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Abstract— In this paper the packet delay statistics of a fully re-
liable Selective Repeat ARQ (SR ARQ) scheme is investigated. An
N-State Discrete Time Markov Channel model is used to describe
the packet error process and the channel round trip delay is
considered to be non zero, i.e., ACK/NACK messages are received
at the transmitter m channel slots after the packet transmission
started. The ARQ packet delay statistics is evaluated by means of
an exact analysis by jointly tracking packet errors and channel
state evolution. Furthermore, procedures to derive a Markov
Channel description of a Rayleigh fading process are discussed
and the delay statistics obtained from the Markov analysis is
compared with that estimated by simulation of the SR ARQ
protocol over the actual fading process. The accuracy of the delay
statistics obtained from the Markov Channel representation of
the actual fading process is investigated by explicitly addressing
the effect of the number of states considered in the Markov
channel model and the impact of the Doppler frequency. Finally,
besides giving a new analysis to obtain link layer statistics
over N-State Markov channels, the paper provides important
considerations on the adequacy of the widely used Markov
modeling approach for the characterization of higher layer
performance.

Index Terms— Automatic repeat request, data communication,
Markov processes, error analysis, delay estimation, modeling.

I. INTRODUCTION AND MOTIVATION

MULTIMEDIA applications in modern communication
systems are highly sensitive to channel impairments

and require effective error control techniques. Such techniques
often rely on Forward Error Correction (FEC), Automatic
Retransmission reQuest (ARQ), or a combination of the two.
In such scenarios, a trade-off exists between data reliability,
latency, and efficient bandwidth usage, and a good understand-
ing of the impact of error control strategies becomes pivotal to
provide adequate application level performance depending on
the underlying channel behavior. In the past, great effort has
been devoted to the characterization and the understanding of
these error recovery systems. This paper is a natural follow-
up of this research activity with the aim of understanding the
impact of the channel error statistics on the performance of
ARQ error control schemes.

In this work, we focus on a fully reliable Selective Repeat
(SR) ARQ [1]; our aim is to derive delay statistics so as
to understand how the retransmission process introduced by
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the ARQ error recovery algorithm affects the packet delay
experienced at higher layers. In SR ARQ, the transmitter
sends packets (PDUs) in order of their arrival time at the link
layer buffer, while the receiver replies to each received PDU
with ACK/NACK messages by sending them over a feedback
channel. The sender retransmits only negatively acknowledged
(NACK) packets and then resumes the transmission process
from the last packet sent so far. In this paper, we consider the
statistics of the delivery delay, defined in the literature [1] as
the sum of transmission delay and re-sequencing delay. These
quantities are the delay between the first transmission and the
correct reception of the PDU and the time spent in the receiver
re-sequencing buffer for the packet to be released in-sequence
at higher layers, respectively.

This problem has already been studied in the literature, but
only partial solutions have been provided. Basically, the com-
plexity of the analysis has lead to the introduction of several
approximations [1]–[3] or to considering an indirect approach,
i.e., to study the transmitter/receiver buffer occupancy [4]–[6],
or to account for a zero round trip delay [7] so as to limit
the ARQ system memory which needs to be tracked in the
analysis.

A first analysis dealing with a round trip time larger than
0 has been proposed in [8], where the independent channel
error model has been considered, by providing exact analysis
and simple heuristics for the approximation of the delay
statistics over channels characterized by a large round trip
time. However, the accuracy of the iid model heavily depends
on the specific radio technology that is considered at the
physical layer of the wireless system under analysis, as well as
on the wireless channel behavior. A further study, dealing with
a Two-State Markov channel, has been proposed in [9], which
presents an analytical framework to obtain the delivery delay
statistics in the time-varying channel case. However, this work
was developed under the assumption of a Two-State Markov
packet error model, which may somewhat limit the validity of
the analysis. The first contribution of the present paper is to
relax this assumption by allowing the packet error process to
be described by means of a Markov chain with an arbitrary
number of states, which widely generalizes the problem.

Note that the analysis reported in this paper is not only an
extension of the study presented for the Two-State Markov
channel model [9], that by itself represents a new theoretical
contribution. In this paper, we also indicate how accurately
the Markov modeling approach can be applied to model
the delay behavior of a retransmission protocol layer. To
the best of our knowledge, this is the first contribution that
provides explicit and quantitative indications in this sense,
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i.e., on the statistical impact at the protocol layer when the
N-State Markov channel is used to capture the Rayleigh
fading physical error process. Many past studies (see [10]–
[12], among others) dealt with the Markov modeling of the
actual fading process, but mainly focused on physical layer
aspects rather than considering the impact on the higher layer
performance. To this respect, other contributions of the current
paper are to devise a new method to derive the Markov chain
from the underlying fading statistics and to investigate the
appropriate number of states to be considered to obtain the best
fitting of protocol layer performance. Regarding the first point,
we introduce here a simple but effective strategy that considers
the shape of the protocol packet error function directly in
the partitioning of the SNR, i.e., to decide how the Signal to
Noise Ratio axis has to be subdivided in the Markov channel
state assignment. As will be shown next this method, in spite
of its simplicity, gives good results. An important finding of
the paper is that the Markov model approach can reproduce
with sufficient accuracy the statistics at the protocol layer.
This is an important conclusion since, as highlighted in past
studies [10], this model often fails at the physical layer, where
it is unable to fully capture the complexity of the underlying
fading channel. In this case, relevant discrepancies can be
observed, for example, in terms of autocorrelation function.
However, the same Markov model seems accurate enough to
capture higher layer protocol statistics.

A last and minor contribution of the current paper is to
extend the analysis above by accounting for an unreliable
feedback channel. This aspect has often been neglected in
previous studies due to the expected lower error rates over
such channels, thanks to the higher degree of FEC that can be
used to protect feedback messages and to their smaller size
that also implies lower error rates. As will be shown in the
sequel, the analysis in this case can be kept unchanged through
an expansion of the number of states of the channel transition
matrix.

The remaining part of the paper is organized as follows. In
Section II, the SR ARQ transmission process is described. The
Markov Channel model is introduced in Section III, where
the case including erroneous feedback is also reported. In
Section IV, we present the exact analysis for the evaluation
of the ARQ delivery delay statistics over an N-State Markov
model, whereas in Section V we introduce a new method
to obtain an N-State Markov model to represent a quantized
Rayleigh fading channel. The results about these two contri-
butions are then reported and compared in Section VI. More
specifically, Subsection VI-A presents the analytical results of
the delay statistics compared with others obtained by simula-
tion, whereas Subsection VI-B qualitatively and quantitatively
discuss the accuracy that can be achieved in terms of protocol
layer performance when an N-State Markov model is used to
represent the actual error process of a channel characterized
by Rayleigh fading. Finally, Section VII concludes the paper.

II. MODEL FOR ARQ QUEUEING AND TRANSMISSION

PROCESSES

Consider a transmitter and a receiver, exchanging packets
through a noisy and fading wireless link. For the analysis,
we assume that time is slotted, where the slot duration

corresponds to the (constant) transmission time for a single
packet. We consider a non-zero round-trip time, equal to m
slots.

In the SR ARQ scheme (see [13] for further details), data
packets (ARQ PDUs) are transmitted continuously by the
sender, whereas the receiver informs the transmitter about
packet receptions with acknowledgment (ACK) or negative
acknowledgement (NACK) messages, so that as long as ACKs
are received, the sender transmits packets in increasing numer-
ical order. We assume that the transmitter adopts a stringent
time-out, so that receiving an undecodable feedback packet or
not receiving a feedback packet at all within m slots from the
transmission of a data PDU is implicitly equivalent to a NACK
message for that specific PDU. In this way, the outcome
of a transmitted data packet is always known after a full
round-trip time. When a negative feedback for a transmission
(NACK or timeout) is received, a pre-emptive retransmission
is selectively triggered. We assume that a fully reliable Link
Layer protocol, i.e., with unlimited retransmission attempts,
is used to counteract channel impairments. It is also assumed
that both nodes have unlimited buffer size.

We will consider both cases of error-free ACK/NACK
messages, which is the simplest possibility, and erroneous
feedback channel. In Section III it will be shown that this
latter case can be accounted for through an extension of the
number of states of the channel transition matrix.

The round-trip delay m is commonly referred to in the
literature [1] as the ARQ window size. The ACK/NACK
message for a packet transmitted in the generic slot t is
received after the transmission of up to m− 1 PDUs (new or
retransmitted), i.e., at the end of slot t+m−1. This means that
in case of NACK the sender always retransmits in slot t+m
the PDU transmitted m slots earlier, and at each instant there
are exactly m transmissions for which the feedback message
is still pending.

Our analysis focuses on the delivery delay; indeed, other
delay terms could be considered, such as the queueing delay
at the transmitter buffer. The motivation of our choice lies in
the fact that the delivery delay is adequate to study the impact
of Markov modeling approaches, which is the main focus of
the present paper. In addition, the analysis of the delivery delay
justifies simpler assumptions for the arrival process, since this
delay component is not so sensitive to the traffic intensity, as
shown in [1], [5], [9], [14], whereas it is strongly impacted
by channel characteristics.

This reasoning allows us to consider a simple model for
the arrival process, although our analysis could be extended,
if necessary, at the price of additional complexity. Hence, we
consider that once a PDU is correctly transmitted, a new one is
always present in the source buffer (Heavy Traffic [1]) which
describes exactly a continuous packet source.

This assumption is often reasonable to model situation of
practical interest such as a TCP file transfer (FTP-like session)
or video/audio continuous data streaming transmitted using
UDP. To motivate the first example, consider the case of a
server placed within the fixed Internet and transmitting a data
flow to a mobile terminal (MT) connected through a wireless
channel to an Access Point (AP). In this case, fully reliable
ARQ can be exploited to promptly recover the errors over the
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wireless link. If the packet error rate on the wired portion
of the network is reasonably low and the buffer at the AP
properly dimensioned, TCP can be transmitted from the server
to the MT without significant degradation and, in most cases,
by filling the wireless channel pipe [15]. If these conditions
are verified, the wireless channel is filled by TCP packets
and the ARQ buffer is never emptied. However, note that the
hypothesis of Heavy Traffic can be relaxed and hence the
analysis generalized by following an approach as in [5], if
needed.

III. CHANNEL MODEL

Consider an N-State Discrete Time Markov Chain (DTMC),
where the slot duration corresponds to the ARQ packet trans-
mission time. We account here for a general Markov model
where states 0, 1, . . . , ν− 1 correspond to error–free packet
transmission, whereas the remaining states ν, ν + 1, . . . , N −
1 mean erroneous transmission. Formally, each state n ∈
{0, 1, . . . , N−1} is associated with a packet error probability
Pe[n] = u[n− ν], where u[·] is the unit step, i.e., u[n] = 1 if
n is greater than or equal to 0, and u[n] = 0 otherwise. The
model is fully described by the N ×N transition probability
matrix P = {p}ij , where pij is the probability that the state
in the next slot is j given that the state in the current slot is
i.

This formulation can include the case of erroneous feedback
channel as well. For instance, assume that the forward and
reverse channel are characterized by means of two independent
DTMCs. Let F = {f}ij and R = {r}ij be the related channel
transition matrices with G = g + 1 and S = s + 1 states,
respectively. Formally:

F =

⎛
⎜⎝

f00 · · · f0g
...

. . .
...

fg0 · · · fgg

⎞
⎟⎠ , R =

⎛
⎜⎝

r00 · · · r0s
...

. . .
...

rs0 · · · rss

⎞
⎟⎠

(1)
Hence, the whole channel state can be represented by joining
the state of both forward and reverse channel. By considering
each possible combination of states, we can define a N ×N
matrix P, with N = n+ 1 = GS states:

P =

⎛
⎜⎝

p00 · · · p0n

...
. . .

...
pn0 · · · pnn

⎞
⎟⎠ = F

⊗
R =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f00r00 · · · f00r0s f0gr00 · · · f0gr0s
...

. . .
... · · · ...

. . .
...

f00rs0 · · · f00rss f0grs0 · · · f0grss
...

. . .
...

fg0r00 · · · fg0r0s fggr00 · · · fggr0s
...

. . .
... · · · ...

. . .
...

fg0rs0 · · · fg0rss fggrs0 · · · fggrss

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where
⊗

is the Kronecker product between matrices [16]. The
channel can then be modeled by a DTMC, whose transition
matrix is P. The number of states has been expanded to N =

GS. If the forward and backward channel have γ and σ error-
free states over G and S respectively, it is straightforward to
prove that the number of good states of the resulting DTMC is
γσ. In Subsection VI-A we will show that in practical cases,
instead of following the exact approach presented above (i.e.,
by means of the Kronecker product between matrices), it is
possible to account for the feedback channel by just increasing
the forward channel error rate.

The channel model presented above (including the ex-
tension for erroneous feedback) comprises, as a particular
case, the widely used [10], [17] K-state model where S =
{0, 1, ...,K − 1} is the set of the states and for i, j ∈ S, εi ∈
[0, 1] is the PDU error rate in state i, i.e., a PDU transmitted
when the channel is in state i is erroneous with probability εi,
whereas tij is the transition probability from state i to state
j. This last Markov Chain is completely specified by the pair
(T, E), where T = {t}ij is the transition probability matrix
and E = (εi) is the state error probability vector. The model
is equivalent to considering N = 2K states (with ν = K) in
S′ = {0, 1, . . . , ν − 1 = K − 1, ν = K, . . . , N − 1}, where
the transition probabilities pij , 0 ≤ i, j ≤ N − 1 are derived
as follows:

pij =

{
txy(1 − εy) j ∈ {0, 1, . . . ,K − 1}
txyεy j ∈ {K,K + 1, . . . , N − 1} (3)

where x = i − Ku[i − K], y = j − Ku[j − K], 0 ≤
x, y ≤ K − 1. Moreover, note that in the extended model
states {0, 1, . . . ,K − 1} are error free, i.e., a PDU is always
transmitted correctly in these states, whereas in states K
through N − 1 PDUs are always transmitted erroneously.

This procedure will be extensively used throughout the
paper, in particular we will derive a Markov representation of a
Rayleigh fading channel with K states, each of them with error
probability εi, and this will be extended to an N -State Markov
chain as explained above. This latter Markov chain will be
used to track the ARQ layer packet delivery process. Hence,
by jointly considering the two contributions of this paper, i.e.,
Markov models of fading channels and analysis of the SR
ARQ delivery delay for Markov channels, we will be able to
obtain the delivery delay statistics directly from the physical
channels parameters. This will also lead in Subsection VI-B
to discuss the appropriate number of states of the involved
Markov chains.

IV. COMPUTATION OF THE DELIVERY DELAY STATISTICS

IN AN N-STATE MARKOV CHANNEL

Computing the delivery delay statistics for a single reference
PDU, called in the sequel tagged PDU, transmitted using
Selective Repeat ARQ, can be done by tracking the successful
reception of the tagged PDU, as well as all PDUs with lower
identifier. In fact, PDUs are always released in-order to the
upper layers.

First of all, suppose the tagged PDU is transmitted for the
first time in slot t = m. It can be proven that this implies
that all previous PDUs (i.e., those with smaller identifier),
excluding at most the m − 1 PDUs transmitted in slots 1
throughm−1, have been successfully received, and that in slot
0 a successful transmission occurred (otherwise in slot m we
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would have a retransmission). Hence, the delivery delay of the
tagged PDU equals the time required for the correct reception
of all packets in the m-sized window comprising slots from 1
to m, which will be called fundamental window, due to its key
role in the analysis. The formal proof of this statement can
be found in [9], where an algorithm to evaluate the resolution
time of the entire fundamental window is presented for the
Two-State Markov model. Here, we extend this method to the
more general N-State case, as outlined below.

Before proceeding with the analysis, note that due to the
finite round-trip time, there is a constant time gap between
the transmission of a PDU and its arrival at receiver’s side.
Let us call this value tc. It is straightforward to see that tc,
being just a constant term approximately equal to m/2, can
be neglected for the analysis in order to simplify the notation.
Hence, in the following we will consider the statistics as the
probability Pd[k] that the delivery delay equals k slots plus the
constant tc. We will often omit this by speaking, for the sake
of simplicity, of a delay equal to k slots, even though the full
delay must always include also the additional constant term
equal to tc.

Consider now the first transmission of the fundamental win-
dow. Some of the PDUs transmitted during slots 1, 2, . . . ,m
are correctly received. In this case, we denote the correspond-
ing slots as resolved, to indicate that such PDUs do not need
to be retransmitted. In other words, a resolved slot contains
a PDU which does not block the release of the tagged one.
If a slot i is resolved, all slots i + κm, with κ a positive
integer, can be marked as resolved. In fact, they correspond
to the transmission of a PDU with higher id than the tagged
one, and therefore can be ignored for the delivery analysis.
On the other hand, if the transmission in the fundamental
window is erroneous, we denote the corresponding slot j
as unresolved. Such a label means that this slot prevents
the tagged PDU from being released, and that m slots later,
i.e., in slot j + m, a retransmission will take place. If the
retransmission is successful, the corresponding slot, and also
every slot j + κm, with κ positive integer, will be marked
as resolved. Otherwise, j + m is also marked as unresolved
and the procedure is repeated. Therefore, the tagged PDU is
released after the mth slot of a sequence of consecutive slots
marked as resolved, i.e., when the last unresolved slot becomes
resolved.

To show the behavior of the algorithm, consider this simple
example. If m = 3 and the channel starts from a good state
and then is alternatively bad or good, the algorithm ends in
slot 5 after the following outcome: 1=resolved, 2=unresolved,
3=resolved, 4=resolved (despite the channel error, as it was
previously marked), 5=resolved, and every further slot is also
resolved.

Since this algorithm requires to check whether a sequence
of m resolved slots occurs, it can be applied by tracking the
resolved/unresolved status of the m−1 most recent past slots,
which at time t are slots t−m+ 1, t−m+ 2, . . . , t− 1. We
carry this information with a vector of binary variables bj , for
j = 0, 1, . . . ,m − 2, so that bj = 1 if slot t − m + 1 + j
is still unresolved, and bj = 0 otherwise. In this way we
obtain a string of bits denoted by b that keeps memory of
which slots are yet to be resolved. To simplify the notation,

in what follows we represent the bitmap b as the integer i =∑m−2
j=0 bj2j . Instead, the status of the current slot, i.e., slot

t, is not depicted by a simple binary variable, since in this
case also the channel state has to be tracked. This is the only
information corresponding to a channel state required in the
analysis, as the Markovian nature of the channel allows to
ignore the channel state in slots t−m+1, t−m+2, . . . , t−1
once it is known in slot t. To represent this last information,
we associate to the last PDU a variable ω, which has 2N − ν
possible values. In fact, there are three main cases:

i) the channel is good, which implies that the slot is
resolved (it does not matter in this case if the slot was
already resolved, or it is resolved exactly now). This
possibility comprises ν states, where ν is the number
of error-free states of the Markov channel.

ii) the channel is bad, but the slot was resolved in a previous
transmission. There are N − ν possibilities to be in this
states, one for each erroneous state of the channel.

iii) the channel is bad and the slot remains unresolved as was
before. As the previous one, this comprises N − ν cases.

Therefore, ω has a value in the ranges {0, 1, . . . , ν−1} in case
i), {ν, ν+1, . . . , N−1} in case ii), {N,N+1, . . . , 2N−ν−1}
in case iii), so that ω is equal to the channel state in cases i)
and ii), whereas for case iii) the value of ω equals the channel
state augmented by N − ν.

Consider now the random process X(t) = (i(t), ω(t))
which jointly tracks slot-by-slot the Markov channel evolution
and the status of the m latest slots. According to the above
definitions and discussion, this process is a Markov chain.
In general, each state has M possible values, where M
depends on the structure of X(t) = (i(t), ω(t)). Since i(t)
can assume 2m−1 possible values (remember that i(t) has a
binary representation with m− 1 digits) and ω(t) belongs to
{0, 1, . . . , 2N−ν−1}, we have that M = (2N−ν)·2m−1. Ac-
cording to this description, the resolution of the fundamental
window corresponds to the first transition of the Markov chain
X(t) through one of the states (0, 0), (0, 1), (0, 2), . . . (0, N−
1). In fact, the m−1 past PDUs are resolved if i = 0 and the
current one is resolved if ω < N . In other words, we must
account for every combination of the fully resolved window
with any channel state.

In order to determine the possible transitions and the
corresponding transition probabilities, assume the values of
b = (b0, b1, . . . , bm−2) and ω at time t are known. At time
t + 1 the new values b′ and ω′ of these variables depend
on b, ω and, due to the Markov nature of the channel, on
the channel state at time t + 1, called y, 0 ≤ y ≤ N − 1.
In particular, b′ is a clocked version of b into the past, i.e.,
(b′0, b

′
1, . . . , b

′
m−3, b

′
m−2) = (b1, b2, . . . , bm−2, f(ω)). The last

bit of b′, which depends also on ω, is f(ω) = 1 if ω ≥ N
(current slot at time t was still unresolved), and f(ω) = 0
if ω < N . More compactly, b′m−2 = f(ω) = u[ω − N ]. For
what concerns ω′, if b0 = 0 the corresponding slot has already
been resolved, and therefore ω′ = y, i.e., 0 ≤ ω′ ≤ N − 1
according to the channel state y at time t + 1. On the other
hand, if b0 = 1, the slot is still unresolved at time t, and
therefore we have 0 ≤ ω′ ≤ ν− 1 if the channel at time t+1
is good (slot is resolved at this time) and N ≤ ω′ ≤ 2N−ν−1
otherwise (slot remains unresolved). In the former case, it is
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again ω′ = y, whereas in the latter ω′ = y + N − ν. Note
that given X(t) there are only N possible destinations for
X(t + 1), since the shift of the bitmap is deterministic and
the only random variable is y which can assume N values.
Formally, the transition probabilities from (i, ω) to (i′, ω′) are:

• if i is even (i.e., b0 = 0), then:

P [X(t+ 1) = (i′, ω′)|X(t) = (i, ω)]

=

⎧⎪⎪⎨
⎪⎪⎩

pxy if i′ = � i2� + u[ω −N ]2m−2,
x = ω − (N − ν)u[ω −N ],
ω′ = y, y = 0, 1, . . . , N − 1

0 otherwise

(4)

• if i is odd (i.e., b0 = 1), then:

P [X(t+ 1) = (i′, ω′)|X(t) = (i, ω)]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pxy if i′ = � i2� + u[ω −N ]2m−2,
x = ω − (N − ν)u[ω −N ],
ω′ = y + (N − ν)u[y − ν],
y = 0, 1, . . . , N − 1

0 otherwise

(5)

where the use of ω′ = y+(N − ν)u[ω−N ] in the latter case
means that a good channel 0 ≤ y ≤ ν − 1 leads to ω′ = y
whereas a bad channel ν ≤ y ≤ N−1 leads to ω′ = y+N−ν,
N ≤ ω′ ≤ 2N − ν − 1, i.e., a situation of bad channel and
unresolved slot. According to the above rules, the transition
probability matrix can be built, which will have only N non-
zero entries per row.

In order to find the delay statistics, we proceed as follows.
First of all, let us define an appropriate function τ :

τ : Im−1
N → {0, 1}m−1

τ(β) = τ (β0, β1, . . . , βm−2) = (d0, d1, . . . , dm−2)
s.t. dj = u[βj − ν]

∀j = 0, 1 . . . ,m− 2 (6)

where IN = {0, 1, 2, . . . , N − 1}. The meaning of τ(·) is to
transform vectors (β) of base-N digits into binary digits so
that the output digit is 0 if the input digit is less than ν, and
1 otherwise. That is, if β = (β0, β1, . . . , βm−2) contains the
Markov channel states (βj ∈ {0, 1, 2, . . . , N − 1}) in m − 1
consecutive slots, each element of d = (d0, d1, . . . , dm−2)
is a binary digit equal to 0 for a slot where a successful
transmission has occurred (good channel), whereas dj =
1 corresponds to an erroneous transmission in slot j (bad
channel state).

Let Π = [Π0 Π1 · · · ΠM]T be a column vector whose
M = (2N−ν)·2m−1 scalar entries represent the probabilities
that the system starts in a given state. This starting state is
defined as the system state at time t = m, when the tagged
packet is assumed to be transmitted, and can be decomposed
in the evaluation of i(m) and ω(m).

It is easy to see that the former, which corresponds to the
resolved/unresolved status for all the slots 1 through m − 1,
only depends on the channel evolution. In fact, every slot of
the fundamental window is marked according to the channel
state only. Thus, the function τ(·) can be applied to the vector
of channel states during the fundamental window, giving 0
or 1 according to the channel state being good or bad. If

we consider the binary-wise representation of i(t), which we
have already named b, and assume that β is a sequence of
values in {0, 1, . . . , N − 1} representing the evolution of the
channel from slot 1 to slot m − 1, it is easy to recognize
that b = τ(β). In other words, the function τ(·) is used to
translate the information regarding the channel state in slots
1 through m − 1 (N possible values) into the corresponding
resolved/unresolved status (two possible values).

To evaluate the value of ω(m) instead, we have to keep
in mind that the channel in slot 0 is bound to be error-free.
Hence, Π is computed as follows:

• if ω ∈ {0, 1, . . . , ν − 1} ∪ {N,N + 1, . . . , 2N − ν − 1}:

Π(i,ω) =
ν−1∑
z=0

πz
Sπ

∑
β∈Gb

pzβ0

[m−2∏
j=0

pβj−1βj

]
pβm−2g (7)

• if ω ∈ {ν, ν + 1, . . . , N − 1}:

Π(i,ω) = 0 (8)

where Sπ =
∑ν−1

j=0 πj , g = ω − (N − ν)u[ω − N ] and
Gb = {β ∈ Im−1

N : τ(β) = b} and πz , z ∈ {0, 1, . . . , N −1}
is the Markov Channel steady state probability of state z.
These equations simply track all possible combinations of
initial state at time 0 (which is constrained to be good, hence
between 0 and ν − 1) and evolution of the channel during
the fundamental window, represented by the vector β (which
must satisfy τ(β) = b). Also, note that it is impossible to
have ω(m) ∈ {ν, ν + 1, . . . , N − 1} since it corresponds to
have a resolved slot but an erroneous channel at time m. Since
slot m corresponds to the first instance of transmission for the
tagged PDU, the only possibilities are that the slot is either
resolved or unresolved according to the channel state.

In this way, the starting state is determined. For a slot t > m
instead the evolution is more complicated, since it depends on
previous states also. For example, a slot can be resolved even
if the channel is in an erroneous state, hence i(t) no longer
corresponds to the channel state only. However, by exploiting
the Markovian behavior of the system, since (i(m), ω(m))
is known we can evaluate (i(t), ω(t)) also for t > m by
recursively applying Eqs. (4) and (5). This can be done in
a compact way as follows.

Let e0 = [(i0, ω0) (i1, ω1) · · · (iM, ωM)]T be a column
M-sized vector of all zeros except for the entries correspond-
ing to states (i, ω) ∈ {(0, 0), (0, 1), . . . , (0, N − 1)}, that are
equal to 1. According to the previous reasoning, these are the
only states where the fundamental window is resolved. If Φ is
the transition matrix of the Markov chain X(t), we determine:

Pc[k] = ΠΦke0, k ≥ 0 . (9)

Pc[k] is the probability that the delivery delay is less than
or equal to k slots plus the propagation delay tc (which
however, being just a constant term, can be neglected as
previously discussed). Finally, the delivery delay statistics
Pd[k] is determined as:

Pd[0] = Pc[0] , Pd[k] = Pc[k]−Pc[k− 1] ∀k > 0 . (10)
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V. DERIVATION OF THE N-STATE MARKOV MODEL

In this section we discuss possible procedures to derive
an N-State Markov model of a Rayleigh fading channel,
including both known and original proposals. In fact, several
techniques to deal with this problem have been presented in
previous research (see [10]–[12], among others). Here, the
simple method of [10] is considered first. Later on, in order to
gain some understanding on the impact of the selected method,
we propose a new approach which takes into account the shape
of the packet error probability function. This is done with the
aim of using a given number of Markov channel states (N ) in
an efficient way, i.e., in order to better describe the packet error
behavior at the ARQ layer. Since the scope of this section is
mainly to validate the analysis presented above, we limit here
our investigation to these two techniques. In spite of their
simplicity, these methods are effective and lead to an accurate
description of the ARQ delay statistics.

Consider the transmission system introduced in Section II
and let Γ denote the received signal to noise ratio (SNR). The
pdf of Γ is exponential as follows [10]:

pΓ(γ) =
1
γ0
e−γ/γ0 , γ ≥ 0 (11)

where γ0 = E[Γ]. Let 0 = Γ0 < Γ1 < · · · < ΓK−1 < ΓK =
+∞ be K + 1 thresholds for the SNR. The Rayleigh channel
is said to be in state x = 0, 1, . . . ,K − 1 if the received SNR
is in the interval [Γx,Γx+1). Moreover, associated with each
state x there is an error probability εx that is the PDU error
rate experienced in state x. We define F(γ) as the function
mapping the instantaneous SNR level γ into the conditional
PDU error probability. Once the threshold levels are chosen for
every state, the PDU error rate in the generic state x is found as
εx = (

∫ Γx+1

Γx
F(γ)pΓ(γ)dγ)/θx, where θx is the steady state

probability to be in state x. In this work we assume a π/4-
DQPSK modulation scheme [11], i.e., the bit error probability
can be approximated as ε(γ) ≈ (4/3)erfc(

√
γ). F(γ) is then

derived as 1− (1−ε(γ))L, where L is the ARQ packet length
expressed in bits.1 The steady state probability θx is computed
as:

θx =
∫ Γx+1

Γx

pΓ(γ) dγ = e−Γx/γ0 − e−Γx+1/γ0 (12)

The simplest approach for choosing the SNR thresholds [10]
is to consider θx = 1/K , ∀x = 0, . . . ,K − 1. In this case,
the threshold levels can be easily estimated by recursively
applying Eq. (12), given that Γ0 is known. However, this
procedure leads to a rough estimation of the underlying fading
process (see [11], [12]). For this reason, we consider here an
improved threshold selection criterion. We first choose two
numbers, 
1 and 
K−1 so that 
1 is close to 1 and 
K−1

is close to zero. Then we choose the first (Γ1) and the last
(ΓK−1) unknown thresholds such that Γ1 = F−1(
1) and
ΓK−1 = F−1(
K−1). Once Γ1 and ΓK−1 are known, θ0
and θK−1 can be evaluated by Eq. (12). In this procedure
we assign first the states 0 and K − 1 to the SNR levels
corresponding to a PDU error rate that is larger than 
1

1More complicated expressions could be used to account for the use of
error correction codes.
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and smaller than 
K−1, respectively. At this point, we use
the remaining K − 2 states to characterize the SNR interval
between Γ1 and ΓK−1, i.e., where the PDU error rate is in the
range [
1, 
K−1]. The remainingK−2 thresholds are chosen to
satisfy θx = (1−θ0−θK−1)/(K−2) = e−Γx/γ0−e−Γx+1/γ0 .
A graphical representation of this procedure is reported in
Fig. 1. In practice, with our novel method, thresholds Γ1 and
ΓK−1 are moved according to the shape of the error proba-
bility function, thereby reducing the space between them. The
remaining K−2 states are used to map the range [Γ1,ΓK−1)
with a finer partitioning, so that we have a higher number of
equivalent states tracking this interval with respect to previous
techniques (see Fig. 2). In other words, we concentrate the
SNR quantization on the most critical part in terms of error
probability. This is the reason of the good performance that
will be shown later on in Subsection VI-B.

Once the thresholds have been computed, the transition
probabilities are derived as in [12] according to:

tij =

∫ ζi+1

ζi

∫ ζj+1

ζj
fR1R2(r1, r2, ρ)dr1dr2

θi

fR1R2(r1, r2, ρ) =
4r1r2
λ

e−(r21+r22)/λI0(2ρr1r2/λ) (13)

where ζi =
√

Γi/γ0, fR1R2(r1, r2, ρ) is the bivariate Rayleigh
joint pdf [12], λ = 1 − ρ, ρ = J0(2πfdTp) is the correlation
of two samples of the underlying Gaussian process that are
spaced by Tp seconds, fd is the Doppler frequency, Tp is
the ARQ PDU transmission duration, J0(·) and I0(·) are the
Bessel function and the modified Bessel function of the first
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kind and order zero.
By using this method, a Markov Chain specified by (T, E)

can be derived, where T = {t}ij , E = (εi) with i, j =
0, 1, . . . ,K − 1. To evaluate the delivery delay with the
theoretical procedure described in Section IV, it is necessary
to transform this Markov chain into a modified version with N
states. This can be done by following the approach explained
in Section III, in particular by considering Eq. (3) which
relates (T, E) to a N × N matrix P, where each of the K
intervals is mapped into 2 states, one error-free and one always
erroneous. Thus, the number of error-free states ν is equal to
K (and so is the number of erroneous states), i.e., N = 2K .
The matrix P obtained in this way is finally used to derive
the ARQ delay statistics as in Section IV.

VI. RESULTS AND DISCUSSIONS

In this section, we report some examples for the delivery
delay statistics and we discuss the goodness of a Markov
channel model in the approximation of the ARQ packet
delay statistics in a Rayleigh fading channel. In the following
Subsection VI-A, some examples for the link layer delivery
delay statistics with erroneous feedback and over a fading
channel are reported first. Later on, in Subsection VI-B, the
accuracy of the Markov modeling approach will be discussed
considering the effect of the Doppler frequency fd and of the
number of Markov channel states N .

A. Results for the Delay Statistics over an N-State Markov
Channel

First of all, we present some results showing the impact
of erroneous feedback channel, introduced in Section III. We
consider two independent DTMCs for forward and reverse
channel. For the sake of simplicity, we account for two
states only (good and bad channel) in both DTMCs (G =
S = 2). Hence, the number of states of the DTMC for the
whole channel, described by the matrix P is four, according
to the analysis in Section III. We refer to εf and εr as
the steady-state error probabilities of forward and reverse
channel, respectively. Formally, εf = f01/(f01 + f10) and
εr = r01/(r01 + r10). Now, to completely specify the channel
matrices it is sufficient to define the average error burst length,
that can be computed as 1/f10 and 1/r10 for the forward and
reverse channel, respectively. The resulting matrix P has one
good state (ν = 1, i.e., both forward and feedback channels
are error-free) and three bad states (either forward or feedback
channel, or both, are bad). The analysis in Section IV can
therefore be applied to this channel matrix to obtain the delay
statistics in the erroneous feedback case. In the following, we
will consider two cases, an iid channel, where the burst length
is derived as 1/(1 − εf ) and 1/(1 − εr), for the forward and
reverse channel, respectively, and a bursty channel, with a
given burst length b (equal to 15 in the reported results) which
is the same for both channels.

In Figs. 3 and 4, we consider different values of εf and plot
the mean value and variance of the delivery delay, as a function
of ρ = εr/εf . In these figures, both mean and variance have
been normalized to the case of no feedback errors and the
round trip time is m = 6. It is emphasized that for low values
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of the ratio εr/εf the mean delay in the presence of feedback
errors (Fig. 3) is approximately increased by a factor 1 +
ρ (i.e., the normalized delay is approximately linear in ρ),
which means that the effect of the reverse channel impairments
can be translated on the forward channel by considering an
equivalent steady state error probability ε = εf+εr. The lower
εf , the better the approximation. A similar phenomenon holds
also for the variance metric (Fig. 4), even though there is a
slightly larger discrepancy between the curves and the linear
behavior in ρ.

A general conclusion which holds for many cases of interest
is that the effect of an erroneous reverse channel can be
simply accounted for by increasing the forward channel error
probability. This approximation is good when εr 
 εf , which
is reasonable in realistic cases as usually acknowledgement
packets are significantly shorter than data packets, resulting
in a lower packet error rate. Moreover, in force of their
smaller size, they can be more easily protected by means of
FEC techniques. For these reasons, the results discussed in
the following will consider always error-free ACK/NACKs,
even though they can be promptly extended as discussed in
Section III to the erroneous feedback channel case.
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We focus now on the second contribution of the paper, i.e.,
Markov modeling of Rayleigh fading channels. In Figs. 5
and 6, we report the delivery delay statistics considering
fd = 10 Hz and fd = 100 Hz, respectively. In both graphs,
the statistics obtained by simulation is compared against the
two threshold selection methods, i.e., the equal probability
method (θx = 1/K) presented in [10] and the novel procedure
presented in the previous Section. It shall be observed that
our model better succeeds in approximating the real behavior.
However, a Markov approximation of the actual channel error
process is, in general, not able to perfectly match the real
statistics. This is, indeed, a limitation of the Markov model
that, even when a large number of states is considered, does
not perfectly fit the actual fading process statistics. However,
it is worth noting that fading is a complex process that we are
trying to approximate using a relatively simple model. In this
view, our approach leads to statistics that are reasonably close
to the real behavior. We also shall observe that the differences
in the delay performance between Markov modeling and actual
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Fig. 7. Delivery delay statistics: comparison between Markov Channel
analysis derived from the uniform SNR partitioning method (θx = 1/K) and
Rayleigh channel simulation as a function of k by varying N and considering
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Fig. 8. Delivery delay statistics: comparison between Markov Channel
analysis derived from our SNR partitioning method and Rayleigh channel
simulation as a function of k by varying N and considering L = 360 bits,
bit rate 1024 Kbps, fd = 10 Hz, m = 6.

Rayleigh channel are very small in spite of the substantial gaps
observed in the autocorrelation function [12]. This supports the
validity of the Markov approach and also allows us to infer
that not all the physical properties of the underlying channel
have to be taken into account in order to accurately model
ARQ protocol performance.

In Figs. 7 and 8 we report some curves to qualitatively
discuss2 the dependence on the number of states of the Markov
model, N . In more detail, Fig. 7 shows the uniform SNR
partitioning, whereas in Fig. 8 our novel approach is reported.
For low values of N , the fit between simulation and analysis
substantially improves by increasing the number of states.
However, this trend does not hold indefinitely. In the uniform
method, N = 10 is emphasized as a better choice than
lower values, but in our approach when N ≥ 6 no further
significant improvements are observed, since the modeling
becomes better in the first few rounds but slightly worse

2A quantitative comparison is reported in Section VI-B.
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elsewhere. In general, our method exhibits good performance
with a lower value of N than uniform partitioning. However,
as N increases both methods do not improve that much and
also the advantage in using our approach vanishes. Thus, our
proposal appears to be suitable to derive good results with low
values of N (low-complexity models).

To have a large number of states is inefficient from the com-
putational point-of-view and also seems to fail to accurately
model the channel beyond a certain limit. In order to obtain
better results within a Markov model it would be interesting to
investigate how the statistics improves considering a radically
different approach to derive the Markov chain. For instance,
in [18] the authors considered the fading derivative as an
additional dimension for this purpose. In that paper, they
proved that this method can better reproduce the oscillatory
behavior of the autocorrelation function. In [19] some results
are reported concerning the mean throughput value of the SR
ARQ protocol. Further investigations on how these techniques
can improve the ARQ delivery statistics are left for future
research.

B. On the Accuracy of Link Layer Statistics Obtained by
means of the Markov Modeling Approach

In this subsection, we present some results on the accuracy
of the delay statistics derived in Section V. We refer here
to P and [k] as the statistics derived analytically, i.e., to the
distribution derived by means of the Markov modeling ap-
proach, whereas we refer to P simd [k] as the delay distribution,
which has been directly measured by simulating the SR ARQ
algorithm discussed in Section II over a Rayleigh fading
channel. To introduce Rayleigh fading behavior we use the
well-known Jakes model [20].

In order to weigh the difference between these two statistics,
we consider here the Kullback Leibler distance (see [21],
p.18). The Kullback Leibler distance D(p ‖ q) between
two generic distributions p[n] and q[n] is a measure of the
inefficiency of assuming that the exact distribution is q[n]
when the true distribution is p[n]. For example, if we knew
the real distribution of the random variable (p[n]), then we
could construct a code with average length H(p) (where H
is the entropy associated to the distribution p). If, instead,
we used the code to describe the approximate distribution
q[n], we would need H(p) + D(p ‖ q) bits on average to
describe the random variable. The Kullback Leibler distance
arises as an expected logarithm of the likelihood ratio of the
two distributions:

D(p ‖ q) =
∑
n∈N

p[n] log
p[n]
q[n]

(14)

where N is the (common) domain set of the distribution
functions.

Fig. 9 reports the distance between the two distributions
P and [k] and P simd [k] as a function of the number of states N
used to build the Markov chain, whereas in Figs. 10 and 11
we plot on the x-axis the Doppler frequency (fd). In Fig. 9
we consider the i.i.d. case, taken as a reference value, by
assuming a constant error probability, regardless of the state
of the Markov chain. Our partitioning approach is used with
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1 = 0.9 to derive the case N = 4, which corresponds to a
classic Gilbert-Elliot channel model. Then, 
K−1 = 0.01 is
added for the cases with N ≥ 6. Several curves are plotted
for all these values of N by considering different Doppler
frequencies. It is interesting to observe that the distance metric
has a minimum, i.e., an optimal number of states for the
construction of the Markov chain exists. Moreover, in all cases
we considered, this optimal number of states is upper bounded
by 10. Hence, with our method, more than 10 states do not
help to increase the accuracy of the estimated delay statistics.
It is clear that the independent error assumption provides poor
results, even at high Doppler frequencies. The Gilbert Elliot
model substantially improves the performance of the i.i.d.
model by about one order of magnitude. However, especially
for correlated channels (fd = 10 Hz), the accuracy of the 4-
state model is still worse than the precision achievable with
N = 6.
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In Figs. 10 and 11, the distance metric is plotted as a func-
tion of fd reporting both SNR partitioning methods considered
in this paper, i.e., the equal probability method [10] and our
novel improved proposal, respectively. Both approaches are
compared also to the independent error case. Again, we can
observe how the independent error assumption, where a single
state is used to model the Rayleigh fading channel, fails
to accurately model the underlying channel behavior. From
Fig. 10, it is also evident that the equal probability method
(θx = 1/K) provides a rough approximation for the delivery
delay statistics when N ≤ 6. The problem, in such a case,
is that the SNR range is not partitioned taking into account
the shape of the PDU error probability function (Fig. 1).
Our method, reported in Fig. 11, obtains better results for
N = 4, 6. Already for N = 8, the two solutions are shown to
be approximately equivalent. Moreover, the newly proposed
method does not further improve that much; henceforth, it is
confirmed that it is useful to apply it with a low N . From both
figures, two main cases of system operating conditions can be
highlighted, namely correlated (i.e., fd < 50) and uncorrelated
(fd ≥ 50), for which the system performs differently. In more
detail, an increase in the number of the states of the Markov
model is beneficial only in the former case, whereas it does not
lead to substantial improvements in the latter for the uniform
partitioning, and performs even worse for our method.

VII. CONCLUSIONS

In this work two main contributions are presented. First of
all, an exact analysis to derive the delivery delay statistics of
SR ARQ packets in an N-State Markov Model is presented.
Secondly, this analysis is used to provide some results on
the goodness of the Markov approximation of a Rayleigh
fading channel in terms of delay statistics. The accuracy of
the obtained statistics has been quantitatively evaluated and
the impact of the number of states considered for the Markov
channel modeling has been discussed.

The obtained results show that the statistics obtained using
a Markov channel is reasonably close to the actual ones.

However, the match between these distributions can not be
made arbitrarily good by increasing the number of states due
to inherent limitations of Markov channel modeling. Further,
the independent error model has been confirmed to be a poor
approximation for the delay statistics over a Rayleigh fading
channel, even for large values of the Doppler frequency. In-
stead, the approximation introduced by the Markov modeling
approach is satisfactory when the number of states is larger
than 6 and the appropriate Signal-to-Noise Ratio partitioning
method is selected. To this end, we discussed and evaluated
existing strategies and proposed a new method, which is
simpler than other techniques but is in general better capable
of modeling the underlying channel, by achieving in some
cases more satisfactory performance.

Finally, the delay analysis has been extended to the unreli-
able feedback case, by giving, also in this case, some useful
insights on the impact of ACK/NACK errors.
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