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Abstract—We consider a smart micro grid where multiple
distributed energy sources (DESs) inject current to support loads
and reduce power losses over the lines. Distributed current
control algorithms rely on a communication infrastructure, to
exchange control data among DESs. For stability purposes, a
token ring approach is often implemented for the control, where
at any given time a single node with communication and control
capabilities (smart node) has the token and is in charge of imple-
menting the control action entailed by the algorithms (i.e., current
injection). In this paper, we investigate the token scheduling,
defining optimality criteria, devising lightweight suboptimal rules
and assessing the performance of the optimal and suboptimal
but online techniques. Two relevant power loss minimization
schemes from the literature are considered to demonstrate the
effectiveness of the proposed scheduling, which is assessed over a
large number of grid topologies, that are statistically generated
according to established literature models.

I. INTRODUCTION

We consider electricity grids where distributed energy

sources (DESs) from renewables (e.g., photovoltaic panels or

wind-powered micro turbines) exist and may act as energy

producers to provide ancillary services. In the considered sce-

nario, an overlay communication infrastructure [1] is utilized

to orchestrate the DESs in a distributed fashion with the

objective of minimizing power losses.

We note that the current flowing in the electrical transmis-

sion cables yields a partial power dispersion (in the form

of heat) that contributes to economical and environmental

costs. By suitably setting the amount of active/reactive power

injected by DESs these power losses can be reduced, whilst

sustaining the connected local loads. This translates into a

decreased power demand to the mains, which lessens the use

of high voltage lines and the associated operational cost for

the utility.

Early works on the reduction of power losses focused

on centralized solutions [2], [3], which are however hardly

scalable as the grid size increases and new DESs are dy-

namically added. Moreover, they require a full knowledge of

the grid, in terms of topology, load activity and DES power

availability, thus also inducing a significant communication

overhead. Distributed solutions were investigated in, e.g., [4]–

[7]. While often being suboptimal, these are more flexible and

have lighter requirements in terms of communication.

We observe that in the existing literature the communication

infrastructure was often taken for granted and the communi-

cation patterns among nodes were not optimized. Most papers

considered a sequential adjustment of the current injected from

the smart nodes, i.e., at any given time, a single node updates

the amount of current injected, while the remaining ones do

not apply any change. This approach assures grid stability

and induces a token-ring communication strategy where, at

any given time, a single node has the token and implements

the control action, requesting and sending data over the

communication network. We stress that the order by which

the token is passed among the nodes has not been considered

in previous works, although this affects the convergence rate

of the control algorithms as well as the power drained during

the optimization process.

In this paper, we aim at optimizing the token exchange

procedure among smart nodes in order to either reduce the

token path length or to maximize the convergence rate of

selected optimization algorithms for power loss minimization.

Specifically, we investigate the importance of the scheduling

rule that is utilized for the token assignment, assessing the

impact of optimal control sequences as well as that of an

original and lightweight heuristic approach. Two relevant

power loss minimization algorithms, namely, the current based

surround control (CBSC) [5], [8], and the distributed optimal

reactive power flow control (DORPF) [6], [9], which have been

proven to significantly reduce power losses in smart micro

grids are considered. The performance of these schemes is

then tested over a large number of grids that are statistically

generated according to established literature models [10].

The rest of the paper is organized as follows. Section II

presents the considered electrical grid model, and provides a

short overview of the two selected control techniques. The

optimization of the token assignment strategy is addressed in

Section III. Details on the grid generation methodology are

provided in Section IV, which is then used in Section V to

obtain numerical results in terms of total dissipated power. Our

concluding remarks are given in Section VI.

II. SYSTEM MODEL

In this section, we specify the electrical and communication

models for the micro grid. In addition, we briefly review the

selected optimization techniques, highlighting their communi-

cation requirements.

A. Grid Model

We model the micro grid electrical topology as a directed

tree. The root of the tree represents the point of common

coupling (PCC), the other nodes represent loads, distributed
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Fig. 1. Power micro grid example. Think lines represent line impedances, whereas dashed lines represent logical PLC communication links.

energy sources (DESs) and connection points. Loads are repre-

sented either as constant resistive-inductive series impedances

or as constant current sources. DESs are modeled as current

sources, which may be connected in parallel to a load, which

is referred to as the associated load (DESs are always as-

sumed to feed their associated loads). Some of the nodes are

equipped with smart meters and powerline communication

(PLC) transceivers and, in turn, are able to take electrical

measures and to communicate using the power lines. These

nodes are referred to as smart nodes (SNs) and are identified

by indices 1, . . . , N with N being the total number of SNs.

SNs identifiers are assigned by the PCC and remain fixed

during the optimization. The communication capability of SNs

induces a logical overlay communication network built on

top of the power grid physical topology. The communication

network is exploited to exchange local electrical measurements

to minimize the distribution power losses and the total power

demand to the PCC.

Fig. 1 shows a micro grid example with added com-

munication capabilities. The set of nodes and branches are

respectively denoted by N = {PCC, Ni : i = 1, . . . , 9}
and B = {Bj : j = 1, . . . , 9}. Load Li is connected to

node Ni for i = 1, . . . , 9. DESs G3 and G8 are connected to

nodes N3 and N8 and respectively feed the associated loads

L3 and L8. In Fig. Fig. 1 the SNs are the PCC, N3 and N8.1

The dashed lines connecting these SNs highlight the logical

communication network structure, while communication data

is exchanged over power cables thanks to PLC.

B. Distributed Optimization Algorithms

Local Control (LC) [4], [11] decreases the amount of power

injected by the PCC by allowing DESs to directly feed their

associated loads. This technique requires no communication

among nodes and, in turn, the set of SNs is empty.

1Note that communication can only occur among smart nodes, as the
remaining ones are not equipped with the required PLC communication
capabilities.

Current Based Surround Control (CBSC) [5], [8] groups

the nodes into clusters. Clusters are defined by checking, for

any pair of DESs, whether their connecting path includes any

other DES or the PCC. If this is not the case, a cluster is

defined as the set containing the two DESs, the associated

nodes, and all the nodes between them in the electrical network

topology. For each cluster, the DES that is closest to the PCC

is elected as the cluster head (CH). In the case where one of

the two DESs in the cluster is the PCC, this is elected as the

CH (i.e., we assume that the PCC has better communication

and computational resources with respect to the other nodes).

Clusters in Fig. 1 are C1 = {PCC, N1, N2, N3} and C2 =
{PCC, N5, N6, N8}. The DESs inject the current (complex or

reactive depending on the optimization policy) that is required

by the loads in the respective cluster. The current injected for

optimization purposes is scaled by a real factor 0 ≤ α ≤ 1
such that, referring to IC as the total current needed in the

cluster, the currents injected by the two DESs in the cluster

are αIC and (1−α)IC . The parameter α is determined for each

cluster according to the instantaneous power demand from the

loads therein and branch impedances. Hence, this technique

requires that every node is a SN.

Distributed Optimal Reactive Power Flow Control

(DORPF) [6], [9] requires that DESs are grouped into possibly

overlapping clusters and that, for each of them, one of the

nodes becomes the cluster head (CH). Also, within each

cluster, the gradient of the power distribution loss is esti-

mated through local measurements. Relying on the estimated

gradient, the CH computes the set of reactive powers that

have to be injected by the two DESs in its own cluster

(one being associated with the CH) in order to minimize the

distribution power losses and spreads this information among

its neighboring DESs. While different clustering procedures

are possible, as stated in [6], the most effective clustering

technique is the one proposed in [5] (see CBSC above). This

technique requires that only the nodes that are connected to

DESs are SNs, thus relaxing the requirements on the nodes in

terms of communication and complexity. Due to this, the same



clustering approach of CBSC is also considered for DORPF.

III. TOKEN RING CONTROL

CBSC and DORPF require that groups of nodes iteratively

take a control action (i.e., inject a certain amount of power

in the grid) in order to reduce as much as possible the

distribution power loss. The PCC is considered as a SN during

the optimization process and its identifier is 0. The procedure

of having at any given time a single SN allowed to modify the

injected current, before letting the next SN to operate is similar

to the token ring approach widely used in communication

networks. Therefore, we will use here the related terminology,

where however token ownership is associated to the current

control, rather than to the possibility to transmit information.

Indeed, when a node has the token it may communicate (in

a two-way fashion) with other nodes in order to collect the

information need for the control action. However, only SN

with the token initiates the communications, while other nodes

are only allowed to answer its requests. When the current token

owner releases the token, the next owner is chosen according to

a specific policy. Two policies for the owner selection are now

discussed. The first ordering strategy aims at maximizing the

convergence rate of the optimization algorithms. The second

ordering strategy is considered as a comparison reference and

simply aims at minimizing the length of the token path in

each token round, i.e., minimize the communication overhead

needed to move the token.

Heuristic for Convergence Rate Maximization: improving

the convergence rate of the considered optimization algorithms

has two main benefits. First, the optimization becomes more

responsive to changes in the power demand from the loads.

Second, further power is saved during optimization. The

convergence rate can be improved by suitably tuning the order

in which nodes perform the control action, i.e., defining a

new token owner selection rule. The optimal (in the sense of

maximum convergence rate) selection rule requires that at least

one SN has a full knowledge of the network state, but, in this

case, a centralized optimization approach would be the best

choice. For this reason a heuristic selection rule, that does not

increase the amount of information that each SN has to collect

for the optimization purpose, is proposed. This rule is based

on the observation that updates in clusters with a higher power

demand should have a larger impact on the total power loss.

In details, any two clusters are referred to as adjacent if

at least one pair of nodes belonging to the two clusters is

connected by a line with no nodes in between. Hence, if a

node belonging to the two clusters exists, the two clusters are

adjacent. At the beginning of the optimization process, the

token owner is uniformly chosen at random among the SNs by

the PCC. At each optimization step, the token owner collects

information about the actual power demand of all the adjacent

clusters. The token is then passed to the head of the cluster

with the highest power demand. If more CHs are eligible, one

of them is chosen uniformly at random.

Token Path Length Minimization: as a baseline strategy we

consider that obtained by minimizing the length of the token

path. To this end, suitable SNs identifiers and a next owner

updating rule have to be defined. The identifiers have to be

assigned starting from 1 and visiting the nodes with a depth

first pre-ordered tree traversal. If the current token owner is

the SN with identifier i, then the next owner identifier will be

j = (i+ 1) mod N . This procedure assures that the number

of times the token has to jump between different subtrees

is minimized, thus providing a more efficient communication

solution, although in general suboptimal in terms of control

algorithm convergence.

IV. ELECTRICAL GRID TOPOLOGY GENERATION

For a meaningful performance analysis, the selected opti-

mization and scheduling algorithms are evaluated over a large

number of power grid topologies. Toward this end, in this

section a random power grid generation procedure, based on

[10], [12] and used in [3], is briefly reviewed. According

to [12], many real world networks can be successfully rep-

resented as small-world graphs. These graphs are generated

starting from a regular ring lattice with V vertices and de-

gree k (which are user defined parameters). The generation

process considers each edge of the graph and, according to

a user defined rewiring probability probability p, one of the

endpoints of the edge is changed. The rewiring probability is

a tunable parameter determining the degree of randomness of

the generated graph. A zero rewiring probability leads to a

completely regular graph, while a unitary rewiring probability

leads to a completely random graph. Most real world scenarios

are neither suitable to a completely regular representation, nor

to a completely random one, thus an intermediate probability

is often best suited to represent real networks.

In [10], it is pointed out that the small-world graph gen-

eration procedure does not account for some peculiar charac-

teristics of real world power grids. In particular, actual grid

topologies exhibit a quite low average degree, which would

lead to disconnected graphs. For this reason, in this paper we

adopt an ad hoc random graphs generation procedure based

on small-world graphs. Specifically, starting from a tree with

V vertices, V − 1 branches, and exactly one leaf, each branch

of the tree is iteratively rewired to a new endpoint according

to the rewiring probability p. This process is carried out while

ensuring that the graph remains connected and that no loops

are generated. The procedure ends when all branches have

been visited. The length property of each branch is then

generated according to an exponential distribution. Also, an

increasing p has two main effects on the generated graphs:

the tree height is reduced and the maximum degree of the

graph is increased. This implies that the PCC has a higher

number of direct neighbor nodes as p increases.

V. NUMERICAL RESULTS

In this section, the optimization algorithms of Section II

are tested using the the two ordering (or token path selection)

strategies of Section III over a large number of power grids,

generated according to the procedure described in Section IV.

We considered networks with 15 and 50 nodes and two

values of the rewiring probability: p = 0.3 and p = 0.7.

Branch lengths are sampled (independently at random for
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Fig. 3. Dissipated power vs optimization steps for CBSC-S, CBSC-H,
DORPF and DORPF-H. 50 nodes, p = 0.3.

each branch) from an exponential distribution with mean

µ = 100m. Power distribution cables are assumed to have

constant section and, hence, constant impedance per meter.

This impedance has been set to (8+ j8)10−6Ω/m. 30% of the

nodes are connected to a DES. The nodes connected to DESs

are chosen uniformly at random among the set of all nodes

except the PCC. Each node (but the PCC) is connected to a

load and loads are modeled as RL series impedances, whose

values are chosen uniformly at random among the load types

in Table I. The PCC imposes a voltage reference of 230V

and the grid frequency is 50Hz. The overlay communication

network is assumed to be collision free. Moreover, it assumed

that a routing protocol connecting each pair of SNs exists and

that the communication links are error free.

TABLE I
RESISTANCE AND INDUCTANCE VALUES OF LOADS IMPEDANCES.

Load type R [Ω] L [mH]

LT1 8.79 12.7
LT2 19.5 18.1
LT3 3.39 8.1

Next, we compare the two methods of Section III in

terms of convergence rate and power expenditure during the
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Fig. 4. Dissipated power vs optimization steps for CBSC-S, CBSC-H,
DORPF and DORPF-H. 50 nodes, p = 0.7.

optimization process. In the following, CBS and DORPF with

the shortest token path policy will be denoted by CBSC-S

and DORPF-S, respectively, while the same algorithms with

the proposed heuristic for convergence rate maximization will

be denoted by CBSC-H and DORPF-H, respectively.

Heuristic vs optimal scheduling: as a first set of results, in

Fig. 2 we show the average power drained during the optimiza-

tion process by DORPF-S, DORPF-H and an idealized version

of DORPF, referred to here as “DORPF-Opt”, that has been

obtained by adopting the power optimal control sequence. The

term optimal means that the sequence of nodes along the token

path minimizes the energy drained during the execution of the

algorithm. This optimal scheduling has been found through

extensive search, an impractical approach whose complexity

grows exponentially in the number of nodes and also requires

full knowledge of electrical and communication topologies,

DES and load (i.e., power demand) states. From Fig. 2, we

see that our heuristic path selection (DORPF-H) performs very

close to the power optimal scheme (DORPF-Opt), leading to

gains in terms of convergence rate and energy expenditure.

Convergence rate: in Figs. 3 and 4 we compare DORPF

against CBSC for p ∈ {0.3, 0.7} and increasing the number

of nodes to 50. A first noticeable result is that the rewiring

probability p considerably affects the convergence rate of the

considered optimization techniques. Specifically, from Fig. 3

we see that CBSC-S and DORPF-S converge within 17
optimization steps. For p = 0.7 (see Fig. 4) the convergence

rate remains almost constant for DORPF-S, while for CBSC-S

about 10 additional optimization steps are required.

These results demonstrate that the convergence rate of the

selected algorithms is sensitive to the grid topology. In detail,

when the grid topology exhibits a low degree of randomness

(i.e., p = 0.3, Fig. 3), with the given setup, the maximum

performance gap between CBSC-S and CBSC-H and between

DORPF-S and DORPF-H is 0.5 kW and 0.4 kW, respec-

tively. As the degree of randomness increases (i.e., p = 0.7,

Fig. 4) the maximum gap between CBSC-S and CBSC-H

rises to 0.7 kW, while the maximum gap between DORPF-S

and DORPF-H remains almost constant. However, DORPF-



H converges in only 11 optimization steps, while DORPF-S

takes approximately 30 optimization steps to converge. We

observe that a higher p, in terms of electrical topology, means

that nodes have a higher number of direct neighbors. This

implies a much richer setting for the optimization, as a higher

number of choices in terms of neighbor selection is available

at each optimization step. The better performance of CBSC

demonstrates that this algorithm, in spite of its simplicity, has

a more efficient search strategy in the solution space and this

comes at the expense of its longer convergence time. Note also

that there are two main benefits arising from the adoption of

our heuristic approach. The first benefit is that the power grid

becomes more responsive to power demand variations due to

a faster optimization phase (shorter convergence time). The

second benefit is that, a faster convergence makes it possible

to save a certain amount of energy during the optimization, as

we discuss in greater detail below.

Energy savings: in Fig. 5 we show the complementary cumu-

lative distribution function (CCDF) describing the probability

of saving an amount of energy greater than or equal to the

value in the abscissa when using CBSC-H or DORPF-H. This

graph has been obtained for grid topologies with 50 nodes

and p = 0.7 by respectively integrating the power difference

between CBSC-S and CBSC-H and between DORPF-S and

DORPF-H for control steps of 1 minute each. For both CBSC

and DORPF, the probability of saving energy during the

optimization phase is greater than 90%. When using CBSC-H,

savings can be as high as 2 MJ and this graph confirms the

better optimization ability of this scheme. As an example, the

probability of saving more than 0.5 MJ is 0.4 for CBSC,

whereas it is 0.2 for DORPF. Also, it is worth noting that

a small number of grid topologies exist for which CBSC-H

and DORPF-H converge slower than CBSC-S and DORPF-S,

respectively, although they converge to the same final point,

which is algorithmic dependent but only weakly dependent on

the selected token path. While these topologies do not affect

the average performance (shown in Fig. 3), their impact can

be observed in Fig. 5. In fact, there is a small but positive

probability that the energy gain provided by our heuristic

scheduling is negative. Similar results, not shown here due

to space constraints, are obtained for p = 0.3.

To summarize, Fig. 5 shows that, for most of the grid topolo-

gies the heuristic approach proposed in this paper provides

considerable energy savings during each optimization phase.

In addition, since the optimization is repeated whenever the

electrical grid state changes (especially in terms of variation

of power demands) the cumulative gain is much higher and

proportional to the rate at which the optimization algorithms

are executed.

VI. CONCLUSIONS

In this work we have analyzed optimal and heuristic

scheduling rules to arbitrate the current injection from dis-

tributed energy resources in electricity grids. To this aim,

we have considered two recent optimization schemes for

the reduction of power distribution losses, discussing their

communication requirements and comparing their performance
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against that of an idealized power optimal scheme. Our results

reveal that the execution order (scheduling) for the distributed

control actions matters and that substantial energy savings are

possible though its careful design.
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