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Abstract. Preferences and uncertainty are common in many real-ldblems.
In this paper, we focus on bipolar preferences and on uringrtanodelled via
uncontrollable variables, and we assume that unconttelleriables are speci-
fied by possibility distributions over their domains. Tokkecsuch problems, we
concentrate on uncertain bipolar problems with totallyeoed preferences, and
we eliminate the uncertain part of the problem, while malsoge that some de-
sirable properties hold about the robustness of the prollednits relationship
with the preference of the optimal solutions. We also camrs@tveral semantics
to order the solutions according to different attitudeshwéspect to the notions
of preference and robustness.

1 Introduction

Real-life problems present several kinds of preferencdsway be affected by uncer-
tainty. In this paper, we focus on problems with positive ardative preferences with
uncertainty.

Bipolar preferences [23,18,1-3,13,14,7,8,10] and uniest[19, 15, 28, 20] ap-
pear in many application fields, such as satellite schegulogistics, and production
planning. Moreover, in multi-agent problems, agents magyress their preferencesin a
bipolar way, and variables may be under the control of déffiéagents. To give a spe-
cific example, just consider a conference reviewing systenere usually preferences
are expressed in a bipolar scale. Uncertainty can arisééoniimber of available con-
ference rooms at the time of the acceptance decision. ThHecgald be to select the
best papers while ensuring that they all can be presented.

Bipolarity is an important topic in several domains, e.gyghology [27,24,11],
multi-criteria decision making [23], and more recentlycala Al (in areas such as
argumentation [18, 1] and qualitative reasoning [2, 3, 4B lPreferences on a set of
possible choices are often expressed in two forms: positicenegative statements. In



fact, in many real-life situations agents express what tkeyand what they dislike,
thus often preferences are bipolar.

In this paper, to handle bipolarity, we use the formalismspreed in [7, 8, 10].
Related but different formalisms to achieve a similar g@al be found in [23, 1-3, 13,
14]. The considered formalism generalizes to positive aghtive preferences the soft
constraints formalism [6], which is able to model problenithwne kind of preferences
(i.e., negative preferences). Thus, each partial ingtBoti within a constraint will be
associated to either a positive or a negative preferenaeeXample, when buying a
house, we may like very much to live in the country, but we nlag aot like to have to
take a bus to go to work, and be indifferent to the color of thede. Thus we will give
a preference level (either positive, or negative, or ir#hce) to each feature of the
house, and then we will look for a house that has the best aedljireference overall.

Another important feature, which arises in many real wortthtems, is uncertainty.
In[23,1-3,13, 14] the authors handle bipolarity but notgthesence of uncertainty. In
this paper, we consider both bipolarity and uncertainty.idéalel uncertainty by the
presence otincontrollablevariables. This means that the value of such variables will
not be decided by us, but by Nature or by some other agent. &sedution of such
problems will not be an assignment to all the variables biyt tarthe controllable ones.
A typical example of an uncontrollable variable, in the exttof satellite scheduling
or weather prediction, is a variable representing the tirhemwclouds will disappear.
A more general setting in which uncertainty occurs are sgliregl problems, which
constrain the order of execution of various activities, ainere the durations of some
activities may be uncertain [15]. In this case the goal isdbim a schedule which is
the most robust with respect to the uncertainty.

Although we cannot choose the value for such uncontrollabtébles, usually
we have some information on the plausibility of the valueshieir domains. In [19]
the information over uncontrollable variables, which id bgolar, is given in terms
of probability distributions. In this paper, we model thigarmation by a possibility
distribution over the values in the domains of such varsbRossibilities are useful
when probability distributions are not available, and jpdewpper and lower bounds to
probabilities [28].

In this paper we focus on problems with this kind of uncettgiand that contain
positive and negative preferences. We call themertain bipolar problemsTo tackle
such problems, we generalize to bipolar preferences th@app to handle fuzzy pref-
erences (that are a special kind of negative preferencelslimrertainty presented in
[26, 25]. In particular, we generalize to the bipolar comtigre notions of preference
and robustness for the solutions, as well as propertiestitdt notions should respect
in relation to the solution ordering, and the procedure usesbmpute preference and
robustness degrees. First, we generalize the approacénpeesin [26] to uncertain
bipolar problems where the set of the positive preferenndstlae set of the negative
preferences are closed intervalskfThen, we use abstraction techniques and Galois
connection properties [5] to generalize the proceduretalsacertain bipolar problems
where the set of positive/negative preferences are getotaity ordered sets.

Our approach follows the one presented in [26]. More prégigésen an uncertain
bipolar problem, the uncontrollable part of the problereisioved and new constraints



on the controllable part are added. Thus, we obtain a bigwlatslem without uncer-
tainty and with additional constraints. Such additionahsteaints are considered to
define the robustness of the problem. Starting from thislpropwe define the prefer-
ence and the robustness of the solutions of the initial daiteproblem, and we show
that they satisfy some desired properties. Moreover, waiden some semantics that
use such notions to order the solutions, and we show thatsigsfy desired proper-
ties on the solution ordering. In particular, they allow aslistinguish between highly
preferred solutions which are not robust, and robust bupneferred solutions. Also,
they guarantee that, if there are two solutieremds’ with the same robustness (resp.,
the same preference), and the preference (resp., the nelsg$fs is better than the
preference (resp., the robustness}y’othens is considered better than.

The paper is structured as follows. Section 2 provides thdaws with the main no-
tions about positive, negative, and bipolar propertigsolair preference problems, soft
constraint problems with uncertainty and their properteesswell as the approach of
[26] for removing uncertainty in uncertain fuzzy CSPs. Th®action 3 introduces the
notion of uncertain bipolar problems, while Section 4 defiseme desirable properties
of such problems. Section 5 describes the approach to snbertain bipolar problems,
while Section 6 defines the notions of preference and robsstaf such problems, and
relates them to the properties proposed in Section 4. $ecttudies some possible se-
mantics for uncertain bipolar problems. Then, Section 8mats the overall approach to
more general bipolar preference structures, and Sectiom@nsirizes the main results
and gives some hints for possible lines of future work.

This paper is a revised and extended version of [9]. In pagicwhile [9] shows
only a procedure for handling bipolar preference problerhsme the sets of positive
and negative preferences are two closed interval®, dhis paper proposes also a pro-
cedure to handle bipolar problems where the set of pogigstive preferences are
generic totally ordered structures, by using abstraceéshniques and galois connec-
tions properties [5].

2 Background

We now give some basic notions on bipolar preference prob[@p8, 10] and on un-
certain soft (fuzzy) problems [26, 25].

2.1 Negative preferences

Bipolar preference problems[7, 8, 10] are based on a bipoéderence structure, which
allows to handle both positive and negative preferences Sthucture contains two
substructures, one for each kind of preferences.

When dealing with negative preferences, two main propedi®uld hold: combi-
nation should bring to worse preferences, and indiffereshoeild be better than all the
other negative preferences. These properties can be faund-semiring [6], which is
the structure used to represent soft constraints.

A c-semirings a tuple(A4, +, x,0,1) where:Aisasetand, 1 € A; + is commu-
tative, associative, idempoteftis its unit element, andl is its absorbing elemenk is



associative, commutative, distributes owerl is its unit element and is its absorbing
element. Consider the relatiefis over A such thatt <g biff a + b = b. Then:<g is

a partial order4+ and x are monotonic o< g; 0 is its minimum andl its maximum.
Informally, the relation<g gives us a way to compare (some of the) tuples of values
and constraints. In fact, when<g b, we will say that is better than a

Given a c-semiring = (A, +, x, 0, 1), afinite setD (the domain of the variables),
and an ordered set of variabl€s a soft constraint is a paftle f, con) wherecon C V/
anddef : Dlo"l — A. Therefore, a soft constraint specifies a set of variables (t
ones incon), and assigns to each tuple of valuedbbf these variables an element of
A. A soft constraint satisfaction proble(CSP), denoted b§s, V, C), is a set of soft
constraints”’ based on the c-semiring, which is defined over a set of variablgs For
example, fuzzy CSPs [21] are SCSPs that can be modeled bgiogabe c-semiring
Srcsp = ([0,1], mazx, min,0,1).

In a c-semiring there is an element which combined with ewher preference
returns such a preference, i.e., there is an element ttedaatdifference. Such an ele-
mentisl. Infact,Va € A, ax1 = a. Moreover, in a c-semiring holds a desired property
for negative preferences, that is, the combination betweeferences is worse than the
considered preferences (in fady,b € A, a x b < a,b). This interpretation is very
natural when considering, for example, the weighted c-seg{R ™, min, +, +cc, 0),
where preferences are real positive numbers interpretedsds. Such costs are com-
bined via the sum+) and the best costs are the lower onegi). In this case prefer-
ences are costs and thus negative preferences, and the slencofkt costs is worse in
general than these costs, since we want to minimize the stiine @ost.

The interpretation above is also natural when considetimg,fuzzy c-semiring
([0, 1], maz, min, 0, 1), where preferences are(it 1], are combined via the minimum
operator and the best preferences are the higher enes)( In fact, in this case the
combination of preferences is worse in general than thefeqgnces, since it is equal
to the worst one of these preferences w.r.t. the orderingded by the additive operator
(that is,max) of the c-semiring.

From now on, a standard c-semiring will be used to model megareferences,
denoted as{N, +,, Xy, L, Ty).

2.2 Positive preferences

When dealing with positive preferences, two main propsgheould hold: combination
should bring to better preferences, and indifference shballower than all the other
positive preferences.

These properties can be found ipasitive preference structufé, 8, 10], which is
atuple(P, +p, xp, Lp, Tp) st. Pisasetand ,, L,€P; +,, the additive operator, is
commutative, associative, idempotent, with as its unit elementfe € P, a+, L,=
a) andT,, as its absorbing elementd{ € P, a +, T, = T,); X, the multiplicative
operator, is associative, commutative and distributes eye(a <, (b +, ¢) = (a x,
b) +, (a x, ¢)), with L, as its unit element and,, as its absorbing elemént

! The absorbing nature af, can be derived from the other properties.



The additive operator of this structure has the same priegexs the corresponding
one in c-semirings, and thus it induces a partial order ¢ver the usual waya <, b
iff @ +, b = b. This allows to prove that-, is monotonic Ya,b,d € P s.t.a <, b,
axp,d <, bx,d)andthat, is the least upper bound in the lattic®, <,) (Va,b € P,
axpb>,a+,b>pa,b).

On the other handx, has different properties w.r.k,,: its absorbing element is
now the best element in the orderiig,, ), while its unit element, that can model in-
difference, is the worst elemefit ,). These are exactly the desired properties for com-
bination and indifference of positive preferences. An epknof a positive preference
structure is(R*,max,sum,0,+00), where preferences are positive real numbers ag-
gregated withsum and compared withnaz (i.e., the best preferences are the highest
ones). Another example i§0, 1],maz,max,0,1), where preferences are positive real
numbers aggregated and compared with.

2.3 Bipolar preferences

When we deal with both positive and negative preferencess#ime properties de-
scribed above for a single kind of preferences should caoatio hold. Moreover, all
the positive preferences should be better than all the ivegates and there should exist
an operator which allows for the compensation betweenipesind negative prefer-
ences. These properties can be obtained by consideringpthlatpreference structure
presented below, that links the previous two structuresdiyng the highest negative
preference to coincide with the lowest positive preferdnaaodel indifference.

A bipolar preference structurg7, 8,10] is a tuplg N, P, +, x, L, O, T) where,
(P, +,, X|», 0, T) is a positive preference structurgy, +,, x|, L, O)isac-
semiring;+ : (N U P)> — (N U P) is an operator s.tu, + a, = a,, Va,, € N and
ap € P;itinduces a partial ordering oN U P:Va,b € PUN, a < biff a +b = b;

x : (N UP)? — (N U P) (called thecompensation operatpis a commutative and
monotonic {a,b,c € N U P, if a < b, thena x ¢ < b x ¢) operator.

In the following, we will write+-,, instead of+|, and+, instead oft-| .. Similarly
for x,, andx,. Whenx is applied to a pair if/NV x P), we will sometimes writex,,,,.

Note that the compensation operator may not be associativeis due to the fact
that one wants to leave complete freedom to choose theymoaitid negative algebraic
structures. However, in some situations associativitydbe desirable. In such a case
one can build a bipolar structure with associative comp@rsaperator, by following
the procedure presented in [8, 10].

From the monotonicity of the compensation operator it feidhat the combination
of a positive and a negative preference is a preference vidlugher than, or equal to,
the negative one and lower than, or equal to, the positive one

An example of bipolar structure is the tupl&/€[—1,0], P=[0,1], +=max, X,
1=-1,0=0, T=1), wherex is such thatx ,= max, x,=min andx,,,=sum. Negative
preferences are between -1 and 0, positive preferencegéetivand 1, compensation
is sum, and the order is given by max. In this casis not associative.

Note that, when the preferences are totally ordered, oparat, and <, described
here correspond resp. to thaormandt-conormconsidered in [22], and requiring that



the compensation operator is associative, then it correfspto theuninorm operator
considered in [22].

2.4 Bipolar preference problems

A bipolar constraint is a constraint where each assignmengloes to its variables
is associated to one of the elements in a bipolar preferaneetsre. Given a bipolar
preference structur8 = (N, P,+,x, L, 0, T), a finite setD (the domain of the
variables), and an ordered set of variablgsa bipolar constraintis a pair{de f, con)
wherecon C V anddef : D"l — (N UP). A bipolar CSP(BCSP)(S, V, C) is a set
of variablesl” and a set of bipolar constraintsoverV defined on the bipolar structure
S.

An RBCSP(S,V, Cy, Cy) is a BCSP over the bipolar structuse where the set of
variables isi” and the set of bipolar constraintsi§ U Cs.

Given a subset of variables C V, and a bipolar constraint = (def, con), the
projection ofc over I, written ¢ {7, is a new bipolar constrainide f', con’), where
con’ = conNIanddef(t') = > ¢,y def(t). In particular, the scopepn’, of
the projection constraint contains the variables thatand/ have in common, and thus
con’ C con. Moreover, the preference associated to each assignmére t@riables
in con’, denoted witht’, is the best one among the preferences associateld Hyo
any completion oft’, ¢, to an assignment teon. The notationt |, indicates the
subtuple oft on the variables ofon’. For example, iton = X UY, con’ = X, and
t=(X=aY =0b),thent | x=a.

A solutionof a BCSP(S, V, C) is a complete assignment to all variable¥insays.
Its overall preference isvpre f (s) = ovpre fp(s) x ovpre fn(s) = (p1 Xp - .. XpPr) X
(n1 Xg ... X ), where, fori := 1,...,k,p; € P,forj :==1,...,l,n; € N,
and3(def;, con;) € C such thatp; = def;(s |con;) and3(def;,con;) € C such
thatn; = def(s |con,). Hence the preference of a solution is obtained by combining
all the positive preferences associated to its projectmres the constraints on one
side, all the negative preferences associated to its giojscover the constraints on
the other side, and then compensating the two preferenagstamed. This definition
is in accordance with the classical tool used in bipolar glenimaking, namely with
cumulative prospect theory [27].

A solutions is optimalif there is no other solutios with ovpref(s') > ovpref(s).

Given a bipolar constraint = (def, con) and one of its tuple, it is possible to
define two function®os andneg as follows:

~ fdef(t) ifdef(t) € P,
pos(c)(t) = {D otherwise
def(t) if def(t) € N,
O otherwise

neg(c)(t) = {

In other words, given a constraiand one of its tuple, pos(c)(t) (resp.,neg(c)(t))
returns the preference given byfor the tuplet if it is positive (resp., negative) and
indifference otherwise.



Example 1.Figure 1 shows an example of a BCSP. It is defined on the sanadabip
preference structure considered before, thdtVs= [-1, 0], P = [0, 1], + = max, X,
1=-1,0=0,T =1), wherex is s.t. x,, = mazx, xX,, = min andx,, = sum. Itis
composed by four variables, thatis,y, z; andz,, and by the three bipolar constraints
(q,{z,z1}), (t,{z, z2}) and (f, {z,y}). The domain ofr andy is {a,b}, while the
domain ofz; and z; is {a, b, c}. One of the solutions of such a BCSPsis= (y =
b,x = a,z = a,z2 = b). To compute its preference, we must consider the prefesence
of all the projections of in the various constraints, i.e., the preferendes of (y =
b,z = a)in (f,{z,y}), the preference-0.5 of (x = a,z = a) in {q,{x,21}), and
the preference-0.3 of (z = a,z2 = b) in (¢, {z, z2}). Thusovpref(s) = (0.5 x,
—0.3) Xpp 0.8 = min(—0.5,-0,3) + 0.8 = —0.5 + 0.8 = +0.3. In this example an
optimal solution iss’ = (y = b,x = a, 21 = b, 25 = ¢) with preferencevpref(s’) =
+0.8. Let us now show how functionss andneg defined above work on the constraint
c1 = (g, {z,z1})andonthetuples = (z = a, 21 = a) andty = (x = a,z; = b). For

t1 we havepos(cy)(t1) = 0 andneg(c1)(t1) = —0.5, and fort, we havepos(ci)(t2) =
+0.8 andneg(c1)(t2) = 0. O

g(a,a) =-0.5
g(a,b) =+0.8
Dx=Dy={a,b} q(a,.c)=-0.3
Dz;=Dz,={a,b,c} q(b,a)=-0.2
g(b,b) =+0.5
g(b,c) =+0.4

f(a,a) =-0.4 a) =-0.
f(a,b) =-05 t(a,b)=-0.3
f(b,a) i +0.8 t(avc) =+0.8
f(b,b) = +0.7 {(b,a) = +0.3

t(b,b) = -0.4
t(b,c) = +0.1

Fig.1.ABCSP.

2.5 Uncertainty in soft constraint problems

Uncertain soft constraint satisfaction problems (USC3P8)25] are soft constraint
problems where some variables are uncontrollable, i.ey, #te not under the user’s
control. They can model many real-life problems, such asdgling and timetabling.
For example, they can model the problem of scheduling soskes tknowing that the
duration of some of those is uncertain, and only vaguely kmfl#®], or the problem
of deciding how many training sessions to perform in a tadpswithout knowing the
effective number of participants, but knowing only an apjiraately number of these
participants [16]. Contrarily to classical constraint Iplems, in USCSPs we cannot
decide how to assign the variables to make the assignmemaipbut we must assign



values to the controllable variables, denoted Withguessing what Nature will do with
the uncontrollable variables, denoted with.

If the uncontrollable variables are equipped with add@idnformation on the like-
lihood of their values, like in our case, such an informatan be used to infer new
soft constraints over the controllable variables, whicpress the compatibility of the
controllable part of the problem with the uncontrollablesoifhis information can be
used to define the notion of optimal solution. It is assumatlttiere is no observability
over uncertain events before decision.

An USCSP is thus defined as a set of variables, which can beotiabte or un-
controllable, and a set of soft constraints over these bkasa Moreover, the domain
of every uncontrollable variable is equipped with a podigibdistribution, that speci-
fies, for every value in the domain, the degree of plausjtitiat the variable takes that
value.

More formally, apossibility distributionm associated to a variablewith domain
Az is a mapping fromd z to a totally ordered scalé (usually |0, 1]) such thata €
Az, m(a) € Land3 a € Az such thatr(a) = 1, wherel is the top element of the
scalel [28].

An uncertain soft constraint satisfaction probldtdSCSP) is a tuplés, V., V,,, w,
C., Cey, Cy) WhereS is a c-semiringy. = {x1,...x,} is a set of controllable vari-
ables,V,, = {z1, ...z} is a set of uncontrollable variables,= {7, ..., 7} is a set
of possibility distributions oveV,,, such that every; € Vu has possibility distribution
m; with scale[0, 1], C, is the set of constraints that involve only variable3’pfC.., is
a set of constraints that involve at least a variabl®irand a variable i/, and that
may involve any other variable &f. U V,,, andC,, is the set of constraints that involve
only variables ofV,.

Notice that when the set of uncontrollable variables, Ig, is empty, then the sets
of constraints involving variables i, i.e.,C., andC,, are empty, and the USCSP
corresponds to a soft constraint probléf V., C.), as defined in Section 2.1.

When the chosen semiring &csp = ([0, 1], max, min, 0, 1), the definition of
an USCSP models an Uncertain Fuzzy CSP (UFCSP), that corrdspwhen there are
no uncontrollable variables, to an FCSP, as defined in Se2tih

Example 2.Figure 2 shows an example of an UFCSP. Each constraint isediefip
associating a preference level (in this case betvgeand1) to each assignment of its
variables to values in their domains. The Bgbf the controllable variables is composed
by x, y, andw, while the setl,, of the uncontrollable variables contains onlyThe
values in the domain of are characterized by the possibility distributiop. The set
of constraintg”,. is composed by the constraifit, {z, w}), which relates: andw via
the preference function. The set of constraint§’.,, is composed by the constraint
(f,{=,y, z}), which is defined on variables y, andz by the preference functiofi,
while the sel’,, is empty. =]

Given an assignmeritto all the variables of an USCSP, its overall preference is
computed by combining, via the operator, the preference levels of its subtuples in the
selected constraints. More formally, given an USCER: (S, V., V,,, 7, Ce, Ceu, Cu),
let ¢ be an assignment to all the variableggfthen itsoverall preferencés the value

ovpref(t) = H{(defi,coni>€CCUCc,uUC,u} defl(t lconi)-



g(x=1, w=5)=0.
q(x=1, w=6)=0.:

Dy =Dy={1.2}
D, ={3.4} q(x=2, w=5)=0.
Dy ={5.6} q(x=2, w=6)=0.:

f(z=3, x=1, y=1)=0.3
f(z=4, x=1, y=1)=0.5
f(z=3, x=1, y=2)=0.4

f(z=4, x=1, y=2)=0.6
@ f(z=3, x=2, y=1)=0.5
f(z=4, x=2, y=1)=0.4
f(z=3, x=2, y=2)=0.1
f(z=4, x=2, y=2)=0.6

Fig. 2. An UFCSP.

A solution of an USCSP is a complete assignment to all itsrotlable variables.
More formally, given an USCSB) = (S, V., V,,, 7, C., Cey, Cy,), @solutionof @ is a
complete assignment to all the variabled/pf

2.6 Preference, robustness, and desirable properties for&CSPs

In [26], a solutions of an USCSP is associated to both a preference degree,nwritte
pref(s), and a degree of robustness, writief(s). The preference degree summarizes
all the preferences in the controllable part and it can biiyrehtained for some assign-
ment to the uncontrollable variables decided by the Natfline.robustness of a solu-
tion, that measures what is the impact of Nature on the preéerobtained by choosing
that solution, is assumed to be dependent both on the pnefesen the constraints
connecting both controllable and uncontrollable varialites and on such possibility
distributions.

Two desirable properties for the notion of robustness thaetbeen considered in
[25, 26] for USCSPs and in [17] for UFCSPs are the following.

Property P1. Given solutiong ands’ of an USCSRS, V., 7, V,,, C¢, C.,,), Where ev-
ery variablev; in V,, is associated to a possibility distribution, if for every constraint
(def, con) € C., and for every assignmentto the uncontrollable variables inon,
def((s,a) leon) <s def((s',a) lecon), then it should be thatob(s) <g rob(s’).

In other words, if we increase the preferences of any tuplelitng uncontrollable
variables, solution should have a higher value of robustnes

Property P2. Take a solutions of the USCSP$); = (S, V., Vi, m,Ce, Cey) and
Q2 = (S, V,,Vy,m2,C,, Cey). Assume for every assignmento variables inV,,
ma(a) < m(a). Then it should be thatob,, (s) <g rob.,(s), whererob,, is the
robustness computed in the problépm, androb,, is the robustness computed in the



problem@-.

In other words, if we lower the possibility of any value of tlnecontrollable variables,
solution should have a higher value of robustness.

To understand which solutions are better than others in &0SFSin [26] it is con-
sidered a solution ordering, say, which is reflexive and transitive that should depend
on the notions of robustness and preference as follows [26]:

Property P3. Given two solutiong and s’ of an USCSP, ifrob(s) = rob(s’) and
pref(s) >g pref(s’), it should be that > s'.

Property P4. Given two solutions ands’ of an USCSP such thatef(s) = pref(s’),
androb(s) >g rob(s'), then it should be that > s'.

In other words, two solutions which are equally good withpexs to one aspect (ro-
bustness or preference degree) and differ on the otherdheubrdered according to
the discriminating aspect.

Property P5. Given two solutions ands’, an USCSRY = (S, V., V., 7, C., Ceu),
such thatovpref(s,a) >g ovpref(s’,a), Va assignment td/,, then it should be that
s =5

In other words, if two solutions ands’ are such that the overall preference of the
assignments, a) to all the variables is better than or equal to oné«fa) for all the
valuesa of the uncontrollable variables, thenshould be considered better than the
other one.

2.7 Removing uncertainty in UFCSPs: preferences, robustrss and semantics

In [26] a method is presented to remove uncontrollable bégfrom uncertain fuzzy
CSPs preserving as much information as possible. Stantong this method, both a
degree of preference and a degree of robustness for a sohrodefined, and it is
shown that these degrees satisfy the desirable propertie8aned above.

Removing uncertainty. The procedure presented in [26] to remove uncertainty in
UFCSPs, that is called Algorithr8P, works as follows. It takes as input an UFCSP
Q = (S,V.,V,,m, C., Cey), Where every variable; € V,, has a possibility distribu-
tion ; and whereS is the fuzzy c-semiring and returns an RFCSP that is sinolant
FCSP but has two sets of constraints rather than one. Mooisphg an RFCSP is a
tuple (S, V., C1, Cs ) such that S, V.., C ), whereC = C; U Cy, is an FCSP.

The RFCSPY’ returned bySPis obtained from( by eliminating its uncontrol-
lable variables and the fuzzy constraint€lp, relating controllable and uncontrollable
variables, and by adding new fuzzy constraints only amoaséftontrollable variables
that we callCy,.,; (the fuzzy projection constraintandC:..;(the fuzzy robustness con-
straint9, that encode (some of) the information contained in theoutrollable part



Algorithm 1: SP
Input: Q = (S, V., Vi, w, Ce, Cey): @an UFCSP;
Output: Q' = (S, V., C%, C\op): an RFCSP;
C’r‘ob — @1
Cp'roj — (Z),
foreach constraintc € C.,, do
Crop «— CropU Compute FuzzyRobustnessConstraint(c);
L Chproj «— CprojU ComputeFuzzyProjectionConstraint(c);
C? — Cc U Cprojs
Ql — <S7 ‘/Cv 0:7 C’rob>;
return Q’;

of the problem. In particular, it adds,,,; to C., while it keepsC,.., separate. More
precisely, given a constraint = (def, con) in C., such thatcon NV, = X and
conNV, =72,

— its corresponding robustness contraintdf,;,, obtained by applying the proce-
dureComputeFuzzyRobustnessConstraint@urns a fuzzy constrairite f', X)
where Vi x assignment toX,

def'(tx) = mingea,mazx(def(tx,tz),1 —7mz(tz))).

— its corresponding projection constraintdr),.,;, obtained by applying the proce-
dureComputeFuzzyProjectionConstraint(is) the constraintde f, X), where

def"(tx) = max{aca,}iny (a)y>odef(tx,tz).

Preference, robustness and semantics in UFCSP# [26] the problem returned by
the algorithmSPis used to define the preference and the robustness of aosointan
UFCSP. More precisely, given a solutisiof an UFCSRY, letQ’ = (S, V., C*, Cyop),
whereC; = C. U Cp0;, the RFCSP obtained fro by algorithmSP,

— thepreferenceof s is pref(s) = ming(acs,conyeczydef(s Leon)
— the robustness ofis rob(s) = Ming gef,conyeC,o,ydef (5 Leon)-

In other words, the preference (resp., robustness) of éigolis obtained by combining
the preferences of the appropriate subtuples of the salatier the constraints i@,
i.e., inC. U Cproj; (resp., inChqp). In [26] it is shown that the desirable properties on
the robustness (i.e., Property P1 and Property P2) prespraeiously hold.

Since a solution of an UFCSP is associated to a preference moimlistness degree,
in [26] various semantics are defined to order the solutidmnisitndepend on the attitude
w.r.t. these two notions. In the following we will descritbese that we will consider in
this paper.

— Riskysemantics: givetdl = (prefi,robi) and A2 = (prefa, robs), Al > Risky
A2 iff pref) > prefs or (prefy = prefo androb; > robs). Informally, the idea
is to give more relevance to the preference that can be rddohihe best case
considering less important a high risk of being inconsisten



— Safesemantics: givedl = (prefi,robi) andA2 = (prefa, robs), Al >gqfe A2
iff roby > roby Or (roby = roby, andpref; > pref,). The idea is to give more
importance to the robustness level that can be reacheddsoimgj less important
having a high preference.

— Diplomaticsemantics: giverd1 = (prefi,robi) andA2 = (prefa, robs), Al = pipi
A2 iff (prefi > pref, androby > robs) and prefi; > prefs or roby > robs).
The idea is that a pair is to be preferred to another only ifriisdboth on preference
and robustness, leaving incomparable all the pairs tha bag component higher
and the other lower.

In [26] it is shown that for Risky, Safe and Diplomatic semesthe desired properties
on solution ordering (i.e., Properties P3 and P4) presqgmdously hold. Also, they
prove that Property P5 is satisfied only Byz; sk .

3 Uncertain bipolar problems

Uncertain bipolar problems (UBCSPs) are characterized $st ®f variables, each of
which can be controllable or uncontrollable, and by a setijpbllar constraints. Thus,
an UBCSP is a BCSP where some of the variables are uncoiellsloreover, the
domain of every uncontrollable variable is equipped witloagibility distribution, that
specifies, for every value in the domain, the degree of giditgithat the variable takes
that value. Hence, an UBCSP is also an USCSP where everyaion# bipolar. More
formally,

Definition 1 (UBCSP). An uncertain bipolar CSP is a tuples, V.., V., ., C., Ceu),
where

- S=(N,P +, x,1,0, T)is abipolar preference structure ands is the ordering
induced by operato#-;

— Ve ={m,...z,} is aset of controllable variables;

— Vi =1{z1,... 2} is a set of uncontrollable variables;

— 7 = {p1,...pr} is a set of possibility distributions ovéf,. In particular, every
z; € V,, has possibility distributionr; with scale0, 1];

— (. is the set of bipolar constraints that involve only variabtdV/;

- (4, is a set of bipolar constraints that involve at least a vat@aln V., and a
variable inV,, and that may involve any other variable @f. U V,,).

— C, is the set of bipolar constraints that involve only varigbtéV/,.

For simplicity we will assume that', is empty and thus we will omit it in the tuple
when we refer to an UBCSP. @f, # ), we can translate every constraint of tyggin
a new constraint of typ€..,, thus obtaining an UBCSP witf, = (). This can be done
by using a procedure similar to the one used for UFCSPs in [26]

Given an assignmentto all the variables of an UBCSP, its overall preference (see
Section 2) is computed by combining, via theoperator, first all the positive prefer-
ences of its subtuples in the selected constraints, thehalegative preferences of
its subtuples in the selected constraints, and finally tleerasulting preferences. More
formally, using the notation presented in this section,



Definition 2 (overall assignment preference)Given an UBCSP) = (S, V., V,,, «, C¢,
C..), lett be an assignment to all the variables@f then its overall preference is the
valueovpre f(t) = ovpre fy(t) xovpre fn (t), whereovpre f,(t) = [ s, consyecuc.a
pOS(d@fi)(t lconi)’ andovprefn (t) = H{(def,;,con,;}GCCUCm‘,} neg(defl)(t lCO’ﬂi)'

A solution of an UBCSP is a complete assignment to all its radlable variables.
More formally,

Definition 3 (solution). Given an UBCSRY = (S, V., V., w, C., C.,), a solution of
Q@ is a complete assignment to all the variabled/pf

Example 3.An example of an UBCSP is the one presented in Figure 3 (&)lika the
onein Figure 1, except that now variablesandzs are uncontrollable and characterized
by two possibility distributiong; andry. More formally, such an UBCSP is defined by
the tuple(S, V. = {z,y}, Vi, = {z1, 22}, 7 = {pi1, m2}, C., Cey }). We recall that the
bipolar structure iN = [-1,0], P = [0, 1], + = maz, X, L=—-1,0=10,T = 1),
wherex is s.t. x, = maz, x,, = min and x,, = sum. The set of constraint§’.
contains(f, {x,y}), while C., containsq, {z, 21 }) and(t, {z, 22 }). Figure 3 (a) shows
the positive and the negative preferences within such caingt and the possibility
distributionst; andry over the domains of; andzs. a

4 Preference, robustness, and desirable properties in UBES

Given a solutions of an UBCSP, we will associate to it a degree of preference, sa
pref(s), and a degree of robustness, sal(s) that generalize those given for USCSPs
in [26]. Moreover, we will show that these notions satisfe flollowing generalized
version of the desirable properties for USCSPs describ&eaation 2.6:

Property BP1. Given solutions; ands’ of an UBCSP{S, V., 7, V,, C., C..,), where

every variablev; in V,, is associated to a possibility distributiar, if for every con-

straint (de f, con) € C.,, and for every assignmeatto the uncontrollable variables in
con, def((s,a) leon) <s def((s';a) leon), then it should be thatob(s) <g rob(s’).

Property BP2. Take a solutions of the UBCSP€), = (S, V., V., m1,C., Ce,) and
Q2 = (S, V,,Vy,m2,C,, Cey). Assume for every assignmento variables inV,,
ma(a) < mi(a). Then it should be thatob,, (s) <g rob.,(s), whererob,, is the
robustness computed in the problépm, androb,, is the robustness computed in the
problem@s.

Property BP3. Given two solutions and s’ of an UBCSP, ifrob(s) = rob(s’) and
pref(s) >g pref(s’), it should be that =~ s'.

Property BP4. Given two solutionss and s’ of an UBCSP such thairef(s) =
pref(s’), androb(s) >g rob(s’), then it should be that >~ s’

Property BP5. Given two solutions ands’, an UBCSR) = (S, V.., V,,, m, C¢, Ceu),



such thaupref,(s,a) >s ovprefy(s’,a) andovpref,(s,a) >g ovpref,(s',a) Va
assignment td/,,, then it should be that - s’

Notice that the new desirable properties for bipolar pesiees are similar to the
ones given for USCSPs in [26]. Two differences are that tleegicer an UBSCP rather
than an USCSP and that, as preference ordering, they corsidehat is the ordering
induced by the additive operator of the bipolar preferenagctire of the considered
UBSCP and not the ordering induced by the additive operdttireoc-semiring of the
considered USCSP. Another difference is in Property BP5rgvhet only the negative
overall preferences are considered (as in USCSPs), buthedguositive overall prefer-
ences.

5 Removing uncertainty from UBCSPs over closed real intervis

We now show how to extend the approach shown in [25, 26] towi#alUFCSPs, i.e.,
problems with fuzzy preferences and uncertainty (see @e&i7), to UBCSPs over
real intervals, i.e., problems with bipolar preferenced ancertainty where the set of
the positive preferences and the set of the negative prefesare two closed intervals
of R (or structures isomorph to ft) Starting from the generalization of this approach,
we will define robustness and preference degrees and wehweill that they satisfy the
properties which are considered desirable (see Theoret 814, and 5).

Our procedure, that we call AlgorithBrSP, takes as inputan UBCSP = (S, V,,
Vi, 7, Ce, Cey), Where every variable; € V, has a possibility distributionr; and
S = (N, P, +, x, L, 0, T) is any bipolar preference structure whe¥eand P are
two closed intervals aR (or structures isomorph to them) and it returns an RBCSP. We
recall that an RBCSP is similar to a BCSP but has two sets dftcaints rather than
one (see Section 2.4).

Algorithm 2: B-SP
Input: Q = (S, Ve, Vi, m, Ce, Cey): @an UBCSP;
Output: Q' = (S, V.,C%, Crop): an RBCSP;
C’r‘ob — @1
Cp'r‘oj — @,
foreach constraintc € C.,, do
Crop «— CropU Compute RobustnessConstraint(c);
L Chproj «— CprojU ComputeProjectionConstraint(c);
C: — CcU Cproj;
Ql - <Sv VYC7 C:: Crob);
return Q’;

2 Notice that the procedure that we propose holds also fonals of Q, and it can be easily
adapted also to handle closed intervalZof



The RBCSRY' returned byB-SPis obtained fromQ by eliminating its uncontrol-
lable variables and the bipolar constraintgip, relating controllable and uncontrol-
lable variables, and by adding new bipolar constraints aniypng these controllable
variables that we call’,,,; andC,..;. In particular, it add€’,,,.,; to C., while it keeps
Cob SEparate. More precisely,,; (the projection constrainjss the set of constraints
obtained applying to every constrainin C.,, of @) the procedur€omputeProjection-
Constraint(c) that will be described in Section 5.2, whig..;, (the robustness con-
straintg is the set of constraints obtained applying to every caistr: in C.,, of Q
the procedur€omputeRobustnessConstraintftat will be described in Section 5.1.
In Sections 5.1 and 5.2 we will see that these new constraifitsncode (some of) the
information contained in the uncontrollable part of thelpgemn.

As in [26] for the fuzzy case, starting from this probléy we define the preference
degree of a solution considering the preference functidrtbe constraints inC,. U
Chproj, and the robustness degree of a solution considering tfierpree functions of
the constraints it .

Notice that AlgorithmB-SPis similar to AlgorithmSP [26] described in Section
2.7. However, it takes in input an UBCSP rather than an UF@$&urns an RBCSP
rather than an RFCSP, and it uses different procedures fapating robustness and
projection constraints that depend on specific properfitieedbipolar preference struc-
ture of the considered UBCSP.

5.1 Robustness constraints

Similarly to the approach for the fuzzy case [26], the sebbiustness constraints.,;
is composed by the bipolar constraints obtained by reagaminpreference functions
of the bipolar constraints i@t'.,, and on the possibilities associated to values in the do-
mains of uncontrollable variables involved in such constsa However, the procedure
to obtain such bipolar constraints is different from the oaesidered in the fuzzy case,
since while in the fuzzy case it is exploited the fact thatfupreferences and possibili-
ties are commensurable, in the bipolar context we canndb#xipis fact since positive
and negative preferences may not be commensurable witibpities. We have thus
adapted the fuzzy approach used to defined robustnessaiatsto take into account
this fact.

More precisely, every constraint ., is built by exploiting the procedure denoted
ComputeRobustnessConstramalgorithmB-SP, that works as follows.

— (Normalizatior) Every constraint = (def, con) in C,, such thatcon NV, =
X andcon NV, = Z, is translated in two bipolar constraingge fp, con) and
(de fn, con), with preferences ifD, 1], where ¥(tx, tz) assignment t& x Z,

defp(tx,tz) = gp(pos(c)(tx,tz))

anddefn(tx,tz) = gn(neg(c)(tx,tz)). If the positive (resp., negative) prefer-
ences are defined in the interval®f P = [a,, b,] (resp.,.N = [an, b,]) theng,:
[ap,by] — [0,1] (resp..gn: [an,bn] — [0, 1]) associates to every € [a,, b,] the
value ,f;’_af; [0,1] (resp., to every: € [ay, b,] the value;*=%-) by using the

classical division and subtraction operatiorifof




— (Removing uncontrollabilifyThe constraintde fp, con) obtained before is then
translated indefp’, X), and(defn, con) is then translated ide fn’, X), where,
Vtx assignment toy,

defp'(tx) = tzig£2 sup(defp(tx,tz),cs(nz(tz))),

anddefn'(tx) = inf;,ca, sup(defn(tx, tz), cs(mz(tz))), wherecg is an order
reversing map with respect togs in [0, 1], such thats(cs(p)) = p andinf which
is the opposite of theup operator (derived from operater of S), applied to a set
of preferences, returns its worst preference with respettid ordering<s.

— (Denormalizatiof The constraintdefp’, X) obtained before is then translated in
(defp”,X), and(defn’, X) is then translated ifde fn”, X), wherevtx assign-
ment toX,

defp"(tx) = g, ' (defp'(tx)),

anddefn” (tx) = g, ' (defn/(tx)). The mapg, ':[0,1] — [a,,b,] associates to
everyy € [0,1] the valuely(b, — a,) + a,] € [ap, b,], and the mag,, *:[0,1] —
[an, by,] @associates to everye [0, 1] the valu€ly(b,, — a,) + an] € [an, by

Hence, giverr = (def, X U Z) € C.,, its corresponding robustness constraints
in C,o» are the bipolar constraintde fp”’, X) and{defn”, X) defined above. When
we compute the robutsness constraints, we reason segavatpbsitive and negative
preferences since in our approach commensurability widisipdities applies only sep-
arately to positive and negative preference sets, and nibietevhole preference set.
Forcing the commensurability of the possibility range witle bipolar preference set
would induce a bipolarization of possibilities, which istmeasonable. However, in or-
der to avoid loss of information, when we compute the rotesdrdegree of a solution,
considering the robustness constraints, we compensateoitve and the negative
preferences of such constraints.

Itis possible to show that the functiopsandg,, are strictly monotonic with respect
to the ordering<s induced by the operater of S. Hence such functions are invertible
and their inverse functions are monotonic with respectécstime ordering.

Proposition 1. Givenay, by, a, b, € R, witha, <s b, anda,, <g b, the following
maps are strictly monotone w.r.t. the ordering inducegd: g,: [ap,by] — [0,1] s.t.
2 andgy,: [an,bn] — [0,1] s.t.z 1 20

T = .
bp —ap ! bp—an

Proof. We now show that,, is monotone w.rt<g. If z; >g 9, thenz; —a, >g
x2 — ap, by monotonicity of the subtraction among real numbers. éduer, since
b, >s ap, thenb, — a, >s 0 and alsobpiap > 0. Thus, by strict monotonic-
ity of the product over real numbersd,b,c € R, if ¢ >g 0 anda >g b, then
ac >g bc), 72— F2%

bl S e i.e., gp(r1) >s gp(x2). Similarly, sinceb, >g an,
and thusb+a > 0, it is possible to show that, is strictly monotone. |

This allows to show that the new preference functidagp” anddefn’” in the
constraints,.,;, satisfy the same property given in [17,25]. That is, giveraasign-
menttx to controllable variables itX in a constraint = (def, con) € C.,, where



con = X U Z, the higher arelefp”(tx) anddefn” (tx), the more assignments to
uncontrollable variables iawill yield in @ preference higher than a given threshold. It
is thus possible to prove that:

—defp’(d) >s B € P (resp.,defn”(d) >s 3 € N) if and only if, for anyt,
assignment taZ with 7z (tz) > cs(gp(8)) (resp.,mz(tz) > cs(gn(6))), then
def(tx,tz) >s f.

Note that this property holds both for positive and negapireferences, since the
definition of defp” anddefn’” it is not based on the combination operators, @nd
x ) Of positive and negative preferences, which have diffelbehaviours, but only on
the operatorsup andinf derived by the additive operato#s, and+,,, which satisfy
the same properties. More precisely,

Proposition 2. Consider an UBCSRS, V., V,,, , C., C., ), whereS = (N, P, +, x,
1,0, T) is a bipolar preference structure whefe = [a,, b,] and N = [a,,b,] are
closed intervals oR. For every constraint = (def, con) € C,, such thatonnNV, =

7, with possibility distributionrz, andcon N'V,, = X, the corresponding robustness
constraints{defp”, X) and(defn”, X') are such that, for everyx assignment td\,

— defp’(tx) >s 8 € Piff, whennz(tz) > cs(gp(8)), thenpos(c)(tx,tz) >s B,
— defn’(tx) >s a € N iff, whennz(tz) > cs(gn()), thenpos(c)(tx,tz) >s a,

wheret; is an assignment t&, g, [a,, by] — [0, 1] is such thatr — =22 € [0, 1]

gn' [an,bn] — [0,1] is such thatr — % andcg is an order reversing map with
respect to ordering s in [0, 1] such thaics(cs(p)) = p, Vp € [0, 1].

Proof. We show the first statement concernidgp” (tx ). The second one, concern-
ing defn” (tx ), can be proved analogously, since by construcgipandg,, ! have the
same properties respectivelygfandg, . We recall thatle fp" (tx) = g, ' (infi,ca,
(gp(pos(c)(tx,tz))+ cs(mz(tz)))), whereAy is the set of the assignmentio

(=) We assume thatefp”(tx) >g (. If this holds, then, since, is monotone
with respect to the orderings, g,(defp”(tx)) >s gp(B), i.e., gp(g, ' (infi ea,
sup(gp(pos(c)(tx,tz)), cs(mz(tz))))) >s gp(5), thatis, sincey, is the inverse func-
tion of g, ', infi,ea, sup(gp(pos(c)(tx,tz), cs(nz(tz)))) >s gp(3). Since we
are considering totally ordered preferences, this imghessup(g,(pos(c)(tx,tz)),
Cs(ﬂ'z(tz))) >s gp(ﬁ), YVt € Ay. Forty with Wz(tz) > Cs(gp(ﬁ)), sincecg is an
order reversing map with respect<4g; such thatgs(cs(p)) = p, we havecs(rz(tz))
<s cs(cs(gp(B)) = gp(0B). Therefore, for such a valug, we have thag, (pos(c)(tx,
tz)) = sup (gp(pos(c)(tx,tz)), cs(rz(tz))) >s gp(3) and, sincey, ' is monotone,
we havey, " (g, (pos(c)(tx,tz))) >s g, " (95(8)), i.e.,pos(c)(tx, tz) >s B.

(<) We assume thattz with 7z (tz) > cs(gp(5)), pos(c)(tx,tz) >s [. Then, for
sucht z, sinceg, is monotone with respect t9s, g,(pos(c)(tx,tz)) >s g,(3) and so,
sup(gp(pos(c)(tx,tz)), cs(rz(tz))) >s gp(B). On the other hand, for evety such
thatmz(tz) < cs(gp(0)), we havecg(mz(tz)) >s gp(8) and sosup(g,(pos(c)(tx,
tz)), cs(mz(tz))) >s gp(B). ThusVtz € Az, sup(gp(pos(c)(tx,tz)), cs(mz(tz)))
>s gp(B) and soin fi e a, sup(pos(c)(tx,tz), cs(rz(tz))) >s g(3). Hence, since
g, " ismonotoneg, *(in fi, e a, (sup(pos(c)(tx,tz), cs(nz(tz))))) >s g9, (9p(8)),



i.e.,defp”(tx) >s 6 O

Example 4.Consider the constrainy = (q, {x, 21}) in Figure 3 (a). The robustness
constraints obtained from it are the constrairits= (¢p”, {z}) andr2 = {(¢qn”, {z})
shown in Figure 3 (b). They have been obtained by assumpjrige identity mapg,, :

N = [-1,0] — [0, 1] mapping every value € [—1,0] into the valugn + 1) € [0, 1],
gnt 1 ]0,1] — [—1,0] mapping every value € [0, 1] into the valug(t — 1) € [-1,0],
andcg mapping every € [0, 1] in 1 —p. We now show the meaning of these robustness
constraints. The valugp” (z = a) = 0.3 means that irc;, as shown by the property
above, for all the values of z; with possibilitym (¢;) > 1 — 0.3 = 0.7, (in this case
onlyb), we havey(x = a,t;) > 0.3. Analogously, the valugn” (z = a) = —0.5 means
that, for all the values; of z; with possibilityr; (¢;) > 1 — (—0.5+ 1) = 0.5, (that s,
for a, b, andc), we have irc; thatg(x = a,t;) > —0.5. m]

5.2 Projection constraints

As in the approach for the fuzzy case [26], projection caists are added to the prob-
lem in order to recall part of the information contained ie ttonstraints irC,,, that
will be removed later. In particular, they guarantee thatgheference degree of a solu-
tion, saypref(s), that we will define later, is a value that could be obtainetthengiven
UBCSP. The importance of considering such constraintsptaéed in Example 8.

However, the new projection constraints for the the bipotartext are defined in
a different way from those in the fuzzy case, since in the laipproblems there may
be negative preferences different from fuzzy preferenndsagso positive preferences.
Nevertheless, it is easy to check that the new approach toedtfese projection con-
straints generalizes the fuzzy one.

The set of projection constrain€s,,,; is defined by the functio@omputeProjec-
tionConstraintin algorithmB-SP. Such a function takes in input a bipolar constraist
(def, con) in Cy,, such thatonNV, = X andconnV,, = Z, and it returns constraints
(defp, X) and (defn, X), wheredefp(tx) = infyi,ca,|r,(a)>0y Pos(c) (tx,tz)
andde fn(tx) = SUP{aea,}iry (a)>0 7€g(c) (tx,tz). Inotherwordsde fn(tx) (resp.,
defp(tx))isthe best negative (resp., the worst positive) preferémat could be reached
for tx in ¢ when we consider the various valugsin the domain of the uncontrollable
variables inZ.

Example 5.Consider the constrain = {(q,{z, z1}) in Figure 3 (a), the projection
constraints obtained from it are the constraipts= (gp,{z}) andp2 = (qn, {z})
shown in Figure 3 (b). We recall that in this example posifiveferences are i, 1]

and negative preferences drel, 0] and all the preferences are ordered via the maxi-
mum operator. In this example, every assignntgno the controllable variable in p1

has positive preference equalltosince0 is the worst positive preference associated by
pos(c1) to t,, and inp2 has negative preference equabiasince0 is the best negative
preference associated byg(c;) tot,. |

Example 6.Let us consider the UBCSB = (S, V. = {z,y},Vu = {21, 22}, 7 =
{p1,p2}, Ce,Cey) in Figure 3 (a). Figure 3 (b) shows the RBCEP = (9, V.



b)
Dx=Dy={a,b} @ qp”(a) =0.3 a)=0
Dz;=Dz={a.b.c} qga,af =-05 11", ah{p) = 0.4 ah(o) = 0
q(a,b) =+0.8 0.7 .
q(a,c)=-0.3 06]" (@) = 0.5 n(a)=0
g(b,a)=-0.2 b c 21 qn”ga; =-0.2 n(b) =0
q(b,b) = +0.5 abe
g(b,c) =+0.4 @ @
f(a,@)=-04 tp(a) =0
f(a,b) = -0.5 ip”% = 8 tp(b) =0
f@a)=-04 taa)=-04 {2Z) fib.a) =+08 #"(0) =0. tna) = 0
f(a,b) = 0.5 téa,b; =-03 f(b,b) = +0.7 tn"(a) = -0.4N(B) =0
f(b,a) =+0.8 t(ac)=+08 ™ tn”(a) = -03
f(b,b) =+0.7 t(b,a) =+0.3 '
t(b,b) =-0.4 Q3+ -
tEb,c)) =+01 02 . © sl=(y=a, x=a) pref(s1)=-0.4 rob(s1)=-0.2
abc 22 s2=(y=b, x=a) pref(s2)=+0.8 rob(s2)=-0.2
s3=(y=a, x=b) pref(s3)=-0.5 rob(s3)=+0.1
s4=(y=b, x=a) pref(s4)=+0.7 rob(s4)=+0.1

Fig. 3. How B-SPworks.

{z,y},C¥, Crop), WhereC = C. U Cpy,;, built by algorithmB-SP. C.. is composed
by <f7 {.’E, y}> CPTOJ iS Composed bW]P» {LC}>, <(]TL, {ZC}>, <tp’ {{E}> and <tTL, {{E}>,
while Cr.op by (qp”, {z}), (qn”, {z}), (tp”, {x}) and(tn”, {x}). Constraints irC,.,
are obtained by using functiogg andg, as in Example 40

6 Preference and robustness

We are now ready to define the preference and the robustnesssolution in an
UBCSPQ = (S,V,,Vy,m, C.,C.,). To do that we generalize to the bipolar context
the definition of preference and robustness given for theyfuase [26]. The main
idea is to use algorithrB-SPto produce the RBCSB)' = (S, V., C*, C,o), Where
C} = C. U Cproj, and then to associate to each solutio)fi.e., to every complete
assignment to controllable variables, a pair composed tBgee@ of preference and a
degree of robustness.

Definition 4 (preference).Given a solutions of an UBCSRQ, let Q' = (S, V., C*,
Crop), WhereCy = C. U Cproj, the RBCSP obtained from by algorithmB-SP. Then
the preference of is

pref(s) = prefp(s) x prefn(s),
where
— X is the compensation operator 8f

- p?“efp(S) = H{(def,con)eC;‘} pOS(C)(S lcon),
- prefn(s) = H{(def,con)EC;f} neg(c)(s lcon)'



In other words, the preference of a solution is obtained bypensating a positive
and a negative preference, where the positive (resp., imeyjateference is obtained
by combining all positive (resp., negative) preferencethefappropriate subtuples of
the solution over the constraintsdy, i.e., over the constraints i, U Cp,.,;, that are
the initial constraints of) linking only controllable variables and the new projection
constraints.

In the following proofs we will sometimes need to use a prefiee value that we
call projection preferenceMore precisely, we will denote the projection preferente o
a solutions with

proj(s) = proju(s) x proja(s),
where x is the compensation operator 8f proj,(s) = I{(def.conyeC,pro;} POS(C)
(s leon), @andneg(c)(s Lcon)-

Definition 5 (robustness).Given a solutions of an UBCSRQ, let Q' = (S, V., C*,
Crop), WhereCy = C. U Cproj, the RBCSP obtained from by algorithmB-SP. Then
the robustness ofis

rob(s) = roby(s) x roby(s),

where

— x is the compensation operator 8f
- 7aObp(S) = H{(def,con)Esz,} pOS(C)(S lcon)v
- TObn(S) = H{(def,con)ECmb} neg(c)(s lCOH)'

In other words, the robustness of a solution is obtained emrsgting a positive and
a negative robustness, where the positive (resp., neyjatibestness is obtained by
combining all positive (resp., negative) preferences efappropriate subtuples of the
solution over the constraints @@, ., i.€., over robustness constraints.

Notice that, when positive preferences are missing and wihemegative prefer-
ences are only of the fuzzy kind, the definitions of prefeeeand robustness given
above for the bipolar case coincide with those given in [28}fie fuzzy case.

Example 7.Let us consider the UBCSR in Figure 3 (a) and the RBCSR’ obtained
from @ by algorithmB-SP Figure 3 (c) shows all the solutions €, i.e., all the com-
plete assignments to the controllable variables (thasdy) with their associated pref-
erence and robustness degrees. =]

In the following we will show why it is important to add proj@en constraints.
Such constraints avoid having solutionwith the negative preferengeef,,(s) better
than the best negative preference that could result ffgmconstraints and with the
positive preferencere f,,(s) worse than the worst positive preference that could result
from C., constraints.

Example 8.Consider an UBCSP) defined over the bipolar preference structure con-
sidered before, i.e{(N = [-1,0], P = [0,1], + = maz, X, L=-1,0=0,T =1),
wherex is s.t. x, = maz, X, = min andx,, = sum. Assume to have a solution
with pref,(s) = —0.7 andpref, = +0.5. Thenpref(s) = prefn(s) Xnp prefp(s)=
—0.74+ 0.5 = —0.2. Assume also that the best negative preference that canaieet



for s from constraints irC.,, is —0.9 and that the worst positive preference that can be
obtained fors from constraints irC,,, is +0.9. Then the best negative preference that
can be obtained by in Q is pref],(s) = prefn(s) X, (—=0.9) = min(—0.7,-0.9) =
—0.9, i.e., a negative preference which is strictly worse thanf,, (s) = —0.7. More-
over, the worst positive preference that can be obtained fior Q is pref,(s) =
prefp(s) Xp (+0.9) = max(+0.5,40.9) = 40.9, i.e., a positive preference which is
strictly better thant-0.5. Therefore, the preferences that can be obtained oK) are
in[—1,—0.9]and in[0.9, 1]. Thuspref(s) = —0.7 x,,0.5 = —0.2 cannot be obtained
in @ for s, since in() the best preference that can obtainedsfé 0.1 = —0.9 x,,,, 1
and the worst preference that can be obtained fer-0.1 = —1 x,,,0.9. Instead, if we
associate ta the preferencere f'(s) = pref,, (s) x pref,(s)= —0.9+ 0.9 = 0, then

we are sure that such a preference can be really obtainedriap. Thus, the addition

of projection constraints guarantees that every solutemapreference which can be
really obtained in the original problem. ]

Note that even if we keep separate the positive and negatferpnces during al-
gorithmB-SP, we compute the preference and robustness of a solutionmgesating
its positive and its negative components, thus we don'tiloemation. The only loss
of information that we have is due the effect of the possilbp-associative compen-
sation operator. This feature is inherited from BCSPs [8,dBere associativity is not
required in order to allow for a more general framework, ikatesirable in practice.
However, as said before, in [8, 10] it is also shown a prooedor building a bipolar
preference structure with an associative compensatioratipe

It is possible to prove that the desired properties on thestiess (i.e., Property
BP1 and Property BP2 [25]) presented previously hold.

Theorem 1. The definition of robustness given in Definition 5 satisfiepPBrty BP1.

Proof. Consider two solutions, sayands’, of a UBCSPQ = (S, V., Vi, 7, Ce, Ceu),
whereS = (N, P +, x, L, 0, T) is a bipolar preference structure such tifaand
N are closed intervals dR. For every bipolar constraint, = (def;,con;) € Cqy,
let us denote withX; the setcon; N V., with Z; the setcon,; N V,,, and with7z, the
possibility distribution associated #6,. Assume that, for every such constraintvt z,
assignment td7;, def;(s |x,,tz,) <s defi(s' |x,,tz,), To prove Property BP1, we
will show thatrob(s) <g rob(s’).

Let us denote witlt x, the values | x,, with 'y the values’ | x,, and with AZ;
the set of assignments &f;. With this notation the hypothesis can be written as fol-
lows: Vty, € AZ;, defi(tx,,tz,) <s defi(t’Xi,tzi). This holds both for the pos-
itive preferences of; and for the negative preferences®f In particular, we have
thatVtz, € AZ;, pos(ci)(tx,,tz;) <s pos(ci)(t,,tz,), andneg(c;)(tx,,tz,) <s
neg(ci)(tx,,tz,). We now consider the case of positive preferences. The ¢asga-
tive preferences can be dealt similarly.

If, Vtz, € AZ;,pos(ci)(tx,,tz) <s pos(c;)(t,,tz,), then, since the map,, that
we have defined in Section 5.1, is monotovigs, € AZ;, g,(pos(ci)(tx,,tz,)) <s
gp(pos(ci)(t'y,,tz,)). Since thesup operatoris monotong&} z, € AZ;, sup(gp,(pos(c:)
(tXi tz, ))7 Cs (Trzi (tZ7))) <s Sup(gp (pos(ci)(t/xi ) tzi))’ Ccs (Trzi (tZi ))) Moreover,
inft"ziEAZisup(g;D(pOS(ci)(tXmt}i))v CS(TrZi (t*ZL))) <s Sup(gp(pos(ci)(tXm tZi))?



cs(mz,(tz,))), Vtz, € AZ;. By the previous stepitz, € AZ;, sup(gp(pos(c;) (tx,,
t2.)). es(rz,(t2,))) <s sup(gy(pos(ci) (t,. tz,)). cs(nz, (tz,))), thus this holds
also fort' € AZ; such thatz'nft*zieAzisup(gp(pos(ci)(t’Xi,t*Zi)), cs(mz, () =
sup(gp(pos(ci) (ty,,17,)), cs(7z, (t7;))). Thereforein fy; caz, sup(gp(pos(ci)(tx,,
t3.)); ¢s(mz,(t3,))) <s infe;, eaz, sup(gp(pos(ci)(t,,ty,)), cs(nz, (t7,))). Since
the mapg;l, defined in Section 5.1, is monotone, then the followingtretaholds:
9y ' (infey eaz, sup(gp(pos(ci) (tx,,t3,)), cs(72,(t3,))) <s g, (infiy eaz, sup
(9p(pos(ci)(t,, t5,)), cs(mz, (t5,)))), i-e., with the notation used in Section 5.1 for
defining one the robustness constraintin, correspondingte; € C.,,, defp(tx,) <s
de fpj (t',). By monotonicity ofx ,, if we combine viax,, all such constraintéie fp;,
X) we have that]_[p (defp!’ . X,) defp!(tx,) <s Hp (defp X.) defpi (t,).

Similarly, using the same notation presented in Sectionibdan be shown that
H<d€fn2/!xi> defnf(tx,) <s H<d€fn2/!xi> defn(t',), since the mapg, andg, ",
described in Section 5.1, are monotone and sincextheperator is monotone.

By definition 5,r0b(s) = roby(s) x roby(s), whererob, (s) =[], .—(gef,conyecos
pos(c)(s | con)androby (s) = [1,, c—(de,conyec,., M€9(c)(s | con). Sinceroby(s) =
I} c=(def.conyecyn, POS(E)(s L con) =Tl ae sy x,) defpi (tx;), and sinceob, (s) =
IL, e=(def,con)€Crop neg(c)(s | con) = H(defp,’i’,Xﬁ de fpj (ts,), we can conclude, by
the previous step, thabb, (s) <s rob,(s’), rob,(s) <s rob,(s’), and thus, since the
X operator is monotone, thavb(s) <g rob(s’). O

Theorem 2. The definition of robustness given in Definition 5 satisfiepBrty BP2.

Proof. Consider a solution of the UBCSPs); = (S, V., Vi, m1, C., Cey) andQ2 =
(S, Ve, Vi, ma, Ce, Cey), WwhereS = (N, P +, x, L, 0, T) is a bipolar preference
structure such tha® andN are closed intervals & Assume that for every assignment
tz to the uncontrollable variables A, m2(tz) < w1 (tz). To prove Property BP2, we
will show thatrob,, (s) <g rob,(s), whererob,, is the robustness computed in the
problem with possibility distributionr;, androb,., is the robustness computed in the
problem with possibility distributiorrs.

Assume the notation considered in the first part of the prédthe@orem 1. By hy-
pothesis, we know thatt;, € AZ;, ma(tz,) < mitz,. Sincecg is an order reversing
map,Viz, € AZ;, cs(ma(tz,)) >s cs(mtz,). By monotonicity of thesup operator,
Vtzi € AZ, Sup(g;,,(pos(ci) (tXNtZi))? 05(771 (tzm))) <s Sup(gp(pos(ci)(tXmtZi))v
cs(ma (tz,))) andsup(g,(neg(ci) (tx,,tz,).cs(mi(t2,)) <s sup(gy(neg(c:)(tx,,
tz.)), cs(me (tz,))). From here we can conclude as in the proof of Theorem 1. O

The proofs of the Theorems 1 and 2 are based on the fact thpteference func-
tions in the robustness constraints, which are used to buiglandrob,, of a solution,
are obtained by using functiogg andg,, (mapping resp. positive and negative prefer-
ences in0, 1]) which are strictly monotonic, and on the fact that the o« ,, used
for computingrob, of a solution,x,, used for computingob,, of a solution, andx,
used for computeob of a solution, are monotonic. The proof regarding PropeiR2 B
depends also on the fact that is an order reversing map w.r&.s, and thus ifr (a)
< ma(a), thencg(m (a)) >gs cs(ma(a)).



7 Semantics

A solution of a BCSP is associated to a preference and a mdmsstiegree as in the
fuzzy approach [26]. In Section 2.7 we have recalled soméeftost significative
semantics (i.e., Risky, Safe, and Diplomatic) used in [B&rider the solutions which
depend on our attitude w.r.t. preference and robustnessioiWegeneralize these se-
mantics to the bipolar context as follows.

More precisely, leK s the ordering induced by the additive operator of the bipolar
preference structure of the considered UBCSP (and not tiheriog induced by the
additive operator of the c-semiring of considered USCS §4]),

— Risky semantics is a lexicographic ordering w.kts on pairs{(pref,rob), that
gives more importance to the preference degree: given= (prefi,rob;) and
A2 = (prefa, roby), Al = pisky A2ff prefi >g prefs or (prefi = pref, and
rob; >g robs). It gives more relevance to the preference that can be egldolthe
best case considering less important a high risk of beingrisistent.

— Safesemantics is a lexicographic ordering w.ls on pairs(pre f, rob), that gives
more importance to the robustness degree: gién= (prefi1,rob;) and A2 =
(prefa, roba), Al >gafe A2ff roby >g robs OF (roby =g robs andprefi >g
prefs).

— Diplomatic semantics aims at giving the same importance to preferemteaust-
ness. It is a Pareto ordering w.ktgs (and not w.r.t< as in the fuzzy case) on pairs
(pref,roby: given Al = (prefi, roby) andA2 = (prefa,robs), Al = pip A2 iff
(pref1 > prefo androb; >g robs) and prefi >g prefs Orroby >g robs).

Example 9.Let us consider the UBCSR® in Figure 3 (a). In Figure 3 (c) all the so-
lutions of Q are shown with their associated preference and robustregsses. The
optimal solution for the Risky semanticsdis = (y = b,z = a), which has prefer-
ence0.8 and robustness-0, 2, while for the Safe semantics is = (y = b,z = b),
which has preferende7 and robustness.1. For the Diplomatic semanticse ands,
are equally optimal. Note that the solutions chosen by thi®wa semantics differ on
the attitude toward risk they implement. In fact, Risky che®the solution that gives
a high positive preference in the controllable part, evahef uncontrollable part has
a high possibility of a negative preference. On the othedhéor the Safe semantics
it is better to select a solution with a higher robustness, that guarantees a higher
number of scenarios with a higher preference. In this exan§afe chooses a solution
with a lower preference with respect to Risky, but that wil/b with high possibility a
positive preference in the part involving uncontrollabéeiables. a

By definition of Risky, Safe and Diplomatic semantics, itldals that for these
semantics the desired properties on solution ordering fxperties BP3 and BP4)
presented previously hold.

Theorem 3. The solution orderings- risky, > Safe NA > piplomatic Satisfy Property
BP3.

Proof. Property BP3 states that, given two solutisrends’ of an UBCSP, ifrob(s) =
rob(s’) andpref(s) >g pref(s’), s = s'. By definition of Risky, Safe and Diplomatic
semantics, this property holds feirisky, > safe aNA> pipi. O



Theorem 4. The solution orderings- risky, > safe aNd > piplomatic Satisfy Property
BP4.

Proof. Property BP4 states that, given two solutierasds’ of an UBCSP, ifpre f(s) =
pref(s’) androb(s) >g rob(s’), s = s'. By definition of Risky, Safe and Diplomatic
semantics, this property holds f8irisiy, > safe aNA>pipi o.

Also, itis possible to prove that Property BP5 is satisfiely oy - rsry .

Theorem 5. Given an UBCSRS, V.., V,,, 7, C., Cey), the solution ordering- risy
satisfies Property BP5 if the operator of S is strictly monotonic, while the solution
orderings> g, re and > pipiomatic NEVEr satisfy Property BPS.

Proof. To prove Property BP5, we have to show that, given two salsticands’ of a
UBCSPQ = (S, V., V,,, C., Cey), such thabupref,(s,a) >g ovpref,(s’, a) and
ovprefy(s, a) >g ovpref,(s’, a) Ya assignment td/,, thens > gisry '

From UBCSR) we can obtain an equivalent problem that corresponds to B3P
QP = (S, {V}, {V¥}, Cip U Crp U Csp U Csyy, Cop U Cay), Where we recall sep-
arately the sets of constraintg,, Ci,,, Csp, C3y,, Cap, andCy,. In QP the element
V¢ is a controllable variable antf* is an uncontrollable variable, representing re-
spectively all the variables i, andV,,, having as domains the corresponding Carte-
sian products. The uncontrollable variabi& is described by a possibility distribution,
m, which is the joint possibility, i.e., the possibility olrad by performing the mini-
mum among all the possibility distributions of the uncofi&dole variables if,. Con-
straintCy, = (defp1, V) (resp.,Ci, = (defny,V°)) is defined as the combination
of all constraints inC. connecting variables i, where the negative (resp., posi-
tive) preferences are interpreted as indifference. Caimif's, = (defp2, {V°, V"})
(resp.,Cay, = (defng, {V°,V*})) is the combination of all the constraints .,
connecting variables ii. to variables inV,,, where the negative (resp., positive) pref-
erences are interpreted as indifference. Consti@ipt= (defps, V) (resp.,Cs,, =
(defns, V°)) is defined as the combination of all the constraints obthinem con-
straints inCs, interpreting the negative (resp., positive) prefererasdadifference, and
by projecting them over the controllable variableslinas described in Section 5.2.
Notice that all these combinations are obtained using agesa, (resp.,x,) of the
c-semiringS. Thus, given an assignmestto V¢ in @, which corresponds to an as-
signment to all the variables i, its preference on constraift;, is defpi(s) =
L. (aes, coniyec. Pos(ci)(s | con;) = controly(s), onCs, is defps(s) = projp(s),
and onCy Q Cs is defpi(s) x defps(s)= control,(s) x proj,(s) = prefy(s).
Given assignments, a;) to (V¢, V%), instead, which corresponds to a complete as-
signment to variables ili. andV,,, its preferencele fp2 (s, a;) (resp.defna(s, a;)), is
obtained by performing the combination of the positive frasegative) preferences
associated to all the subtuples @f a;) by the constraints irC.,, interpreting the
negative (resp., positive) preferences as indifferensedJthis new notation we have
that, V(s, a;) assignments t& ¢ and V", ovpref,(s,a;) = defpi(s) x defpa(s,a;)
= controly(s) x defpa(s,a;), andovpref,(s,a;) = defni(s) x defna(s,a;) =
control,(s) xdefna(s,a;).



If we show thatpref,(s,a;) >g prefp(s,a;) andpref,(s,a;) >s prefn(s,a;),
Ya; assignment téd’*, then, by strict monotonicity of the operator, we can conclude
thatpref(s) = prefy(s) x prefn(s) >s pref,(s’) x prefn(s’) = pref(s’), and thus
thats > Risky s’

We first show thapre f,,(s) >s pref,(s’). We know, by hypothesis, thatpre f, (s,
a;) >s ovpref,(s', a;), Va; assignmenttd’, i.e., thaicontrol, (s) x de fp2(s, a;) >g
controly,(s') x defpa(s’, a;), Va; assignment td . This must hold also for the assign-
ment toV*, that we calla*, such thatde fpa(s,a*) = proj,(s). Henceprefy,(s) =
controly,(s)xprojy(s) = control,(s)xdefpa(s,a*) >g controly(s')xdefpa(s’, a*).
Moreover, since, by definition giroj, (see Sections 5.2 and @).05,(s") <s defp2(s’,
a;),Va;, we have thatontrol,(s’) x defps(s’,a*) >g control,(s') x projy(s')
= pref,y(s’), and thupref,(s) >s pref,(s’).

To conclude that > g;sky s', We have to show thatref,, (s) >g prefn(s’). We
know, by hypothesis, thatpref, (s, a;) >g ovpref,(s’,a;), Va; assignment td’*,
i.e., thatcontrol,,(s) x defna(s,a;) >s control,(s') x defna(s',a;), Ya; assign-
ment toV*. This must hold also for the assignmentit§, that we calla*, such that
defno(s’',a*) = proj,(s’). Hence,control, (s) x defa(s,a*) >g control,(s') x
projn(s’) = prefn(s’). Moreover, since by definition of theroj, (see Sections 5.2
and 6),projn(s) >g defna(s,a;),Va;, we have thapref,(s) = control,(s) x
projn(s) >g control,(s) x defna(s,a*) >g prefn(s’), and thuspref,(s) >g
prefu(s’).

We now show that Property BPS is not satisfied-by, ;. and> p;,;. For these se-
mantics it can happen that# s'. In fact, let us consider the UBCSP= (Srcsp, Ve,
7, Vu, Ce, Cer), Where the bipolar preference structure is the fuzzy c-8egf[0, 1],
max, min,0,1), V. = {z}, Vi, = {2}, C. is composed by, = (f1,{z}), Cc,, by
ca = (fa2,{x,2}), and whereD, = {a1,a2} andD, = {s, s’} are respectively the
domain ofz andx. Let us assume that the possibility distribution oiis such that
m(a1) = 1 andm(az) = 0.7. Let us assume moreover that(s,a;) = 0.4, fa(s,a2) =
0.5, fa(s',a1) = 0.8, fa(s',a2) = 0.9, fi(s) = 0.3 and f1(s’) = 0.2. The overall
preferences arewpref(s,a;) = 0.3, ovpref(s,az) = 0.3, ovpref(s’,a1) = 0.2,
ovpref(s',az2) = 0.2, i.e.,ovpref(s,a;) > ovpref(s',a;),Va;, i = 1,2, hences
and s’ satisfy the hypothesis. The robustness valuessfand s’ (computed consid-
ering asg,, the identity map) areob(s) = inf(max(0.4,0), maxz(0.5,0.3)) = 0.4,
rob(s) = inf(maxz(0.8,0), maz(0.9,0.3)) = 0.8. Therefore, sinceob(s) < rob(s’),

s <safe ' for Safe semantics. The preference degreegmatf(s) = min(control(s),
proj(s)) = min(0.3,0.5) = 0.3 andpref(s’) = min(control(s'), proj(s’)) =
min(0.2,0.9) = 0.2. Sincerob(s) < rob(s') andpref(s) > pref(s'), s Xpip
for Diplomatic semantics. ]

We have shown before that Risky, Safe and Diplomatics seosaftr UBCSPs
satisfy Property BP3 and BP4 and that Risky satisfies alspdetyp BP5. However,
there are semantics that don’t satisfy them. Consider famgle a semantics, that we
call Mixed, such that givem1 = (prefi,rob1) andA2 = (prefa, roba), Al > \ized
A2 iff prefy x roby >g prefa x robs, Wherex is the compensation operator in the
considered bipolar preference structure. This semanginerglizes the one adopted to



order the solutions in [17] for fuzzy c-semirif{§, 1], max, min, 0, 1). It is possible to
show that Mixed semantics does not satisfy properties BP&, &hd BP5.

8 Extending the approach to UBCSPs with totally ordered
positive/negative preferences

In the previous sections we have shown a procedure for rapndBCSPs where the set
of the positive preferences (P) and the set of the negatafences (N) are two closed
intervals ofR (for example P = [3,5] andN = [—3, —2]). In this section we will show
that it is possible to generalize this method to more germpalar problems where the
set of the positive preferences and the set of the negatfenences are totally ordered
sets that are not necessarily closed intervalR.dfor example,

— they can be real intervals includingoo or —oo (for example,P = [5,+oc] and
N = [—o0, —-8]),

— they can be the union of disjoint intervals &fU {+oo, —oo} (for example,P =
[1,3] U5, +oc] andN = [—o0, —8] U [-3, —2])),

— they can be generic totally ordered sets (for example; {a, b, ¢} wherea > b >
candN = {d,e, f} whered > e > f).

To show that the new approach generalizes the previous ane/emvill show that the
same desirable properties continue to hold.

We recall that the main idea to handle UBCSPs over closedntalals is to re-
move uncertainty from them, recalling as much informatisrpassible. In particular,
the adopted procedure (see Section 5) takes as input a UBCSP (S, V., V., ,
Ce,Cey), With S = (N, P, +, x, L, 0O, T), whereP = [ap,by] and N = [a,, b,]
are two closed intervals &, i.e.., two intervals oR — {—o0, 400}, it removes uncer-
tainty from@), by eliminating the uncontrollable variables and all thastoaints inC.,,
relating controllable and uncontrollable variables, agdfiding new constraints, i.e.,
Cproj @andC,.qp, 0nly among these controllable variables.

The part of such a procedure that requires that positive agedtive preferences
are two intervals oR — {—o0, +0} is the one regarding the addition of constraints in
Crop (see Section 5.1). We recall that it works as follows. In thet itep it translates
every positive (resp., negative) preference of the comssran C..,, in [0, 1], via the map
gp: lap, by] — [0,1] such thaty — f”’“f’ (resp..gn: [an,by] — [0,1] such that: —

T ) to be able to compare, in the second step, preferencesaamsibjlities, since
the p055|b|I|t|es are defined [, 1]. Then, in the third step, it translates the preferences
in [0, 1] obtained so far inP (resp.,N), i.e., in the set of positive (resp., negative)
preferences defined if, by using the inverse mag, :[0,1] — [a,,b,] such that

y = y(by, — ap) + apl, (resp g, 1:[0,1] — [an, by] such thay — [y(b, — an) + ay).

The funCtlonSgp,gn,gp , andg.~! mentioned above have been used to prove that
some of the desirable properties hold (see proofs of Propogi, Theorem 1, and The-
orem 2). In these proofs, for what concerning the functidiesva, we have only used
the fact thaty, andgp—1 (resp.g» andg;, 1) are monotonic, and that their combinations
gives the identity map.




To extend the approach to UBCSPs where the sets of posittveegative prefer-
ences are generic totally ordered sets, we can use, instt@@dmdg;l (resp.,g» and
g 1), two functions that define a Galois insertion (see Sectid), 8ince in this case
we are sure that they are both monotonic, and their combiméithe identity map.

8.1 Galois insertions

In this section we give the notion @alois insertionsthat we will consider in our
generalized procedure, and we insert such a definition ircoinéext of abstract inter-
pretation [5].

Abstract interpretation [4, 12] is a theory developed tosogaabout the relation
between two different semantics (thencreteand theabstractsemantics). The idea
of approximating program properties by evaluating a progom simpler domain of
descriptions of “concrete” program states goes back todhlg €0’s. The guiding idea
is to relate the concrete and the abstract interpretatibmiseocalculus by a pair of
functions, theabstraction functionx and theconcretizatiorfunction~y, which form a
Galois connection.

Let (€, <) (concrete domain) be the domain of the concrete semantititg (A, C)
(abstract domain) be the domain of the abstract semantiespa@rtial order relations
reflect an approximation relation. Since in approximatfwory a partial order specifies
the precision degree of any elementin a poset, it is obvissisrae that ifv is a mapping
associating an abstract object ia,(C) for every concrete element i€ (<), then the
following holds: if «(x) C y, theny is also a correct, although less precise, abstract
approximation ofz. The same argument holdsif < ~(y). Theny is also a correct
approximation ofz, althoughz provides more accurate information thaty). This
gives rise to the following formal definition [5].

Definition 6 (Galois insertion).Let (G, <) and (4, C) be two posets (the concrete and
the abstract domain). A Galois connectitm, ) : (€, <) = (A, C) is a pair of maps
a:C— Aandy: A — Csuch that

1. « and~y are monotonic;
2. foreachr € C, z < y(a(x)), and
3. foreachy € A, a(y(z)) C y.

Moreover, a Galois insertion (o4 andC) («, ) : (€, <) = (A, E) is a Galois connec-
tion wherey - a = id 4.

8.2 A generalized approach to UBCSPs with totally ordered peferences

We now show how Galois insertions allow us to extend to UBC8&Rs totally or-
dered sets of positive and negative preferences the proeedscribed in Section 5.1
to remove uncertainty guaranteeing that the same desioge:gies continue to hold.

Consider an UBCSP with bipolar preference structtire (N, P, +, x, 1,0, T),
where P and N are totally ordered sets. Let us denote with the ordering induced
by the additive operator. Consider also the totally ordees, 1] with the ordering—
such that wheré C 1.



We now redefine the functiong, and g;l presented in Section 5.1 as follows:
<gp,g;1) : (P, <g) = ([0,1], C) is a Galois insertion. We know, by definition of
Galois insertion, that

— gp : P — [0,1] is monotonic, i.e.¥Yx1,z2 € P, withz1 < 3, gp(21) C gp(22);

- g,' :[0,1] — P is monotonic, i.e.¥y1,y2 € [0,1], with y1 C w2, g, ' (1) E
v(y2);

- gp_1 gp = id.

Similarly, we redefine the functiong, andg,, ! presented in Section 5.1 as follows
(gn, g 1) : (N, <) = ([0, 1], ) is a Galois insertion.

Note thatg, andg;1 can be defined in several different ways, but all of them have
to satisfy the properties of the Galois insertions, fromahtit derives, among others,
thatg,(Lp) = 0 andg,(T p) = 1, i.e., that the bottom aP must be mapped ifr and
that the top ofP must be mapped in 1. The same must holdjfpandg; *.

Moreover, we redefine the map as follows: it is an order reversing map such that
Va,b € [0,1], if a < b, thencg(a) C cs(b), andvp € [0, 1], cs(cs(p)) = p.

It is possible to show that, using the new definitionsg;;zfg;l, gns g, %, andesg,
that all the desired properties that have been shown by ixygjehese functions (i.e.,
Proposition 2, Theorem 1, and Theorem 2) continue to hold.

Proposition 3. Consider an UBCSRS, V., V,,, w, C., C., ), whereS = (N, P, +, x,

1,0, T) is a bipolar preference structure wheféand NV are totally orderedsets. For
every constraint = (def, con) € C., such thaton NV, = Z, with possibility distri-
butionwz, andcon NV, = X, the corresponding robustness constraitdsfp”, X )

and(defn”, X) are such that, for everyx assignment to¥,

_ defy(tx) s B € P iff, whenz(t7) > cs(gy(3)), thenpos(c)(tx, 1) =5 5,
—defn(tx) >s a € N iff, whennz(tz) > cs(gn(a)), thenpos(c)(tx,tz) >s «,

wheret  is an assignment t&, (g,, g, ') : (P, <s) = ([0, 1], E) and(gn, g, ") : (N,
<g) = ([0, 1], C) are Galois insertions, andg is an order reversing map such that
Va,b € [0,1], if a < b, thencg(a) 3 cs(b), andVp € [0,1], cs(cs(p)) = p.

Proof. We show the first statement concernidgp” (tx ). The second one, concern-
ing defn”(tx ), can be proved analogously, since by construgipandg;, ! have the
same properties respectivelygfandg, . We recall thatle fp" (tx) = g, ' (infi,ca,
(gp(pos(c)(tx,tz))+ cs(mz(tz)))), whereAy is the set of the assignmentfo

(=) We assume thafefp”(tx) >s 3. If this holds, then, sincg, is monotone,
gp(defp"(tx)) 3 gp(8), 1.0, (g5 (infi, e, suplgy(pos(c)(tx tz)), cs(mz(tz)))))
J g,(0), thatis, since the combination gf andgp—1 produce the identity mapn fi,c 4,
sup(gp(pos(c)(tx,tz), cs(nz(tz)))) 2 gp(B). Since we are considering totally or-
dered preferences, this implies thatp(g,(pos(c)(tx,tz)), cs(mz(tz))) I gp(5),
Ytz € Az. Fortz with mz(tz) > cs(gp(0)), by definition ofcg, we havecg(rz(tz))

C cs(es(gp(B)) = gp(B). Therefore for such a valug; we have thay,(pos(c)(tx,
tz)) = sup(gp(pos(c)(tx, tz)), cs(rz(tz))) 2s gp(B) and, sincey, ' is monotone,
we havey, " (g, (pos(c)(tx,tz))) >s g, ' (95(8)), i.e.,pos(c)(tx,tz) >s B.

(<) We assume thattz with 7z (tz) > cs(gp(5)), pos(c)(tx,tz) >s 5. Then, for



suchtz, sinceg, is monotoneg, (pos(c)(tx, tz)) J g,(3) and sosup(g,(pos(c)(tx,
tz)), cs(nz(tz))) 2 gp(B). On the other hand, for every, such thatr;(tz) <
cs(gp(B)), we have, by definition afs, cs(mz(tz)) 3 g,(5) and sosup(g, (pos(c)(tx
tz)),cs(rz(tz))) 3 gp(B). ThusViz € Az, sup(gp(pos(c)(tx,tz)), CS(WZ(tZ))) 3
L
O

gp(B) and sain fi e a, sup(pos(c)(tx,tz), cs(rz(tz))) 2 g,(3)- Hence, sincg, " is
monotoneg, ' (infi,ea, (sup(pos(c)(tx,tz), cs(nz(tz))))) >s g, ' (95(0)), i..
defp”(tx) s -

Consider an UBCSPRS, V.., V,,, 7, C., Ce,), WhereS = (N, P, +, x, L, 0, T) is
a bipolar preference structure whdpeand N aretotally orderedsets. It is possible to
prove that, if we determine the robustness constraints tiémew mapg,,, g;l, s
g1, andcg defined in this section, the definition of robustness giveBéfinition 5
satisfies Properties BP1 and BP2.

Theorem 6. If we determine the robustness constraints described itid3e5.1 with
the mapSgp, 95" gns gn ', @nd g such that(g,, g, 1) : (P, <s) = ([0,1], E) and
{gn,971) + (N, <g) = ([0, 1], E) are Galois msertlons ands is an order reversing
map such thata, b € [0, 1], if a < b, thencg(a) 3 cs(b), andvp € [0,1], cs(cs(p)) =
p, the definition of robustness given in Definition 5 satisfiepPBrty BP1.

Proof. The first part of proof coincides with the one of Theorem 1.

Consider two solutions, sayand s’, of a UBCSPQ = (S, V., Vy, 7, Ce, Ceu),
whereS = (N, P +, x, L, 0, T) is a bipolar preference structure such tifaand
N are totally ordered sets. For every bipolar constrainte (def;, con;) € C.,, let
us denote withX; the setcon; N V,, with Z; the setcon; N V,,, and withrz, the pos-
sibility distribution associated t&,;. Assume that, for every such constraint V¢ z,
assignment tdZ;, def;(s |x,,tz,) <s def;(s' |x,,tz,), To prove Property BP1, we
will show thatrob(s) <s rob(s’). Let us denote witttx, the values | x,, with ¢
the values’ |x,, and with AZ; the set of assignments d&f;. With this notation the
hypothesis can be written as followgtz, € AZ;, defi(tx,,tz,) <s defi(t'y,, tz,)-
This holds both for the positive preferences:pénd for the negative preferencescpf
In particular, we have thattz, € AZ;, pos(ci)(tx,,tz,) <s pos(ci)(t'y, tz), and
neg(ci)(tx,,tz,) <s neg(c;)(t',,tz). We now consider the case of positive prefer-
ences. The case of negative preferences can be dealt §ymilar

The new part of the proof starts from here. M, € AZ;, pos(c;)(tx,,tz,) <s
pos(c;i)(t'y,,tz,), then, since the map, is monotoneytz, € AZ;, g,(pos(ci)(tx,,tz))
C gp(pos(ci)(t'x,,tz,)). Since thesup operator is monotong&f z, € AZ;, sup(gp(pos(c;)
(tx.:tz,)),cs(mz,(tz,))) E sup(gp(pos(ci)(ty, tz)), cs(nz (tz,))). Moreover, we
havein fi;, caz, sup(gp(pos(ci)(tx,,t3,)), cs(mz,(13,))) E sup(gy(pos(ci)(tx,. t2,),
cs(mz, (tz ))),Vtz, € AZ;.Bythe previousstepty, € AZ;, sup(g,(pos(ci) (tx,,tz)),
cs(mz,(tz,))) E sup(gp(pos(ci) (t,,tz,)), cs(mz, (tz;))), thus this holds also for
ty: € AZ; such thah'nft*ziEAZisup(gp(pos(ci)(t’Xi 1%.)), es(mz, (t,))) is equal to
sup(gp(pos(ci)(ty,,t7)), cs(mz, (t7))) Therefore, we can conclude th’atft*zi cAZ,;
sup(gp(pos(ci)(tx;, t7,)), cs(mz,(t3,))) E infiy, caz, sup(gp(pos(ci)(t,, t7,)),
cs(mz, (t.))). Since the mag, ' is monotone, theg;l(inft}ieAzi sup(gp(pos(c;)



(tx.s t2,)), es(mz,(t7,)))) <s gp ' (infi, eaz, sup(gp(pos(ci)(ty,, t3,)), cs(nz,
(t3.)))). i.e., the preferences in the robustness constraint&:gig (tx,) <s de fp; (tx,).
By monotonicity ofx,, if we combine viax, all such constraintéde fp//, X) we
have that] [, sy x,) defPi(tx;) <s 11, (gespr x,) defpi (t,)-
Similarly, it can be shown thzif[<defn;,7xi> defn!(tx,) <s H<defn;,7xi> defnj(t,),
since the mapg,, andg,, 1, are monotone and since the, operator is monotone.

From here we can conclude as in the proof of Theorem 1.
O

Theorem 7. If we determine the robustness constraints described itiddes.1 with
the mapsy,, g, ', gn. g, ', @andcg such that(g,, g, ') : (P, <s) = ([0,1], C) and
{gn, g, 1)« (N, <s) = ([0, 1], C) are Galois insertions, ands is an order reversing
map such thata, b € [0, 1], if a < b, thencg(a) 3 cs(b), and¥p € [0, 1], cs(cs(p)) =
p, the definition of robustness given in Definition 5 satisfiepBrty BP2.

Proof. The first part of proof coincides with the one of Theorem 2.

Consider a solution of the UBCSPQ; = (S, V., V,,71,C,, Coy) and Qo =
(S, Ve, Vi, ma, Cey Cey), WhereS = (N, P 4+, x, L, 0, T) is a bipolar preference
structure such thaP and N are intervals ofR (Z or Q). Assume that for every as-
signment ; to the uncontrollable variables W,, 72 (tz) < m1(tz). To prove Property
BP2, we will show thatob,, (s) <g rob,(s), whererob,, is the robustness computed
in the problem with possibility distribution,, androb., is the robustness computed in
the problem with possibility distributions. The new part starts from here.

Assume the notation considered in the first part of the pré@heorem 6. By hy-
pothesis, we know thatt ;, € AZ;, ma(tz,) < mitz,. By definition ofcg Vi, € AZ;,
cs(me(tz;)) 2 cs(mitz,). By monotonicity of thesup operator, we have't, €
AZ;, sup(gp(pos(ci) (tx,,tz,)),cs(mi(tz,))) E sup(gp(pos(ci)(tx,,tz)), cs(m
(tz.))) and sup(gy(neg(ci) (tx,.tz,)). cs(mi(tz)) T sup(gy(neg(e:)(tx, tz,)).
cs(ma (tz,))). From here we can conclude as in the proof of Theorem 6. O

We now show, via an example, how to instantiate the functiteimed above, i.e.,
Ips g;l, gn, 9,1, andeg, in an UBCSP where the positive and the negative are not
defined over intervals. Notice that this UBCSP cannot beesbhy the procedure for
defining robustness constraints described in Section Bde gt is only able to han-
dle UBCSPs where the positive preferences and the negaievare defined over real
intervals.

Example 10.Consider an UBCSRS, V.., V,,, 7, C., Cry,), whereS = (R~, R mauz,
sum, -00, 0, +00). Let us denote witk< g the ordering induced by the additive operator
of S. To compute robustness constraints we can choosg g map such thatp €
[0,1], cs(p) = 1 — p. Moreover, the Galois insertiofy,,, g, 1) : (R~, <s) = ([0, 1],
<gr), Where<p is the classical order over real numbers, can be defined fierelift
ways. For example, we can use the Galois insertion shownamiple 17 of [5], such
that g,, maps all the reals below some fixed reabnto0 and all the reals ovelr, 0]
into the reals ir0, 1] by using a normalization functiofi(r) = (z — r)/x. Similarly,
we can define the Galois insertidg,, g, ') : (RT, <g) = ([0, 1], <g), assuming that
g, maps all the reals above some fixed reahto1 and all the reals ovdp, z] into the



reals in[0, 1] by using the same normalization function considered befae f(r) =
(x — 1)/ O

9 Conclusions and future work

We have considered problems with bipolar preferences andnirollable variables,
and with a possibility distribution over such variables (C&Ps). We have then defined
the notion of preference and robustness for such problesnsegld as some desirable
properties that such notions should respect, also in ogldt the solution ordering.
By following the approach shown in [26] for problems with iyzpreferences and un-
certainty, we have provided an algorithm for UBCSPs, thataees the uncontrollable
part of the problem while altering the controllable part nder to loose little informa-
tion. On the resulting problem, we have then defined the peate and the robustness
of a solution of the initial UBCSP. Different semantics uselstwo notions to order
the solutions according to different attitudes to risk. Ve@dnthen shown that our pro-
posed notions of preference and robustness, as well asroangies, satisfy the desired
properties we have considered.

We have first considered UBCSPs where the sets of positivenagdtive prefer-
ences are closed real intervals, and then we have gener#iiegproposed approach
to the case of generic totally ordered preferences by udisgyaction techniques and
Galois connections.

The results of the paper show that it is possible, withoutmeftort, to deal simul-
taneously with possibilistic uncertainty and bipolar preihces, while making sure that
several desirable properties hold and without requiringpalbrization of the possibil-
ity scale. In other words, our results state that it is pdegib extend the formalism in
[8,10] to bipolar preferences and the one in [25] to uncetyawhile preserving the
desired properties.

Following this approach, a solver for UCSPs would thus fieshove the uncon-
trollable part, and then find an optimal solution of the coltéible part according to a
chosen semantics. Such a solver may be developed by adaptisgyaint propagation
and branch and bound techniques that have been alreadydlafidémplemented for
bipolar CSPs in [8, 10].
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