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Abstract—In this paper we explore the packet delay statistics
of a Selective Repeat ARQ scheme on a Discrete Time Markov
Channel with non-instantaneous round trip delay. In particular,
we are interested in obtaining considerations about the queueing
delay of the process and also possible comparisons between
different delay components. For this reason, we analyze in detail
the impact of system parameters, such as the packet arrival rate
and the packet error probability, on the terms which constitute the
overall delay. Finally, we explore the connection of these numerical
evaluations with the QoS requirements connected to delay for
multimedia traffic.

Index Terms— Automatic repeat request, Markov processes,
error analysis, delay estimation.

I. INTRODUCTION

HE study we present in this paper deals with fine tuning

of the system parameters in Selective Repeat Automatic
Retransmission reQuest (SR ARQ) systems, in order to better
understand the trade-off between the terms which constitute the
overall delay experienced by a packet.

SR ARQ [1] is an error control technique, where the re-
transmission of negatively acknowledged packets is selectively
triggered by the receiver, so that after a retransmission the data
flow is resumed from the last packet sent so far. In our analysis
the time for a packet transmission corresponds to one slot
and feedback packets, containing either an acknowledgement
(ACK) or a not-acknowledgement (NACK) messages come
back at the transmitter after a full round trip time. The main
aspect of our investigation, where we choose SR ARQ as
a representative also of other ARQ-like techniques, is that
we assume that the transmission feedback, expressed by the
receiver with ACK/NACK packets, is not instantaneous at the
transmitter’s side. Between an erroneous transmission and the
corresponding retransmission other packets are sent over the
channel. Since data packets must be released to higher layers
in-order, i.e., when all packets with lower identifier have been
correctly received, the receiver keeps in a buffer the packet
correctly received but not yet released.

Thus, the overall delay term is subdivided into different
terms: at the transmitter, a queueing delay is experienced by the
packets, which are also delayed by retransmissions, which have
higher priority. Also, at the receiver packets are released after
the correct reception of all packets with lower identifier. To the
transmission delay of a packet an additional term must then be
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added, which takes into account the transmission of previous
packets which are still to be acknowledged. The delay spent by
a packet in the receiver buffer waiting for the final delivery is
referred to as re-sequencing delay. The sum of the transmission
and re-sequencing delay is also called delivery delay. These
subdivisions are quite standard in the literature [2] and reflect
different aspects of the system.

The transmission of multimedia data, which often is per-
formed by means of ARQ-like techniques, is generally con-
sidered to be subject to constraints related to the Quality of
Service (QoS). Henceforth, a precise understanding of the
delay performance is required. In fact, delay terms can be
directly connected with other specific QoS issues. In particular,
the queueing delay can be related to the transmission buffer
occupancy, whereas the delivery delay has the same role for the
receiver buffer [3]. Moreover, for Next Generation services it is
expected to have not only throughput requirements (which is the
case for non real time data traffic) but also real time constraints,
and not only on the average delay but also on the jitter [4], [5].
Thus, a better understanding of delay statistics with analytical
instruments is of interest, since it is able to capture in an exact
way parameters which are otherwise difficult to characterize.
In particular, we characterize also, as clearly allowed by our
model, quantities related to second order moments, which
somehow relate to the delay jitter.

Another important aspect which is often neglected when
performing analysis of the delay performance is that not only
do wireless channels have a generally higher error rate than
wireline links, but there is an additional factor which heavily
affects the performance, i.e., error burstiness. Hence, we are
interested in considering error correlation in our study, since it
has been proven that the performance of ARQ protocols can
change dramatically [6], [7]. A suitable way, which makes an-
alytical investigations possible, is to employ a Markov chain to
represent the underlying channel [8). In fact, channel burstiness
can be easily introduced by appropriately defining the elements
of the transition probability matrix.

This is important since, as we will show quantitatively,
the impact of channel errors can not be taken into account
by looking at the average packet error rate only. Moreover,
channel burstiness has a heavy impact on the performance,
being in particular the queueing delay heavily underestimated
when an iid error process is considered while neglecting



error correlation. Also, the standard deviation of the queueing
delay increases even more rapidly when the channel errors are
strongly correlated.

These conclusions are obtained by exploiting an analytical
model which directly stems from our previous papers presented
in [9], [10]. The contribution here is to extend the analysis
in order to show numerical results and describe in detail the
impact of system parameters. In this way, several practical
conclusions can be drawn for the setup of ARQ-like systems,
which we believe are difficult to estimate precisely without an
exact analysis.

The rest of this paper is organized as follows: in Section
II we discuss other research contributions on topics related to
the delay statistics of ARQ systems. In Section III we discuss
the system model, with particular focus on the key system
parameters. In Section IV we present numerical results with
a detailed discussion about the higher order statistics of the
queueing delay and the comparison of different delay terms.
Finally, Section V concludes the work.

II. RELATED WORK

Several papers can be related with the delay performance
of SR ARQ. In [11], an analytical model for the packet
delay and buffer occupancy in a SR ARQ system has been
proposed for a static channel (fixed error probability), where
[12] and [3] analyzed in detail the re-sequencing terms, again in
the independent error case. The impact of channel correlation
for different ARQ techniques (i.e., also including Stop-and-
Wait, Go-Back-N, adaptive SR ARQ and ideal SR ARQ)
was considered in [5]-[8], [13]. The separate analysis and
comparison of different delay terms for a time varying channel
have been considered in [2], but only quantifying approximate
mean values. In [9], [10] we investigated instead Markov
techniques to derive delay statistics (delivery and queueing
delay, respectively) in an exact manner. In particular, both
in [10] and in the present paper we adopted a Bernoulli arrival
process to characterize the packet generation. This was studied
for the first time in [14]. Instead, in [4] a more general packet
arrival process is considered. This last contribution and a very
recent paper [15] also investigate the queueing delay in detail.

ITII. SYSTEM MODEL

We consider a pair of communicating entities (a transmit-
ter and a receiver) that exchange packets through a noisy
wireless fading link and use an SR ARQ transmission tech-
nique with unlimited re-transmission attempts. The time for
a packet transmission corresponds to one slot and feedback
packets, containing either an acknowledgement (ACK) or a
not-acknowledgement (NACK) messages, come back at the
transmitter after a full round trip time, which equates m slots.
We focus on the more interesting case of non-instantaneous
feedback, i.e., m > 1. Fig. 1 shows the way in which packets
are stored and transmitted, and the consequent delays.

Note that the transmitter continuously transmits new packets
in increasing numerical order as long as ACKs are received.
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Fig. 1. The model of SR ARQ and its delays

In case of NACK, the packet must be retransmitted, which
happens with higher priority with respect to the packets in the
queue. However, as ACKs/NACKs refer to the transmission of
m slots before, the numerical increasing order of the identifier
of the transmitted packets might be broken. This explains why
the delay experienced by a packet is related also to the outcome
of other packets, due to out-of-order transmissions and re-
sequencing.

As will be exploited in the following this implies that, since
in every case the bottleneck of previous packets still pending
and henceforth blocking the delivery of the ones with higher
id can not exceed m slots, we need to keep track of the last m
transmissions.

For the purpose of analysis, we assume to have unlimited
buffer capacity both for the queue at the transmitter’s side and
for the re-sequencing buffer at the receiver’s side. We also focus
on the case of error-free ACK/NACKSs. These are quite common
assumptions, considered only for the sake of clarity, but they
do not substantially change the analysis.

We also adopt a Markov model to represent the channel
state [16]. In this way, we are able to describe the transmission
with more variables than the average packet error probability
alone. The Markov channel we adopt here is Two-State, i.e.
state 0 corresponds to an error-free channel condition, where
state 1 is always erroneous. The channel transition probability

DPoo  Po1

matrix is then:
) ’
Pio Pn

and the average channel error probability and the average burst
length are therefore € = po1/(pio + po1) and B = 1/pyo,
respectively. If B = ¢! channel errors are i.i.d., whereas if
B > &7 there is error correlation. In the following we will re-
fer to these parameters, which completely describe the channel
transition matrix, due to their better clarity from the description
point of view. Even this simple model accounts for the channel
correlation with the average error burst length B, whereas on
the other hand offers the advantage of describing correlation
with only a single parameter. Of course, more complicated
Markov channels can be used as well if necessary [17].

For the arrival process, a Bernoulli model is considered,
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Fig. 2. Average values of the queueing and delivery delay for fixed average
error probability and average burst length as a function of the arrival rate.

where a packet arrival occurs with probability A during a
slot. We have chosen this mechanism since it allows a sim-
ple representation of different load conditions with a single
parameter. Of course a more complicated model, e.g., with
correlated arrivals also, would be more realistic, but preliminary
investigations have shown that for the kind of insight we discuss
in the following, this model is entirely adequate. The reader
is referred to [2] for some interesting results on the arrival
burstiness.

Based on these assumptions, it can be shown that the system
evolution can be modeled by means of a Markov chain. For
this chain to admit a steady state distribution, A must be
between 0 and 1 — ¢, that is the average channel service rate.
When A > 1 — ¢, 7¢ becomes infinite, since the queueing
buffer is saturated. This condition, called in the literature Heavy
Traffic [2], would anyway allow for an analysis of the delivery
delay only, as in [9]. Indeed, as we will show in the following,
the Heavy Traffic condition probably suffices for most practical
purposes when studying the delivery delay, since the sensitivity
of the delivery delay to the arrival intensity is rather weak.
However, the more interesting investigations performed in this
paper, which involve the queueing delay and/or the overall
delay, can be performed only if a variable packet arrival rate is
accounted for.

This model can be solved for example by following a Matrix-
Geometric approach [18], as we already performed in [10]. For
this reason, we only present the model here in the form of a
brief summary. Interested readers might follow the details of
the analysis, with also proof of correctness and comparison
with simulation results, in the aforementioned paper. Note that
the contribution here is instead to show how this model can
be actually applied to derive considerations about the system
dimensioning. In particular, in the following section we will
use it to compare different delay terms and also to quantify
the queueing delay effect, which, thanks to the analytical
evaluation, can be done not only through average values but
also with higher order moments.
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The model resolution can be directly derived from the fol-
lowing observations. First of all, the system memory comprises
the current queueing buffer occupancy and the current channel
state. The information about past events can be instead fully
characterized by the outcome of the last m transmissions. It
is in fact true that the transmissions and the deliveries might
be blocked by an error occurred in the transmission arbitrarily
far in the past. However, the corresponding packet has to be
re-transmitted at most within m — 1 slots before the packet
currently on the channel.

This implies that an appropriate Markov chain can be de-
fined, where part of the state relates to the channel evolution,
hence, it follows the channel DTMC. Another term in the
system state derives from the queueing buffer state and evolves
according to the following alternatives: if a packet arrives and
a retransmission is scheduled, the queue size increases by
one; if no packet arrives and no retransmission is scheduled,
the buffer occupancy decreases by one, provided it is not
zero already; in every other case it stays the same. All these
conditions are easily mapped through an appropriate transition
matrix of the Markov chain. Finally, the system state comprises
also the information about the last m transmissions, which
evolves deterministically: for this reason, it is a simple matter to
determine the transition probabilities between any pair of states.
Thus, after some calculus, one can determine the steady-state
values of the system distribution and hence evaluate the delay
statistics, as explained in [10].

IV. RESULTS

The first results we show in this paper focus on the compar-
ison of delay terms. An example is shown in Fig. 2. Here, the
two main parts of the overall delay are compared, as a function
of the arrival rate. This figure refers to a correlated channel with
average burst length comparable with the total round-trip-time,
since both m and B are taken equal to 10 slots. The average
error probability € has been set to 0.1.

The figure emphasizes that the queueing delay rapidly in-
creases with A, so that the queueing and the delivery delays
are more or less of the same order of magnitude when A is
between 0.5 and 0.7, whereas the queueing delay is as a matter
of fact negligible for A < 0.5 and explodes for values higher
than 0.7.

Therefore, the arrival process mostly affects the queueing
term; indeed, the delivery delay is also impacted, but in a more
complicated manner that will not be discussed here in detail. A
more thorough description of this behavior can be found in [19].
However, for the considered values the average delivery delay
remains almost constant. This last property has been verified
to hold every time the channel burstiness is comparable with
m.

Another similar comparison is reported in Fig. 3, where the
average delays are evaluated as a function of the average error
probability €. In this case, we choose ) equal to 0.6, whereas
m and B are both still equal to 10. Also this figure shows
that, as the channel conditions become more restrictive, the
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queueing delay impact becomes predominant. In fact, for low
error probabilities, 7o and 7p are more or less comparable,
and therefore the overall delay is roughly twice each of them.
However, while the delivery delay increases more or less
linearly with ¢, the queueing delay follows a similar behavior
but explodes when the channel error probability is so high that
the Heavy Traffic condition is approached. In other words, apart
from the cases when the arrival intensity is so high that the
queueing buffer is stuck, all delay terms increases more or less
linearly with e.

For the delivery delay this proportional increase keeps hold-
ing even for very high arrival rates. This confirms again that
the delivery delay can be appropriately studied even under
the Heavy Traffic assumption, whereas the queueing delay
obviously can not. For this reason, in the following results we
mainly focus on the queueing delay and its relationship with
the arrival process.

Another important aspect to be investigated is the channel
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probability for fixed B = 5 and variable € (upper axis and dashed line) or
fixed € = 0.1 and variable B (lower axis and solid line), for m = 7, A = 0.5.

burstiness. While in [9] we already proved that the evaluation
of the delivery delay statistics can be accurate only if the
channel correlation is properly taken into account, in this paper
we quantitatively support a similar statement for the queueing
delay also. Even though bursty and independent channels might
exhibit a similar qualitative behavior, since of course as shown
before 7¢ is strongly dependent on the arrival and departure
rate of the system, an i.i.d. channel is definitely not a good
model for correlated wireless channels from the point of view
of evaluating the delay statistics. For example, the tails of the
distributions for bursty channels are heavier, which means that
long bursts of errors might cause a significant increase of the
queueing delay term.

This can be seen from Fig. 4, where the mean 7 is evaluated
for different values of the average error burst length B (solid
line). In this figure, m = 7 and ¢ = 0.1 are considered. The
lower value of m with respect to Fig. 2 is simply motivated
by the faster computational evaluation. For comparison, the
dependence on the arrival rate )\ is also considered, with the
dashed line, which follows the same behavior of the queueing
delay curve in Fig. 2. This figure should be read by keeping
in mind that the middle value of both curves (indicated by the
arrow) refers to the same case, and moving along the solid or
dashed curve means to change B or ), respectively. In this
way, it is possible to see that the queueing delay is clearly
larger in the correlated channel than in the case of i.i.d. errors.
The increase of the queueing delay can be considered linear in
B, whereas it explodes as A increases and approaches 1 — ¢.

Since we took an analytical approach, we are also able to
investigate, e.g., second order moments of the statistics, which
have a non negligible impact on the subjective perception of
the QoS due to delay jitters. The standard deviation of the
queueing delay is plotted in Fig. 5, where we adopt the same
way of representing the data as in Fig. 4 in order to focus on and
compare the dependence of this value on both A and B. What
is interesting to observe, is that the standard deviation of 7 is



also increasing linearly in B. This holds for all values except
close to the i.i.d. case, where the behavior is slightly different.
This again confirms that considering the channel correlation is
unavoidable if a correct evaluation of the statistics is required.

Moreover, note that for what concerns the delay jitter the
impact of B is even more relevant than for the average value.
In fact the increase in the standard deviation of 7g when B
is changed from 5 to 10 is comparable with the variation
which the same value would have observed if A were instead
increased to almost 0.8, which is a significantly higher value.
In other words, Fig. 5 shows that the delay jitter of a highly
bursty channel is the same as that of a system with lower
B but higher arrival rate. Even though this can be intuitively
explained by considering that a higher B leads to more frequent
retransmissions (which is eventually similar to a higher arrival
rate), Fig. 5 shows that this phenomenon has a severe impact
on the delay. This conclusion can be directly connected to the
QoS requirements in terms of queueing buffer and delay jitter
for real-time traffic, indicating that the negative impact of the
error correlation is more significant than what one might expect
by looking at the average value only.

V. CONCLUSIONS

In this paper we have studied the delay performance of a
Selective Repeat ARQ scheme over a Markov Channel. The
statistics obtained with an analytical model have been used to
evaluate all the delay terms and their main characteristics are
compared as a function of channel error probability and error
correlation.

The following interesting conclusions can be inferred from
the numerical evaluations. First of all, the queueing delay
is very sensitive to the arrival process intensity, so that it
generally increases as the packets arrive more frequently, until it
reaches instability, which happens when the channel saturation
is approached. This might appear as a trivial conclusion, as
it is somewhat expected that a higher packet arrival rate will
cause an increase of both queue length and queueing delay.
However, we found that channel correlation (long bursts) has
an unexpectedly strong impact on the queueing delay terms. In
particular, the second-order analysis reveals that this effect is
even more relevant for the delay jitters, so that avoiding heavily
correlated channel errors appears as a key point in order to meet
real-time traffic QoS constraints.
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