP.

5.1 Robustness constraints

Similarly to the approach for the fuzzy case [26], the set of robustness constraintsCrob

is composed by the bipolar constraints obtained by reasoning on preference functions
of the bipolar constraints inCcu and on the possibilities associated to values in the do-
mains of uncontrollable variables involved in such constraints. However, the procedure
to obtain such bipolar constraints is different from the oneconsidered in the fuzzy case,
since while in the fuzzy case it is exploited the fact that fuzzy preferences and possibili-
ties are commensurable, in the bipolar context we cannot exploit this fact since positive
and negative preferences may not be commensurable with possibilities. We have thus
adapted the fuzzy approach used to defined robustness constraints to take into account
this fact.

More precisely, every constraint inCrob is built by exploiting the procedure denoted
ComputeRobustnessConstraintin algorithmB-SP, that works as follows.

– (Normalization) Every constraintc = 〈def, con〉 in Ccu such thatcon ∩ Vc =
X and con ∩ Vu = Z, is translated in two bipolar constraints〈defp, con〉 and
〈defn, con〉, with preferences in[0, 1], where,∀(tX , tZ) assignment toX × Z,

defp(tX , tZ) = gp(pos(c)(tX , tZ))

anddefn(tX , tZ) = gn(neg(c)(tX , tZ)). If the positive (resp., negative) prefer-
ences are defined in the interval ofR, P = [ap, bp] (resp.,N = [an, bn]) thengp:
[ap, bp] → [0, 1] (resp.,gn: [an, bn] → [0, 1]) associates to everyx ∈ [ap, bp] the
value x−ap

bp−ap
∈ [0, 1] (resp., to everyx ∈ [an, bn] the value x−an

bn−an
) by using the

classical division and subtraction operation ofR.



– (Removing uncontrollability) The constraint〈defp, con〉 obtained before is then
translated in〈defp′, X〉, and〈defn, con〉 is then translated in〈defn′, X〉, where,
∀tX assignment toX ,

defp′(tX) = inf
tZ∈AZ

sup(defp(tX , tZ), cS(πZ(tZ))),

anddefn′(tX) = inftZ∈AZ
sup(defn(tX , tZ), cS(πZ(tZ))), wherecS is an order

reversing map with respect to≤S in [0, 1], such thatcS(cS(p)) = p andinf which
is the opposite of thesup operator (derived from operator+ of S), applied to a set
of preferences, returns its worst preference with respect to the ordering≤S .

– (Denormalization) The constraint〈defp′, X〉 obtained before is then translated in
〈defp′′, X〉, and〈defn′, X〉 is then translated in〈defn′′, X〉, where∀tX assign-
ment toX ,

defp′′(tX) = g−1
p (defp′(tX)),

anddefn′′(tX) = g−1
n (defn′(tX)). The mapg−1

p :[0, 1] → [ap, bp] associates to
everyy ∈ [0, 1] the value[y(bp − ap) + ap] ∈ [ap, bp], and the mapg−1

n :[0, 1] →
[an, bn] associates to everyy ∈ [0, 1] the value[y(bn − an) + an] ∈ [an, bn].

Hence, givenc = 〈def, X ∪ Z〉 ∈ Ccu, its corresponding robustness constraints
in Crob are the bipolar constraints〈defp′′, X〉 and〈defn′′, X〉 defined above. When
we compute the robutsness constraints, we reason separately on positive and negative
preferences since in our approach commensurability with possibilities applies only sep-
arately to positive and negative preference sets, and not tothe whole preference set.
Forcing the commensurability of the possibility range withthe bipolar preference set
would induce a bipolarization of possibilities, which is not reasonable. However, in or-
der to avoid loss of information, when we compute the robustness degree of a solution,
considering the robustness constraints, we compensate thepositive and the negative
preferences of such constraints.

It is possible to show that the functionsgp andgn are strictly monotonic with respect
to the ordering≤S induced by the operator+ of S. Hence such functions are invertible
and their inverse functions are monotonic with respect to the same ordering.

Proposition 1. Givenap, bp, an, bn ∈ R, with ap <S bp andan <S bn the following
maps are strictly monotone w.r.t. the ordering induced≤S : gp: [ap, bp] → [0, 1] s.t.
x 7→ x−ap

bp−ap
, andgn: [an, bn] → [0, 1] s.t.x 7→ x−an

bn−an
.

Proof. We now show thatgp is monotone w.r.t.≤S . If x1 >S x2, thenx1 − ap >S

x2 − ap, by monotonicity of the subtraction among real numbers. Moreover, since
bp >S ap, then bp − ap >S 0 and also 1

bp−ap
> 0. Thus, by strict monotonic-

ity of the product over real numbers (∀a, b, c ∈ R, if c >S 0 and a >S b, then
ac >S bc), x1−ap

bp−ap
>S

x2−ap

bp−ap
, i.e., gp(x1) >S gp(x2). Similarly, sincebn >S an,

and thus 1
bn−an

> 0, it is possible to show thatgn is strictly monotone. 2

This allows to show that the new preference functionsdefp′′ anddefn′′ in the
constraintsCrob satisfy the same property given in [17, 25]. That is, given anassign-
menttX to controllable variables inX in a constraintc = 〈def, con〉 ∈ Ccu, where



con = X ∪ Z, the higher aredefp′′(tX) anddefn′′(tX), the more assignments to
uncontrollable variables inc will yield in Q preference higher than a given threshold. It
is thus possible to prove that:

– defp′′(d) ≥S β ∈ P (resp.,defn′′(d) ≥S β ∈ N ) if and only if, for anytZ
assignment toZ with πZ(tZ) > cS(gp(β)) (resp.,πZ(tZ) > cS(gn(β))), then
def(tX , tZ) ≥S β.

Note that this property holds both for positive and negativepreferences, since the
definition of defp′′ anddefn′′ it is not based on the combination operators (×p and
×n) of positive and negative preferences, which have different behaviours, but only on
the operatorssup andinf derived by the additive operators+p and+n, which satisfy
the same properties. More precisely,

Proposition 2. Consider an UBCSP〈S, Vc, Vu, π, Cc, Ccu〉, whereS = 〈N, P, +, ×,
⊥, 2, ⊤〉 is a bipolar preference structure whereP = [ap, bp] andN = [an, bn] are
closed intervals ofR. For every constraintc = 〈def, con〉 ∈ Ccu such thatcon∩ Vu =
Z, with possibility distributionπZ , andcon ∩ Vu = X , the corresponding robustness
constraints〈defp′′, X〉 and〈defn′′, X〉 are such that, for everytX assignment toX ,

– defp′′(tX) ≥S β ∈ P iff, whenπZ(tZ) > cS(gp(β)), thenpos(c)(tX , tZ) ≥S β,
– defn′′(tX) ≥S α ∈ N iff, whenπZ(tZ) > cS(gn(α)), thenpos(c)(tX , tZ) ≥S α,

wheretZ is an assignment toZ, gp: [ap, bp] → [0, 1] is such thatx 7→ x−ap

bp−ap
∈ [0, 1]

gn: [an, bn] → [0, 1] is such thatx 7→ x−an

bn−an
, andcS is an order reversing map with

respect to ordering≤S in [0, 1] such thatcS(cS(p)) = p, ∀p ∈ [0, 1].

Proof. We show the first statement concerningdefp′′(tX). The second one, concern-
ing defn′′(tX), can be proved analogously, since by constructiongn andg−1

n have the
same properties respectively ofgp andg−1

p . We recall thatdefp′′(tX) = g−1
p (inftZ∈AZ

(gp(pos(c)(tX , tZ))+ cS(πZ(tZ)))), whereAZ is the set of the assignment toZ.
(⇒) We assume thatdefp′′(tX) ≥S β. If this holds, then, sincegp is monotone
with respect to the ordering≤S , gp(defp′′(tX)) ≥S gp(β), i.e., gp(g

−1
p (inftZ∈AZ

sup(gp(pos(c)(tX , tZ)), cS(πZ(tZ))))) ≥S gp(β), that is, sincegp is the inverse func-
tion of g−1

p , inftZ∈AZ
sup(gp(pos(c)(tX , tZ), cS(πZ(tZ)))) ≥S gp(β). Since we

are considering totally ordered preferences, this impliesthatsup(gp(pos(c)(tX , tZ)),
cS(πZ(tZ))) ≥S gp(β), ∀tZ ∈ AZ . For tZ with πZ(tZ) > cS(gp(β)), sincecS is an
order reversing map with respect to≤S such thatcS(cS(p)) = p, we havecS(πZ(tZ))
<S cS(cS(gp(β)) = gp(β). Therefore, for such a valuetZ , we have thatgp(pos(c)(tX ,
tZ)) = sup (gp(pos(c)(tX , tZ)), cS(πZ(tZ))) ≥S gp(β) and, sinceg−1

p is monotone,
we haveg−1

p (gp(pos(c)(tX , tZ))) ≥S g−1
p (gp(β)), i.e.,pos(c)(tX , tZ) ≥S β.

(⇐) We assume that∀tZ with πZ(tZ) > cS(gp(β)), pos(c)(tX , tZ) ≥S β. Then, for
suchtZ , sincegp is monotone with respect to≤S , gp(pos(c)(tX , tZ)) ≥S gp(β) and so,
sup(gp(pos(c)(tX , tZ)), cS(πZ(tZ))) ≥S gp(β). On the other hand, for everytZ such
thatπZ(tZ) < cS(gp(β)), we havecS(πZ(tZ)) >S gp(β) and sosup(gp(pos(c)(tX ,
tZ)), cS(πZ(tZ))) >S gp(β). Thus∀tZ ∈ AZ , sup(gp(pos(c)(tX , tZ)), cS(πZ(tZ)))
≥S gp(β) and soinftZ∈AZ

sup(pos(c)(tX , tZ), cS(πZ(tZ))) ≥S gp(β). Hence, since
g−1

p is monotone,g−1
p (inftZ∈AZ

(sup(pos(c)(tX , tZ), cS(πZ(tZ)))))≥S g−1
p (gp(β)),



i.e.,defp′′(tX) ≥S β. 2

Example 4.Consider the constraintc1 = 〈q, {x, z1}〉 in Figure 3 (a). The robustness
constraints obtained from it are the constraintsr1 = 〈qp′′, {x}〉 andr2 = 〈qn′′, {x}〉
shown in Figure 3 (b). They have been obtained by assuminggp the identity map,gn :
N = [−1, 0] → [0, 1] mapping every valuen ∈ [−1, 0] into the value(n + 1) ∈ [0, 1],
g−1

n : [0, 1] → [−1, 0] mapping every valuet ∈ [0, 1] into the value(t − 1) ∈ [−1, 0],
andcS mapping everyp ∈ [0, 1] in 1−p. We now show the meaning of these robustness
constraints. The valueqp′′(x = a) = 0.3 means that inc1, as shown by the property
above, for all the valuesti of z1 with possibilityπ1(ti) > 1 − 0.3 = 0.7, (in this case
only b), we haveq(x = a, ti) ≥ 0.3. Analogously, the valueqn′′(x = a) = −0.5 means
that, for all the valuesti of z1 with possibilityπ1(ti) > 1 − (−0.5 + 1) = 0.5, (that is,
for a, b, andc), we have inc1 thatq(x = a, ti) ≥ −0.5. 2

5.2 Projection constraints

As in the approach for the fuzzy case [26], projection constraints are added to the prob-
lem in order to recall part of the information contained in the constraints inCcu that
will be removed later. In particular, they guarantee that the preference degree of a solu-
tion, saypref(s), that we will define later, is a value that could be obtained inthe given
UBCSP. The importance of considering such constraints is explained in Example 8.

However, the new projection constraints for the the bipolarcontext are defined in
a different way from those in the fuzzy case, since in the bipolar problems there may
be negative preferences different from fuzzy preferences and also positive preferences.
Nevertheless, it is easy to check that the new approach to define these projection con-
straints generalizes the fuzzy one.

The set of projection constraintsCproj is defined by the functionComputeProjec-
tionConstraintin algorithmB-SP. Such a function takes in input a bipolar constraintc =
〈def, con〉 in Ccu, such thatcon∩Vc = X andcon∩Vu = Z, and it returns constraints
〈defp, X〉 and 〈defn, X〉, wheredefp(tX) = inf{tZ∈AZ |πZ(a)>0} pos(c) (tX , tZ)
anddefn(tX) = sup{a∈AZ}|πZ(a)>0 neg(c) (tX , tZ). In other words,defn(tX) (resp.,
defp(tX)) is the best negative (resp., the worst positive) preference that could be reached
for tX in c when we consider the various valuestZ in the domain of the uncontrollable
variables inZ.

Example 5.Consider the constraintc1 = 〈q, {x, z1}〉 in Figure 3 (a), the projection
constraints obtained from it are the constraintsp1 = 〈qp, {x}〉 andp2 = 〈qn, {x}〉
shown in Figure 3 (b). We recall that in this example positivepreferences are in[0, 1]
and negative preferences are[−1, 0] and all the preferences are ordered via the maxi-
mum operator. In this example, every assignmenttx to the controllable variablex in p1
has positive preference equal to0, since0 is the worst positive preference associated by
pos(c1) to tx, and inp2 has negative preference equal to0, since0 is the best negative
preference associated byneg(c1) to tx. 2

Example 6.Let us consider the UBCSPQ = 〈S, Vc = {x, y}, Vu = {z1, z2}, π =
{p1, p2}, Cc, Ccu〉 in Figure 3 (a). Figure 3 (b) shows the RBCSPQ′ = 〈S, Vc =
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Fig. 3. How B-SPworks.

{x, y}, C∗
c , Crob〉, whereC∗

c = Cc ∪ Cproj , built by algorithmB-SP. Cc is composed
by 〈f, {x, y}〉. Cproj is composed by〈qp, {x}〉, 〈qn, {x}〉, 〈tp, {x}〉 and 〈tn, {x}〉,
while Crob by 〈qp′′, {x}〉, 〈qn′′, {x}〉, 〈tp′′, {x}〉 and〈tn′′, {x}〉. Constraints inCrob

are obtained by using functionsgp andgn as in Example 4.2

6 Preference and robustness

We are now ready to define the preference and the robustness ofa solution in an
UBCSPQ = 〈S, Vc, Vu, π, Cc, Ccu〉. To do that we generalize to the bipolar context
the definition of preference and robustness given for the fuzzy case [26]. The main
idea is to use algorithmB-SPto produce the RBCSPQ′ = 〈S, Vc, C∗

c , Crob〉, where
C∗

c = Cc ∪ Cproj , and then to associate to each solution ofQ′, i.e., to every complete
assignment to controllable variables, a pair composed by a degree of preference and a
degree of robustness.

Definition 4 (preference).Given a solutions of an UBCSPQ, let Q′ = 〈S, Vc, C∗
c ,

Crob〉, whereC∗
c = Cc ∪ Cproj , the RBCSP obtained fromQ by algorithmB-SP. Then

the preference ofs is

pref(s) = prefp(s) × prefn(s),

where

– × is the compensation operator ofS,
– prefp(s) = Π{〈def,con〉∈C∗

c }
pos(c)(s ↓con),

– prefn(s) = Π{〈def,con〉∈C∗

c }
neg(c)(s ↓con).



In other words, the preference of a solution is obtained by compensating a positive
and a negative preference, where the positive (resp., negative) preference is obtained
by combining all positive (resp., negative) preferences ofthe appropriate subtuples of
the solution over the constraints inC∗

c , i.e., over the constraints inCc ∪ Cproj , that are
the initial constraints ofQ linking only controllable variables and the new projection
constraints.

In the following proofs we will sometimes need to use a preference value that we
call projection preference. More precisely, we will denote the projection preference of
a solutions with

proj(s) = projp(s) × projn(s),

where× is the compensation operator ofS, projp(s) = Π{〈def,con〉∈Cproj} pos(c)
(s ↓con), andneg(c)(s ↓con).

Definition 5 (robustness).Given a solutions of an UBCSPQ, let Q′ = 〈S, Vc, C∗
c ,

Crob〉, whereC∗
c = Cc ∪ Cproj , the RBCSP obtained fromQ by algorithmB-SP. Then

the robustness ofs is
rob(s) = robp(s) × robn(s),

where

– × is the compensation operator ofS,
– robp(s) = Π{〈def,con〉∈Crob} pos(c)(s ↓con),
– robn(s) = Π{〈def,con〉∈Crob} neg(c)(s ↓con).

In other words, the robustness of a solution is obtained compensating a positive and
a negative robustness, where the positive (resp., negative) robustness is obtained by
combining all positive (resp., negative) preferences of the appropriate subtuples of the
solution over the constraints inCrob, i.e., over robustness constraints.

Notice that, when positive preferences are missing and whenthe negative prefer-
ences are only of the fuzzy kind, the definitions of preference and robustness given
above for the bipolar case coincide with those given in [26] for the fuzzy case.

Example 7.Let us consider the UBCSPQ in Figure 3 (a) and the RBCSPQ′ obtained
from Q by algorithmB-SP. Figure 3 (c) shows all the solutions ofQ, i.e., all the com-
plete assignments to the controllable variables (thusx andy) with their associated pref-
erence and robustness degrees. 2

In the following we will show why it is important to add projection constraints.
Such constraints avoid having solutionss with the negative preferenceprefn(s) better
than the best negative preference that could result fromCcu constraints and with the
positive preferenceprefp(s) worse than the worst positive preference that could result
from Ccu constraints.

Example 8.Consider an UBCSPQ defined over the bipolar preference structure con-
sidered before, i.e.,〈N = [−1, 0], P = [0, 1], + = max, ×, ⊥= −1, 2 = 0, ⊤ = 1〉,
where× is s.t.×p = max, ×n = min and×np = sum. Assume to have a solutions
with prefn(s) = −0.7 andprefp = +0.5. Thenpref(s) = prefn(s) ×np prefp(s)=
−0.7+ 0.5 = −0.2. Assume also that the best negative preference that can be obtained



for s from constraints inCcu is −0.9 and that the worst positive preference that can be
obtained fors from constraints inCcu is +0.9. Then the best negative preference that
can be obtained bys in Q is pref ′

n(s) = prefn(s) ×n (−0.9) = min(−0.7,−0.9) =
−0.9, i.e., a negative preference which is strictly worse thanprefn(s) = −0.7. More-
over, the worst positive preference that can be obtained fors in Q is pref ′

p(s) =
prefp(s) ×p (+0.9) = max(+0.5, +0.9) = +0.9, i.e., a positive preference which is
strictly better than+0.5. Therefore, the preferences that can be obtained fors in Q are
in [−1,−0.9] and in[0.9, 1]. Thus,pref(s) = −0.7×np0.5 = −0.2 cannot be obtained
in Q for s, since inQ the best preference that can obtained fors is 0.1 = −0.9 ×np 1
and the worst preference that can be obtained fors is−0.1 = −1×np0.9. Instead, if we
associate tos the preferencepref ′(s) = pref ′

n(s) × pref ′
p(s)= −0.9 + 0.9 = 0, then

we are sure that such a preference can be really obtained fors in Q. Thus, the addition
of projection constraints guarantees that every solution has a preference which can be
really obtained in the original problemQ. 2

Note that even if we keep separate the positive and negative preferences during al-
gorithmB-SP, we compute the preference and robustness of a solution by compensating
its positive and its negative components, thus we don’t loseinformation. The only loss
of information that we have is due the effect of the possibly non-associative compen-
sation operator. This feature is inherited from BCSPs [8, 10], where associativity is not
required in order to allow for a more general framework, thatis desirable in practice.
However, as said before, in [8, 10] it is also shown a procedure for building a bipolar
preference structure with an associative compensation operator.

It is possible to prove that the desired properties on the robustness (i.e., Property
BP1 and Property BP2 [25]) presented previously hold.

Theorem 1. The definition of robustness given in Definition 5 satisfies Property BP1.

Proof. Consider two solutions, says ands′, of a UBCSPQ = 〈S, Vc, Vu, π, Cc, Ccu〉,
whereS = 〈N, P +, ×, ⊥, 2, ⊤〉 is a bipolar preference structure such thatP and
N are closed intervals ofR. For every bipolar constraintci = 〈defi, coni〉 ∈ Ccu,
let us denote withXi the setconi ∩ Vc, with Zi the setconi ∩ Vu, and withπZi

the
possibility distribution associated toZi. Assume that, for every such constraintci, ∀tZi

assignment toZi, defi(s ↓Xi
, tZi

) ≤S defi(s
′ ↓Xi

, tZi
), To prove Property BP1, we

will show thatrob(s) ≤S rob(s′).
Let us denote withtXi

the values ↓Xi
, with t′Xi

the values′ ↓Xi
, and withAZi

the set of assignments ofZi. With this notation the hypothesis can be written as fol-
lows: ∀tZi

∈ AZi, defi(tXi
, tZi

) ≤S defi(t
′
Xi

, tZi
). This holds both for the pos-

itive preferences ofci and for the negative preferences ofci. In particular, we have
that ∀tZi

∈ AZi, pos(ci)(tXi
, tZi

) ≤S pos(ci)(t
′
Xi

, tZi
), andneg(ci)(tXi

, tZi
) ≤S

neg(ci)(t
′
Xi

, tZi
). We now consider the case of positive preferences. The case of nega-

tive preferences can be dealt similarly.
If, ∀tZi

∈ AZi, pos(ci)(tXi
, tZi

) ≤S pos(ci)(t
′
Xi

, tZi
), then, since the mapgp, that

we have defined in Section 5.1, is monotone,∀tZi
∈ AZi, gp(pos(ci)(tXi

, tZi
)) ≤S

gp(pos(ci)(t
′
Xi

, tZi
)). Since thesup operator is monotone,∀tZi

∈ AZi, sup(gp(pos(ci)
(tXi

, tZi
)), cS(πZi

(tZi
))) ≤S sup(gp(pos(ci)(t

′
Xi

, tZi
)), cS(πZi

(tZi
))). Moreover,

inft∗
Zi

∈AZi
sup(gp(pos(ci)(tXi

, t∗Zi
)), cS(πZi

(t∗Zi
))) ≤S sup(gp(pos(ci)(tXi

, tZi
)),



cS(πZi
(tZi

))), ∀tZi
∈ AZi. By the previous step,∀tZi

∈ AZi, sup(gp(pos(ci) (tXi
,

tZi
)), cS(πZi

(tZi
))) ≤S sup(gp(pos(ci) (t′Xi

, tZi
)), cS(πZi

(tZi
))), thus this holds

also fort∗∗Zi
∈ AZi such thatinft∗

Zi
∈AZi

sup(gp(pos(ci)(t
′
Xi

, t∗Zi
)), cS(πZi

(t∗Zi
))) =

sup(gp(pos(ci) (t′Xi
, t∗∗Zi

)), cS(πZi
(t∗∗Zi

))). Therefore,inft∗
Zi

∈AZi
sup(gp(pos(ci)(tXi

,

t∗Zi
)), cS(πZi

(t∗Zi
))) ≤S inft∗

Zi
∈AZi

sup(gp(pos(ci)(t
′
Xi

, t∗Zi
)), cS(πZi

(t∗Zi
))). Since

the mapg−1
p , defined in Section 5.1, is monotone, then the following relation holds:

g−1
p (inft∗

Zi
∈AZi

sup(gp(pos(ci) (tXi
, t∗Zi

)), cS(πZi
(t∗Zi

)))) ≤S g−1
p (inft∗

Zi
∈AZi

sup

(gp(pos(ci)(t
′
Xi

, t∗Zi
)), cS(πZi

(t∗Zi
)))), i.e., with the notation used in Section 5.1 for

defining one the robustness constraint inCrob corresponding toci ∈ Ccu, defp′′i (tXi
) ≤S

defp′′i (t′Xi
). By monotonicity of×p, if we combine via×p all such constraints〈defp′′i ,

X〉 we have that,
∏

p 〈defp′′

i
,Xi〉

defp′′i (tXi
) ≤S

∏

p 〈defp′′

i
,Xi〉

defp′′i (t′Xi
).

Similarly, using the same notation presented in Section 5.1, it can be shown that
∏

〈defn′′

i
,Xi〉

defn′′
i (tXi

) ≤S

∏

〈defn′′

i
,Xi〉

defn′′
i (t′Xi

), since the mapsgn andg−1
n ,

described in Section 5.1, are monotone and since the×n operator is monotone.
By definition 5,rob(s) = robp(s)×robn(s), whererobp(s) =

∏

p c=〈def,con〉∈Crob

pos(c)(s ↓ con) androbn(s) =
∏

n c=〈def,con〉∈Crob
neg(c)(s ↓ con). Sincerobp(s) =

∏

p c=〈def,con〉∈Crob
pos(c)(s ↓ con) =

∏

〈defp′′

i
,Xi〉

defp′′i (tXi
), and sincerobn(s) =

∏

n c=〈def,con〉∈Crob
neg(c)(s ↓ con) =

∏

〈defp′′

i
,Xi〉

defp′′i (t′Xi
), we can conclude, by

the previous step, thatrobp(s) ≤S robp(s
′), robn(s) ≤S robn(s′), and thus, since the

× operator is monotone, thatrob(s) ≤S rob(s′). 2

Theorem 2. The definition of robustness given in Definition 5 satisfies Property BP2.

Proof. Consider a solutions of the UBCSPsQ1 = 〈S, Vc, Vu, π1, Cc, Ccu〉 andQ2 =
〈S, Vc, Vu, π2, Cc, Ccu〉, whereS = 〈N, P +, ×, ⊥, 2, ⊤〉 is a bipolar preference
structure such thatP andN are closed intervals ofR Assume that for every assignment
tZ to the uncontrollable variables inVu, π2(tZ) ≤ π1(tZ). To prove Property BP2, we
will show thatrobπ1

(s) ≤S robπ2
(s), whererobπ1

is the robustness computed in the
problem with possibility distributionπ1, androbπ2

is the robustness computed in the
problem with possibility distributionπ2.

Assume the notation considered in the first part of the proof of Theorem 1. By hy-
pothesis, we know that∀tZi

∈ AZi, π2(tZi
) ≤ π1tZi

. SincecS is an order reversing
map,∀tZi

∈ AZi, cS(π2(tZi
)) ≥S cS(π1tZi

). By monotonicity of thesup operator,
∀tZi

∈ AZi, sup(gp(pos(ci) (tXi
, tZi

)), cS(π1(tZi
))) ≤S sup(gp(pos(ci)(tXi

, tZi
)),

cS(π2 (tZi
))) andsup(gp(neg(ci) (tXi

, tZi
)), cS(π1(tZi

))) ≤S sup(gp(neg(ci)(tXi
,

tZi
)), cS(π2 (tZi

))). From here we can conclude as in the proof of Theorem 1. 2

The proofs of the Theorems 1 and 2 are based on the fact that thepreference func-
tions in the robustness constraints, which are used to buildrobp androbn of a solution,
are obtained by using functionsgp andgn (mapping resp. positive and negative prefer-
ences in[0, 1]) which are strictly monotonic, and on the fact that the operators×p, used
for computingrobp of a solution,×n, used for computingrobn of a solution, and×,
used for computerob of a solution, are monotonic. The proof regarding Property BP2
depends also on the fact thatcS is an order reversing map w.r.t.≤S, and thus ifπ1(a)
≤ π2(a), thencS(π1(a)) ≥S cS(π2(a)).



7 Semantics

A solution of a BCSP is associated to a preference and a robustness degree as in the
fuzzy approach [26]. In Section 2.7 we have recalled some of the most significative
semantics (i.e., Risky, Safe, and Diplomatic) used in [26] to order the solutions which
depend on our attitude w.r.t. preference and robustness. Wenow generalize these se-
mantics to the bipolar context as follows.

More precisely, let≤S the ordering induced by the additive operator of the bipolar
preference structure of the considered UBCSP (and not the ordering induced by the
additive operator of the c-semiring of considered USCSP as in [26]),

– Risky semantics is a lexicographic ordering w.r.t.≤S on pairs〈pref, rob〉, that
gives more importance to the preference degree: givenA1 = (pref1, rob1) and
A2 = (pref2, rob2), A1 ≻Risky A2 iff pref1 >S pref2 or (pref1 = pref2 and
rob1 >S rob2). It gives more relevance to the preference that can be reached in the
best case considering less important a high risk of being inconsistent.

– Safesemantics is a lexicographic ordering w.r.t.≤S on pairs〈pref, rob〉, that gives
more importance to the robustness degree: givenA1 = (pref1, rob1) andA2 =
(pref2, rob2), A1 ≻Safe A2 iff rob1 >S rob2 or (rob1 =S rob2 andpref1 >S

pref2).
– Diplomatic semantics aims at giving the same importance to preference and robust-

ness. It is a Pareto ordering w.r.t.≤S (and not w.r.t.≤ as in the fuzzy case) on pairs
〈pref, rob〉: givenA1 = (pref1, rob1) andA2 = (pref2, rob2), A1 ≻Dipl A2 iff
(pref1 ≥S pref2 androb1 ≥S rob2) and (pref1 >S pref2 or rob1 >S rob2).

Example 9.Let us consider the UBCSPQ in Figure 3 (a). In Figure 3 (c) all the so-
lutions of Q are shown with their associated preference and robustness degrees. The
optimal solution for the Risky semantics iss2 = (y = b, x = a), which has prefer-
ence0.8 and robustness−0, 2, while for the Safe semantics iss4 = (y = b, x = b),
which has preference0.7 and robustness0.1. For the Diplomatic semantics,s2 ands4

are equally optimal. Note that the solutions chosen by the various semantics differ on
the attitude toward risk they implement. In fact, Risky chooses the solution that gives
a high positive preference in the controllable part, even ifthe uncontrollable part has
a high possibility of a negative preference. On the other hand, for the Safe semantics
it is better to select a solution with a higher robustness, i.e., that guarantees a higher
number of scenarios with a higher preference. In this example, Safe chooses a solution
with a lower preference with respect to Risky, but that will have with high possibility a
positive preference in the part involving uncontrollable variables. 2

By definition of Risky, Safe and Diplomatic semantics, it follows that for these
semantics the desired properties on solution ordering (i.e., Properties BP3 and BP4)
presented previously hold.

Theorem 3. The solution orderings≻Risky , ≻Safe and≻Diplomatic satisfy Property
BP3.

Proof. Property BP3 states that, given two solutionss ands′ of an UBCSP, ifrob(s) =
rob(s′) andpref(s) >S pref(s′), s ≻ s′. By definition of Risky, Safe and Diplomatic
semantics, this property holds for≻Risky , ≻Safe and≻Dipl. 2



Theorem 4. The solution orderings≻Risky , ≻Safe and≻Diplomatic satisfy Property
BP4.

Proof. Property BP4 states that, given two solutionss ands′ of an UBCSP, ifpref(s) =
pref(s′) androb(s) >S rob(s′), s ≻ s′. By definition of Risky, Safe and Diplomatic
semantics, this property holds for≻Risky , ≻Safe and≻Dipl 2.

Also, it is possible to prove that Property BP5 is satisfied only by ≻Risky .

Theorem 5. Given an UBCSP〈S, Vc, Vu, π, Cc, Ccu〉, the solution ordering≻Risky

satisfies Property BP5 if the operator× of S is strictly monotonic, while the solution
orderings≻Safe and≻Diplomatic never satisfy Property BP5.

Proof. To prove Property BP5, we have to show that, given two solutionss ands′ of a
UBCSPQ = 〈S, Vc, Vu, π, Cc, Ccu〉, such thatovprefp(s, a) >S ovprefp(s

′, a) and
ovprefp(s, a) >S ovprefp(s

′, a) ∀a assignment toVu, thens ≻Risky s′.
From UBCSPQ we can obtain an equivalent problem that corresponds to the UBCSP

QP = 〈S, {V c}, {V u}, C1p ∪ C1n ∪ C3p ∪ C3n, C2p ∪ C2n〉, where we recall sep-
arately the sets of constraintsC1p, C1n, C3p, C3n, C2p, andC2n. In QP the element
V c is a controllable variable andV u is an uncontrollable variable, representing re-
spectively all the variables inVc andVu, having as domains the corresponding Carte-
sian products. The uncontrollable variableV u is described by a possibility distribution,
π, which is the joint possibility, i.e., the possibility obtained by performing the mini-
mum among all the possibility distributions of the uncontrollable variables inVu. Con-
straintC1p = 〈defp1, V

c〉 (resp.,C1n = 〈defn1, V
c〉) is defined as the combination

of all constraints inCc connecting variables inVc, where the negative (resp., posi-
tive) preferences are interpreted as indifference. ConstraintC2p = 〈defp2, {V c, V u}〉
(resp.,C2n = 〈defn2, {V c, V u}〉) is the combination of all the constraints inCcu

connecting variables inVc to variables inVu, where the negative (resp., positive) pref-
erences are interpreted as indifference. ConstraintC3p = 〈defp3, V

c〉 (resp.,C3n =
〈defn3, V

c〉) is defined as the combination of all the constraints obtained from con-
straints inC2, interpreting the negative (resp., positive) preferencesas indifference, and
by projecting them over the controllable variables inVc as described in Section 5.2.
Notice that all these combinations are obtained using operator ×p (resp.,×n) of the
c-semiringS. Thus, given an assignments to V c in Q, which corresponds to an as-
signment to all the variables inVc, its preference on constraintC1p is defp1(s) =
∏

ci=〈defi,coni〉∈Cc
pos(ci)(s ↓ coni) = controlp(s), onC3p is defp3(s) = projp(s),

and onC1

⊗

C3 is defp1(s) × defp3(s)= controlp(s) × projp(s) = prefp(s).
Given assignment(s, ai) to (V c, V u), instead, which corresponds to a complete as-
signment to variables inVc andVu, its preference,defp2(s, ai) (resp.,defn2(s, ai)), is
obtained by performing the combination of the positive (resp. negative) preferences
associated to all the subtuples of(s, ai) by the constraints inCcu, interpreting the
negative (resp., positive) preferences as indifference. Using this new notation we have
that,∀(s, ai) assignments toV c andV u, ovprefp(s, ai) = defp1(s) × defp2(s, ai)
= controlp(s) × defp2(s, ai), andovprefn(s, ai) = defn1(s) × defn2(s, ai) =
controln(s) ×defn2(s, ai).



If we show thatprefp(s, ai) >S prefp(s, ai) andprefn(s, ai) >S prefn(s, ai),
∀ai assignment toV u, then, by strict monotonicity of the× operator, we can conclude
thatpref(s) = prefp(s)× prefn(s) >S prefp(s

′)× prefn(s′) = pref(s′), and thus
thats ≻Risky s′.

We first show thatprefp(s) >S prefp(s
′). We know, by hypothesis, thatovprefp(s,

ai) >S ovprefp(s
′, ai), ∀ai assignment toV u, i.e., thatcontrolp(s)×defp2(s, ai) >S

controlp(s
′)×defp2(s

′, ai), ∀ai assignment toV u. This must hold also for the assign-
ment toV u, that we calla∗, such thatdefp2(s, a

∗) = projp(s). Hence,prefp(s) =
controlp(s)×projp(s) = controlp(s)×defp2(s, a

∗) >S controlp(s
′)×defp2(s

′, a∗).
Moreover, since, by definition ofprojp (see Sections 5.2 and 6),projp(s

′) ≤S defp2(s
′,

ai), ∀ai, we have thatcontrolp(s
′) × defp2(s

′, a∗) ≥S controlp(s
′) × projp(s

′)
= prefp(s

′), and thusprefp(s) >S prefp(s
′).

To conclude thats ≻Risky s′, we have to show thatprefn(s) >S prefn(s′). We
know, by hypothesis, thatovprefn(s, ai) >S ovprefn(s′, ai), ∀ai assignment toV u,
i.e., thatcontroln(s) × defn2(s, ai) >S controln(s′) × defn2(s

′, ai), ∀ai assign-
ment toV u. This must hold also for the assignment toV u, that we calla∗, such that
defn2(s

′, a∗) = projn(s′). Hence,controln(s) × def2(s, a
∗) >S controln(s′) ×

projn(s′) = prefn(s′). Moreover, since by definition of theprojn (see Sections 5.2
and 6),projn(s) ≥S defn2(s, ai), ∀ai, we have thatprefn(s) = controln(s) ×
projn(s) ≥S controln(s) × defn2(s, a

∗) >S prefn(s′), and thusprefn(s) >S

prefn(s′).

We now show that Property BP5 is not satisfied by≻Safe and≻Dipl. For these se-
mantics it can happen thats 6≻ s′. In fact, let us consider the UBCSPQ = 〈SFCSP , Vc,
π, Vu, Cc, Ccu〉, where the bipolar preference structure is the fuzzy c-semiring 〈[0, 1],
max, min, 0, 1〉, Vc = {x}, Vu = {z}, Cc is composed byc1 = 〈f1, {x}〉, Ccu by
c2 = 〈f2, {x, z}〉, and whereDz = {a1, a2} andDx = {s, s′} are respectively the
domain ofz andx. Let us assume that the possibility distribution onz is such that
π(a1) = 1 andπ(a2) = 0.7. Let us assume moreover thatf2(s, a1) = 0.4, f2(s, a2) =
0.5, f2(s

′, a1) = 0.8, f2(s
′, a2) = 0.9, f1(s) = 0.3 andf1(s

′) = 0.2. The overall
preferences are:ovpref(s, a1) = 0.3, ovpref(s, a2) = 0.3, ovpref(s′, a1) = 0.2,
ovpref(s′, a2) = 0.2, i.e., ovpref(s, ai) > ovpref(s′, ai), ∀ai, i = 1, 2, hences
and s′ satisfy the hypothesis. The robustness values fors and s′ (computed consid-
ering asgn the identity map) arerob(s) = inf(max(0.4, 0), max(0.5, 0.3)) = 0.4,
rob(s) = inf(max(0.8, 0), max(0.9, 0.3)) = 0.8. Therefore, sincerob(s) < rob(s′),
s ≺Safe s′ for Safe semantics. The preference degrees arepref(s) = min(control(s),
proj(s)) = min(0.3, 0.5) = 0.3 and pref(s′) = min(control(s′), proj(s′)) =
min(0.2, 0.9) = 0.2. Sincerob(s) < rob(s′) andpref(s) > pref(s′), s ⊲⊳Dipl s′

for Diplomatic semantics. 2

We have shown before that Risky, Safe and Diplomatics semantics for UBCSPs
satisfy Property BP3 and BP4 and that Risky satisfies also Property BP5. However,
there are semantics that don’t satisfy them. Consider for example a semantics, that we
call Mixed, such that givenA1 = (pref1, rob1) andA2 = (pref2, rob2), A1 ≻Mixed

A2 iff pref1 × rob1 >S pref2 × rob2, where× is the compensation operator in the
considered bipolar preference structure. This semantics generalizes the one adopted to



order the solutions in [17] for fuzzy c-semiring〈[0, 1], max, min, 0, 1〉. It is possible to
show that Mixed semantics does not satisfy properties BP3, BP4 and BP5.

8 Extending the approach to UBCSPs with totally ordered
positive/negative preferences

In the previous sections we have shown a procedure for handling UBCSPs where the set
of the positive preferences (P) and the set of the negative preferences (N) are two closed
intervals ofR (for example,P = [3, 5] andN = [−3,−2]). In this section we will show
that it is possible to generalize this method to more generalbipolar problems where the
set of the positive preferences and the set of the negative preferences are totally ordered
sets that are not necessarily closed intervals ofR. For example,

– they can be real intervals including+∞ or −∞ (for example,P = [5, +∞] and
N = [−∞,−8]),

– they can be the union of disjoint intervals ofR ∪ {+∞,−∞} (for example,P =
[1, 3] ∪ [5, +∞] andN = [−∞,−8] ∪ [−3,−2])),

– they can be generic totally ordered sets (for example,P = {a, b, c} wherea > b >
c andN = {d, e, f} whered > e > f ).

To show that the new approach generalizes the previous one, we we will show that the
same desirable properties continue to hold.

We recall that the main idea to handle UBCSPs over closed realintervals is to re-
move uncertainty from them, recalling as much information as possible. In particular,
the adopted procedure (see Section 5) takes as input a UBCSPQ = 〈S, Vc, Vu, π,
Cc, Ccu〉, with S = 〈N, P, +, ×, ⊥, 2, ⊤〉, whereP = [ap, bp] andN = [an, bn]
are two closed intervals ofR, i.e.., two intervals ofR− {−∞, +∞}, it removes uncer-
tainty fromQ, by eliminating the uncontrollable variables and all the constraints inCcu

relating controllable and uncontrollable variables, and by adding new constraints, i.e.,
Cproj andCrob, only among these controllable variables.

The part of such a procedure that requires that positive and negative preferences
are two intervals ofR − {−∞, +∞} is the one regarding the addition of constraints in
Crob (see Section 5.1). We recall that it works as follows. In the first step it translates
every positive (resp., negative) preference of the constraints inCcu in [0, 1], via the map
gp: [ap, bp] → [0, 1] such thatx 7→ x−ap

bp−ap
, (resp.,gn: [an, bn] → [0, 1] such thatx 7→

x−an

bn−an
), to be able to compare, in the second step, preferences and possibilities, since

the possibilities are defined in[0, 1]. Then, in the third step, it translates the preferences
in [0, 1] obtained so far inP (resp.,N ), i.e., in the set of positive (resp., negative)
preferences defined inS, by using the inverse mapg−1

p :[0, 1] → [ap, bp] such that
y 7→ [y(bp − ap) + ap], (resp.,g−1

n :[0, 1] → [an, bn] such thaty 7→ [y(bn − an) + an].
The functionsgp, gn, g−1

p , andg−1
n mentioned above have been used to prove that

some of the desirable properties hold (see proofs of Proposition 2, Theorem 1, and The-
orem 2). In these proofs, for what concerning the functions above, we have only used
the fact thatgp andg−1

p (resp.,gn andg−1
n ) are monotonic, and that their combinations

gives the identity map.



To extend the approach to UBCSPs where the sets of positive and negative prefer-
ences are generic totally ordered sets, we can use, instead of gp andg−1

p (resp.,gn and
g−1

n ), two functions that define a Galois insertion (see Section 8.1), since in this case
we are sure that they are both monotonic, and their combination is the identity map.

8.1 Galois insertions

In this section we give the notion ofGalois insertions, that we will consider in our
generalized procedure, and we insert such a definition in thecontext of abstract inter-
pretation [5].

Abstract interpretation [4, 12] is a theory developed to reason about the relation
between two different semantics (theconcreteand theabstractsemantics). The idea
of approximating program properties by evaluating a program on simpler domain of
descriptions of “concrete” program states goes back to the early 70’s. The guiding idea
is to relate the concrete and the abstract interpretations of the calculus by a pair of
functions, theabstraction functionα and theconcretizationfunctionγ, which form a
Galois connection.

Let (C,≤) (concrete domain) be the domain of the concrete semantics,while (A,⊑)
(abstract domain) be the domain of the abstract semantics. The partial order relations
reflect an approximation relation. Since in approximation theory a partial order specifies
the precision degree of any element in a poset, it is obvious assume that ifα is a mapping
associating an abstract object in (A, ⊑) for every concrete element in (C, ≤), then the
following holds: if α(x) ⊑ y, theny is also a correct, although less precise, abstract
approximation ofx. The same argument holds ifx ≤ γ(y). Theny is also a correct
approximation ofx, althoughx provides more accurate information thanγ(y). This
gives rise to the following formal definition [5].

Definition 6 (Galois insertion).Let (C, ≤) and (A,⊑) be two posets (the concrete and
the abstract domain). A Galois connection〈α, γ〉 : (C, ≤) ⇋ (A, ⊑) is a pair of maps
α : C → A andγ : A → C such that

1. α andγ are monotonic;
2. for eachx ∈ C, x ≤ γ(α(x)), and
3. for eachy ∈ A, α(γ(x)) ⊑ y.

Moreover, a Galois insertion (ofA andC) 〈α, γ〉 : (C,≤) ⇋ (A, ⊑) is a Galois connec-
tion whereγ · α = idA.

8.2 A generalized approach to UBCSPs with totally ordered preferences

We now show how Galois insertions allow us to extend to UBCSPsover totally or-
dered sets of positive and negative preferences the procedure described in Section 5.1
to remove uncertainty guaranteeing that the same desired properties continue to hold.

Consider an UBCSP with bipolar preference structureS = 〈N, P, +, ×, ⊥, 2, ⊤〉,
whereP andN are totally ordered sets. Let us denote with≤S the ordering induced
by the additive operator. Consider also the totally orderedset[0, 1] with the ordering⊑
such that where0 ⊑ 1.



We now redefine the functionsgp and g−1
p presented in Section 5.1 as follows:

〈gp, g
−1
p 〉 : (P , ≤S) ⇋ ([0, 1], ⊑) is a Galois insertion. We know, by definition of

Galois insertion, that

– gp : P → [0, 1] is monotonic, i.e.,∀x1, x2 ∈ P , with x1 ≤ x2, gp(x1) ⊑ gp(x2);
– g−1

p : [0, 1] → P is monotonic, i.e.,∀y1, y2 ∈ [0, 1], with y1 ⊑ y2, g−1
p (y1) ⊑

γ(y2);
– g−1

p · gp = id.

Similarly, we redefine the functionsgn andg−1
n presented in Section 5.1 as follows

〈gn, g−1
n 〉 : (N , ≤) ⇋ ([0, 1], ⊑) is a Galois insertion.

Note thatgp andg−1
p can be defined in several different ways, but all of them have

to satisfy the properties of the Galois insertions, from which it derives, among others,
thatgp(⊥P ) = 0 andgp(⊤P ) = 1, i.e., that the bottom ofP must be mapped in0 and
that the top ofP must be mapped in 1. The same must hold forgn andg−1

n .
Moreover, we redefine the mapcS as follows: it is an order reversing map such that

∀a, b ∈ [0, 1], if a ≤ b, thencS(a) ⊑ cS(b), and∀p ∈ [0, 1], cS(cS(p)) = p.
It is possible to show that, using the new definitions ofgp, g−1

p , gn, g−1
n , andcS ,

that all the desired properties that have been shown by exploiting these functions (i.e.,
Proposition 2, Theorem 1, and Theorem 2) continue to hold.

Proposition 3. Consider an UBCSP〈S, Vc, Vu, π, Cc, Ccu〉, whereS = 〈N, P, +, ×,
⊥, 2, ⊤〉 is a bipolar preference structure whereP andN are totally orderedsets. For
every constraintc = 〈def, con〉 ∈ Ccu such thatcon ∩ Vu = Z, with possibility distri-
butionπZ , andcon ∩ Vu = X , the corresponding robustness constraints〈defp′′, X〉
and〈defn′′, X〉 are such that, for everytX assignment toX ,

– defp′′(tX) ≥S β ∈ P iff, whenπZ(tZ) > cS(gp(β)), thenpos(c)(tX , tZ) ≥S β,
– defn′′(tX) ≥S α ∈ N iff, whenπZ(tZ) > cS(gn(α)), thenpos(c)(tX , tZ) ≥S α,

wheretZ is an assignment toZ, 〈gp, g
−1
p 〉 : (P , ≤S) ⇋ ([0, 1], ⊑) and〈gn, g−1

n 〉 : (N ,
≤S) ⇋ ([0, 1], ⊑) are Galois insertions, andcS is an order reversing map such that
∀a, b ∈ [0, 1], if a ≤ b, thencS(a) ⊒ cS(b), and∀p ∈ [0, 1], cS(cS(p)) = p.

Proof. We show the first statement concerningdefp′′(tX). The second one, concern-
ing defn′′(tX), can be proved analogously, since by constructiongn andg−1

n have the
same properties respectively ofgp andg−1

p . We recall thatdefp′′(tX) = g−1
p (inftZ∈AZ

(gp(pos(c)(tX , tZ))+ cS(πZ(tZ)))), whereAZ is the set of the assignment toZ.
(⇒) We assume thatdefp′′(tX) ≥S β. If this holds, then, sincegp is monotone,
gp(defp′′(tX)) ⊒ gp(β), i.e.,gp(g

−1
p (inftZ∈AZ

sup(gp(pos(c)(tX , tZ)), cS(πZ(tZ)))))
⊒ gp(β), that is, since the combination ofgp andg−1

p produce the identity map,inftZ∈AZ

sup(gp(pos(c)(tX , tZ), cS(πZ(tZ)))) ⊒ gp(β). Since we are considering totally or-
dered preferences, this implies thatsup(gp(pos(c)(tX , tZ)), cS(πZ(tZ))) ⊒ gp(β),
∀tZ ∈ AZ . FortZ with πZ(tZ) > cS(gp(β)), by definition ofcS , we havecS(πZ(tZ))
⊏ cS(cS(gp(β)) = gp(β). Therefore for such a valuetZ we have thatgp(pos(c)(tX ,
tZ)) = sup(gp(pos(c)(tX , tZ)), cS(πZ(tZ))) ⊒S gp(β) and, sinceg−1

p is monotone,
we haveg−1

p (gp(pos(c)(tX , tZ))) ≥S g−1
p (gp(β)), i.e.,pos(c)(tX , tZ) ≥S β.

(⇐) We assume that∀tZ with πZ(tZ) > cS(gp(β)), pos(c)(tX , tZ) ≥S β. Then, for



suchtZ , sincegp is monotone,gp(pos(c)(tX , tZ)) ⊒ gp(β) and so,sup(gp(pos(c)(tX ,
tZ)), cS(πZ(tZ))) ⊒ gp(β). On the other hand, for everytZ such thatπZ(tZ) <
cS(gp(β)), we have, by definition ofcS , cS(πZ(tZ)) ⊐ gp(β) and sosup(gp(pos(c)(tX ,
tZ)), cS(πZ(tZ))) ⊐ gp(β). Thus∀tZ ∈ AZ , sup(gp(pos(c)(tX , tZ)), cS(πZ(tZ))) ⊒
gp(β) and soinftZ∈AZ

sup(pos(c)(tX , tZ), cS(πZ(tZ)))⊒ gp(β). Hence, sinceg−1
p is

monotone,g−1
p (inftZ∈AZ

(sup(pos(c)(tX , tZ), cS(πZ(tZ))))) ≥S g−1
p (gp(β)), i.e.,

defp′′(tX) ≥S β. 2

Consider an UBCSP〈S, Vc, Vu, π, Cc, Ccu〉, whereS = 〈N, P, +, ×, ⊥, 2, ⊤〉 is
a bipolar preference structure whereP andN aretotally orderedsets. It is possible to
prove that, if we determine the robustness constraints withthe new mapsgp, g−1

p , gn,
g−1

n , andcS defined in this section, the definition of robustness given inDefinition 5
satisfies Properties BP1 and BP2.

Theorem 6. If we determine the robustness constraints described in Section 5.1 with
the mapsgp, g−1

p , gn, g−1
n , and cS such that〈gp, g

−1
p 〉 : (P , ≤S) ⇋ ([0, 1], ⊑) and

〈gn, g−1
n 〉 : (N , ≤S) ⇋ ([0, 1], ⊑) are Galois insertions, andcS is an order reversing

map such that∀a, b ∈ [0, 1], if a ≤ b, thencS(a) ⊒ cS(b), and∀p ∈ [0, 1], cS(cS(p)) =
p, the definition of robustness given in Definition 5 satisfies Property BP1.

Proof. The first part of proof coincides with the one of Theorem 1.
Consider two solutions, says ands′, of a UBCSPQ = 〈S, Vc, Vu, π, Cc, Ccu〉,

whereS = 〈N, P +, ×, ⊥, 2, ⊤〉 is a bipolar preference structure such thatP and
N are totally ordered sets. For every bipolar constraintci = 〈defi, coni〉 ∈ Ccu, let
us denote withXi the setconi ∩ Vc, with Zi the setconi ∩ Vu, and withπZi

the pos-
sibility distribution associated toZi. Assume that, for every such constraintci, ∀tZi

assignment toZi, defi(s ↓Xi
, tZi

) ≤S defi(s
′ ↓Xi

, tZi
), To prove Property BP1, we

will show thatrob(s) ≤S rob(s′). Let us denote withtXi
the values ↓Xi

, with t′Xi

the values′ ↓Xi
, and withAZi the set of assignments ofZi. With this notation the

hypothesis can be written as follows:∀tZi
∈ AZi, defi(tXi

, tZi
) ≤S defi(t

′
Xi

, tZi
).

This holds both for the positive preferences ofci and for the negative preferences ofci.
In particular, we have that∀tZi

∈ AZi, pos(ci)(tXi
, tZi

) ≤S pos(ci)(t
′
Xi

, tZi
), and

neg(ci)(tXi
, tZi

) ≤S neg(ci)(t
′
Xi

, tZi
). We now consider the case of positive prefer-

ences. The case of negative preferences can be dealt similarly.
The new part of the proof starts from here. If,∀tZi

∈ AZi, pos(ci)(tXi
, tZi

) ≤S

pos(ci)(t
′
Xi

, tZi
), then, since the mapgp is monotone,∀tZi

∈ AZi, gp(pos(ci)(tXi
, tZi

))
⊑ gp(pos(ci)(t

′
Xi

, tZi
)). Since thesup operator is monotone,∀tZi

∈ AZi, sup(gp(pos(ci)
(tXi

, tZi
)), cS(πZi

(tZi
))) ⊑ sup(gp(pos(ci)(t

′
Xi

, tZi
)), cS(πZi

(tZi
))). Moreover, we

haveinft∗
Zi

∈AZi
sup(gp(pos(ci)(tXi

, t∗Zi
)), cS(πZi

(t∗Zi
))) ⊑ sup(gp(pos(ci)(tXi

, tZi
)),

cS(πZi
(tZi

))), ∀tZi
∈ AZi. By the previous step,∀tZi

∈ AZi, sup(gp(pos(ci) (tXi
, tZi

)),
cS(πZi

(tZi
))) ⊑ sup(gp(pos(ci) (t′Xi

, tZi
)), cS(πZi

(tZi
))), thus this holds also for

t∗∗Zi
∈ AZi such thatinft∗

Zi
∈AZi

sup(gp(pos(ci)(t
′
Xi

, t∗Zi
)), cS(πZi

(t∗Zi
))) is equal to

sup(gp(pos(ci)(t
′
Xi

, t∗∗Zi
)), cS(πZi

(t∗∗Zi
))). Therefore, we can conclude thatinft∗

Zi
∈AZi

sup(gp(pos(ci)(tXi
, t∗Zi

)), cS(πZi
(t∗Zi

))) ⊑ inft∗
Zi

∈AZi
sup(gp(pos(ci)(t

′
Xi

, t∗Zi
)),

cS(πZi
(t∗Zi

))). Since the mapg−1
p is monotone, theng−1

p (inft∗
Zi

∈AZi
sup(gp(pos(ci)



(tXi
, t∗Zi

)), cS(πZi
(t∗Zi

)))) ≤S g−1
p (inft∗

Zi
∈AZi

sup(gp(pos(ci)(t
′
Xi

, t∗Zi
)), cS(πZi

(t∗Zi
)))), i.e., the preferences in the robustness constraints aredefp′′i (tXi

) ≤S defp′′i (t′Xi
).

By monotonicity of×p, if we combine via×p all such constraints〈defp′′i , X〉 we
have that,

∏

p 〈defp′′

i
,Xi〉

defp′′i (tXi
) ≤S

∏

p 〈defp′′

i
,Xi〉

defp′′i (t′Xi
).

Similarly, it can be shown that
∏

〈defn′′

i
,Xi〉

defn′′
i (tXi

) ≤S

∏

〈defn′′

i
,Xi〉

defn′′
i (t′Xi

),

since the mapsgn andg−1
n , are monotone and since the×n operator is monotone.

From here we can conclude as in the proof of Theorem 1.
2

Theorem 7. If we determine the robustness constraints described in Section 5.1 with
the mapsgp, g−1

p , gn, g−1
n , and cS such that〈gp, g

−1
p 〉 : (P , ≤S) ⇋ ([0, 1], ⊑) and

〈gn, g−1
n 〉 : (N , ≤S) ⇋ ([0, 1], ⊑) are Galois insertions, andcS is an order reversing

map such that∀a, b ∈ [0, 1], if a ≤ b, thencS(a) ⊒ cS(b), and∀p ∈ [0, 1], cS(cS(p)) =
p, the definition of robustness given in Definition 5 satisfies Property BP2.

Proof. The first part of proof coincides with the one of Theorem 2.
Consider a solutions of the UBCSPsQ1 = 〈S, Vc, Vu, π1, Cc, Ccu〉 andQ2 =

〈S, Vc, Vu, π2, Cc, Ccu〉, whereS = 〈N, P +, ×, ⊥, 2, ⊤〉 is a bipolar preference
structure such thatP andN are intervals ofR (Z or Q). Assume that for every as-
signmenttZ to the uncontrollable variables inVu, π2(tZ) ≤ π1(tZ). To prove Property
BP2, we will show thatrobπ1

(s) ≤S robπ2
(s), whererobπ1

is the robustness computed
in the problem with possibility distributionπ1, androbπ2

is the robustness computed in
the problem with possibility distributionπ2. The new part starts from here.

Assume the notation considered in the first part of the proof of Theorem 6. By hy-
pothesis, we know that∀tZi

∈ AZi, π2(tZi
) ≤ π1tZi

. By definition ofcS ∀tZi
∈ AZi,

cS(π2(tZi
)) ⊒ cS(π1tZi

). By monotonicity of thesup operator, we have∀tZi
∈

AZi, sup(gp(pos(ci) (tXi
, tZi

)), cS(π1(tZi
))) ⊑ sup(gp(pos(ci)(tXi

, tZi
)), cS(π2

(tZi
))) and sup(gp(neg(ci) (tXi

, tZi
)), cS(π1(tZi

))) ⊑ sup(gp(neg(ci)(tXi
, tZi

)),
cS(π2 (tZi

))). From here we can conclude as in the proof of Theorem 6. 2

We now show, via an example, how to instantiate the functionsdefined above, i.e.,
gp, g−1

p , gn, g−1
n , andcS , in an UBCSP where the positive and the negative are not

defined over intervals. Notice that this UBCSP cannot be solved by the procedure for
defining robustness constraints described in Section 5.1, since it is only able to han-
dle UBCSPs where the positive preferences and the negative one are defined over real
intervals.

Example 10.Consider an UBCSP〈S, Vc, Vu, π, Cc, Ccu〉, whereS = 〈R−, R+, max,
sum, -∞, 0, +∞〉. Let us denote with≤S the ordering induced by the additive operator
of S. To compute robustness constraints we can choose ascS the map such that∀p ∈
[0, 1], cS(p) = 1 − p. Moreover, the Galois insertion〈gn, g−1

n 〉 : (R−, ≤S) ⇋ ([0, 1],
≤R), where≤R is the classical order over real numbers, can be defined in different
ways. For example, we can use the Galois insertion shown in Example 17 of [5], such
that gn maps all the reals below some fixed realx onto0 and all the reals over[x, 0]
into the reals in[0, 1] by using a normalization functionf(r) = (x − r)/x. Similarly,
we can define the Galois insertion〈gp, g

−1
p 〉 : (R+, ≤S) ⇋ ([0, 1], ≤R), assuming that

gp maps all the reals above some fixed realx onto1 and all the reals over[0, x] into the



reals in[0, 1] by using the same normalization function considered before, i.e.,f(r) =
(x − r)/x. 2

9 Conclusions and future work

We have considered problems with bipolar preferences and uncontrollable variables,
and with a possibility distribution over such variables (UBCSPs). We have then defined
the notion of preference and robustness for such problems, as well as some desirable
properties that such notions should respect, also in relation to the solution ordering.
By following the approach shown in [26] for problems with fuzzy preferences and un-
certainty, we have provided an algorithm for UBCSPs, that removes the uncontrollable
part of the problem while altering the controllable part in order to loose little informa-
tion. On the resulting problem, we have then defined the preference and the robustness
of a solution of the initial UBCSP. Different semantics use such two notions to order
the solutions according to different attitudes to risk. We have then shown that our pro-
posed notions of preference and robustness, as well as our semantics, satisfy the desired
properties we have considered.

We have first considered UBCSPs where the sets of positive andnegative prefer-
ences are closed real intervals, and then we have generalized the proposed approach
to the case of generic totally ordered preferences by using abstraction techniques and
Galois connections.

The results of the paper show that it is possible, without much effort, to deal simul-
taneously with possibilistic uncertainty and bipolar preferences, while making sure that
several desirable properties hold and without requiring a bipolarization of the possibil-
ity scale. In other words, our results state that it is possible to extend the formalism in
[8, 10] to bipolar preferences and the one in [25] to uncertainty, while preserving the
desired properties.

Following this approach, a solver for UCSPs would thus first remove the uncon-
trollable part, and then find an optimal solution of the controllable part according to a
chosen semantics. Such a solver may be developed by adaptingconstraint propagation
and branch and bound techniques that have been already defined and implemented for
bipolar CSPs in [8, 10].
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