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Abstract A new cut selection criterion for Benders’ cuts is proposed and
computationally analyzed. The results show that the new criterion is more
robust—and often considerably faster—than the standard ones.
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1 Introduction

Consider a generic MIP

min{cTx+ dT y : Ax ≥ b, Tx+Qy ≥ r, x ∈ Zn
+, y ∈ Rt

+}. (1)

Benders’ decomposition [5] works as follows. An artificial variable η = dT y is
introduced along with a lower bound η, and the master problem relaxation
(assumed to be bounded)

min{cTx+ η : Ax ≥ b, η ≥ η, x ∈ Zn
+} (2)

is solved, e.g., by an enumerative method. The optimal solution found, say
(x∗, η∗) with x∗ integer, is sent to the so-called dual slave problem

max{πT (r − Tx∗) : πTQ ≤ dT , π ≥ 0}. (3)

If the dual slave problem is unbounded, an unbounded extreme ray π is chosen,
and the Benders’ feasibility cut πT (r−Tx) ≤ 0 is added to the master, which is
solved again. Otherwise, let z∗ and π denote the optimal value and an optimal
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vertex of the dual slave problem, respectively. If z∗ ≤ η∗ then the current
(x∗, η∗) is feasible and hence optimal for (1). If not, the Benders’ optimality
cut η ≥ πT (r − Tx) is added to the current master problem, and the method
is repeated.

In the present work we address the topic of selecting Benders’ cuts for gen-
eral MIPs in an effective way. The choice of effective Benders’ cuts was already
addressed by Benders [5], Magnanti and Wong [12], and Wentges [15], among
others. Cut selection policies are of fundamental importance for any cutting
plane method, and have been investigated deeply in the general context of
convex optimization. A notable case arises in disjunctive programming, where
valid cuts are generated by solving a certain Cut Generating LP (CGLP) akin
to Benders’ dual slave (3). In this context, the CGLP is usually stated in a
form where cut violation acts as the objective function to be maximized, and a
(linear) normalization condition is added to deal with unboundedness. As the
actual choice of the violated cut heavily depends on the normalization used,
different normalization conditions lead to different cut selection criteria. We
refer the reader to Cornuéjols [7] and to Cornuéjols and Lemaréchal [8] for a
treatment of disjunctive cuts, and in particular to [8] (Section 4) for a thor-
ough discussion on the role of normalization in the very general context where
cuts are generated by optimal solutions of convex programs—thus generalizing
CGLPs. Nonlinear conditions for disjunctive cuts have been recently investi-
gated in Cadoux [6], where the Euclidean distance cut-off is used to measure
cut quality.

2 A new selection criterion for Benders’ cut

In this section we propose a new selection criterion for Benders’ cuts that leads
to a more clever choice of the separated cuts, in particular when both feasibility
and optimality violated cuts exist. In this setting, finding a most-violated
optimality cut is equivalent to finding an optimal vertex of a polyhedron with
unbounded rays, which is a strongly NP-hard problem [10].

Our order of business is to define a sound unified framework for the sepa-
ration of feasibility and optimality cuts. To this end, we observe that Benders’
separation can always be rephrased as a pure feasibility problem: given a mas-
ter solution (x∗, η∗), a violated cut can be generated if and only if the following
(extended) primal slave LP is infeasible:

dT y ≤ η∗, Qy ≥ r − Tx∗, y ≥ 0 (4)

or, equivalently, if the following modified dual slave problem is unbounded:

max{πT (r − Tx∗)− π0η∗ : πTQ ≤ π0dT , π, π0 ≥ 0}. (5)

The cut associated with a given ray (π, π0) of (5) reads πT (r−Tx)−π0η ≤ 0.
In practice, one is interested in detecting a “minimal source of infeasibility”

of (4), so as to detect a small set of constraints in the slave that suffices to
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cut the master solution. According to Gleeson and Ryan [11], the rows of any
Minimal (with respect to set inclusion) Infeasible Subsystem (MIS) of (4) are
indexed by the support of the vertices of the following polyhedron, sometimes
called the alternative polyhedron:

{(π, π0) ≥ 0 : πTQ ≤ π0dT , πT (r − Tx∗)− π0η∗ = 1} (6)

where the unbounded objective function—namely, the cut violation to be
maximized—has been fixed to a normalization positive value. By choosing
a generic objective function

∑m
i=1 wiπi +w0π0 to minimize (where m denotes

the number of rows of Q), it is therefore possible to optimize over the alter-
native polyhedron so as to select a violated cut corresponding to a MIS of (4)
with certain useful properties.

As observed in [8], one can swap the role of the objective function and of
the normalization condition in (6) to obtain an equivalent CGLP akin the one
introduced for disjunctive cuts by Balas, Ceria, and Cornuéjols [4]:

max{πT (r−Tx∗)−π0η∗ : πTQ ≤ π0dT ,
m∑
i=1

wiπi+w0π0 = 1, (π, π0) ≥ 0}. (7)

This latter formulation is often preferable from a computational point of view.

Of course, the choice of coefficients wi’s is of crucial importance, in that it
models the quality measure that one wants to apply for a clever cut selection.
The original Benders’ CGLP (3) arises as a particular case by setting w0 = 1
and w1 = · · · = wm = 0. A more clever choice is however to set w0 = · · · =
wm = 1, with the aim of reducing the cardinality of the support of the optimal
vertex of (6), and hence to heuristically find a minimum-cardinality MIS–
which is an NP-hard problem [1]. This is in fact the choice typically used for
disjunctive CGLPs, whose practical effectiveness can be explained because it
tends to produce a “minimum-cardinality certificate” for x∗ infeasibility.

In order to obtain even better cuts, we observe that matrix T often has
null rows, meaning that there are “static” conditions in the slave that are
always active and do not depend on x. For these rows, there is no reason to
penalize the corresponding multiplier πi, so one should set wi = 0. According
to our computational experience, this simple change leads to a substantial
improvement of the generated cuts in many cases, so our final choice is to
consider the following CGLP normalization condition in (7):

∑
i∈I(T )

πi + w0π0 = 1 (8)

where w0 (just set to 1 in our tests) is a possible scaling factor taking into
account a wider range of variable η, and I(T ) indexes the nonzero rows of T .
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3 Computational experiments

The Benders’ scheme addressed in the present paper has been implemented in
C++. IBM ILOG Cplex 11.2 was used as LP/MIP solver, with all parameters
left at their default values. All tests have been performed on an Intel Core2
Q6600 PC running at 2.40 GHz with 4GB of RAM, with a time limit of 10
hours for each run.

To speedup the solution of the several master MIPs generated by the
method, as well as to generate multiple cuts that hopefully reduce the overall
number of master MIPs to be solved, we implemented the following simple
strategy. At each main iteration (i.e., master MIP solution), whenever the
master incumbent solution is updated we generate, on the fly, a corresponding
violated Benders’ cut (if any). However, this cut is not added to the master
problem until the next main iteration, and the master processing continues
until the current incumbent solution violates a Benders’ cut and it is not up-
dated in the last K = 1, 000 enumeration nodes. In this way we avoid wasting
computing time on proving the optimality of an integer solution that is al-
ready known to be infeasible, and also avoid to restart the master too many
times—namely, as soon as a new incumbent solution is found. In this way,
several Benders’ cuts are typically generated at each main iteration, and our
scheme can be seen as a “light” version of the local-branching one proposed
in [14]. We compared four different MIP solution methods:

cpx a state-of-the-art Branch&Cut solver (IBM ILOG Cplex 11.2);
std a standard Benders’ approach based on (3); this is equivalent to using

CGLP (7) with the “blind” normalization π0 = 1;
std2 the enhanced approach in [5] where (3) is truncated by

∑m
i=1 πi ≤ M ,

M is a dynamically updated big-M coefficient; when feasibility cuts are
generated, this is equivalent to using CGLP (7) with

∑m
i=1 πi + π0 = 1;

mis our method using CGLP (7) with normalization
∑

i∈I(T ) πi + π0 = 1.

The three Benders’ implementations above are completely general purpose,
and only differ in the way the cuts are selected—all other features are identical.
Each call to the CGLP in std and std2 can generate two distinct violated
cuts, associated respectively with a vertex and an unbounded ray of the (3),
whereas it generates at most one cut for mis. Both std and std2 (but not
mis) implement the Magnanti-Wong [12] cut selection rule. The warm-start
procedure of McDaniel and Devine [13] was instead deactivated for all methods
because it resulted into a generalized performance degradation in our testbed.

The four MIP methods above have been compared on two sets of MIP
instances whose structure is known to be well suited for Benders’ methods
[9]. All instances and detailed tables of results are available, on request, from
the authors. Our first testbed consists of instances of the multicommodity-flow
network design problem [3], where one has to allocate capacity to the arcs
of a given network by ensuring that all commodities can simultaneously be
routed from source to destination. We generated two different types of random
instances of the above network design problem, the underlying topology being
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defined either as a grid or as a random network. In addition, we considered
two different scenarios: in the feas case, routing costs were set to zero and
only feasibility cuts were generated by the Benders’ algorithms, while in the
opt case each unit of flow has a cost, hence both feasibility and optimality
Benders’ cuts were generated. Table 1 summarizes the main characteristics of
the instances in our network design testbed.

Topology Nodes Type # constr.s # var.s # int.var.s

grid 5x5 feas 2,318 6,281 34
grid 5x5 opt 2,236 5,974 34
grid 5x6 feas 4,282 11,622 41
grid 5x6 opt 4,014 10,527 40
random 20 feas 1,148 5,125 46
random 20 opt 1,192 4,993 43
random 25 feas 2,432 10,405 54
random 25 opt 2,208 9,754 56

Table 1 Testbed characteristics (network design problem); 5 instances for each class

Table 2 reports the outcome of our experiments on the network design
testbed; results for cpx are not reported because this method exceeded the
10-hour time limit in most runs. The table gives average results (geometric
means) over 5 instances for each class and scenario. For each method the table
reports the computing time (in CPU seconds: column time), the percentage of
computing time spent in the CGLP (sep), the number of main iterations (i.e.,
of master MIPs generated: column iter.s), and the total number of feasibility
(feas) and optimality (opt) cuts generated. In the time column, the number of
time-limit instances (if any) is given in parenthesis; these instances contribute
to the overall statistics by taking the current figures (time, iterations, etc.)
when the run was aborted.

A surprising outcome is that the “more elaborated” standard Benders’
implementation (std2) is much worse than the “simple” one (std) in terms of
both computing time and number of main iterations required. The difference
is striking for the feas scenario, where std2 requires on average about 3 times
more iterations and cuts than std, and takes about 25 times more computing
time. Evidently, the simple normalization condition

∑
i πi = 1 implicitly used

by std2 actually hurts, as it turns out to perform even worse than the random
choice of the unbounded ray performed by std—thus confirming that a clever
choice of normalization is a key issue in practice. As to mis, it outperforms
std by a factor of about 2 in the feas scenario, and of about 3.5 in the opt

one. The fact that the speedup is due to a more effective choice of the cuts
is confirmed by the greatly reduced number of cuts (and of main iterations)
required.

Table 3 reports the detailed results on the instances where at least one
of the Benders’ variants reached the 10-hour time limit. Column gap reports
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type class method time (s) sep (%) iter.s # feas # opt

feas

g 5 5
std 22.77 93.0% 125 249 0
std2 548.86 96.1% 266 592 0
mis 14.05 98.1% 75 106 0

g 5 6
std 100.44 98.6% 138 250 0
std2 3, 213.48 97.7% 408 948 0
mis 51.41 98.6% 102 161 0

r 20 5
std 52.74 90.2% 129 270 0
std2 1, 167.61 57.3% 489 1,021 0
mis 33.65 93.2% 92 166 0

r 25 5
std 347.38 84.8% 199 462 0

std2 6, 571.72(1) 64.5% 581 1,418 0
mis 148.56 76.5% 92 182 0

all
std 80.46 91.5% 145 297 0
std2 1, 918.02 76.7% 419 949 0
mis 43.59 91.1% 90 151 0

opt

g 5 5
std 65.58 24.3% 162 525 528
std2 263.61 65.2% 152 585 589
mis 18.57 98.3% 77 104 7

g 5 6
std 156.54 32.3% 182 790 794
std2 1, 346.45 78.4% 295 1,026 1,036
mis 69.86 99.2% 97 136 21

r 20 5
std 480.15 10.1% 181 594 812

std2 2, 327.40(1) 13.9% 296 782 1,324
mis 109.00 58.0% 127 124 302

r 25 5
std 14, 194.35(2) 6.7% 492 1,749 2,140

std2 36, 001.24(5) 11.6% 593 2,562 3,361

mis 3, 070.51(1) 38.7% 351 268 1,162

all
std 514.32 15.2% 226 810 924
std2 2, 335.27 30.1% 298 1,047 1,284
mis 144.34 68.4% 135 147 86

Table 2 Network design results.

the integrality gap when the algorithm was stopped. For these hard instances,
mis performed even better when compared to std and std2. In addition, mis
reached the time limit only for one instance, r 25 5 4 opt, for which all other
methods reached the time limit as well but closed a significantly smaller gap.

We also tested the algorithms on 30 network expansion hard instances from
the literature [2]—the easiest instances have been removed from the testbed.
For these instances only feasibility cuts can be generated. The corresponding
average results are reported in Table 4; again, cpx is not reported because it
exceeded the time limit in most cases.

As far as the two standard Benders’ implementations are concerned, this
second testbed behaves just the opposite way as the previous one: separation
time is almost negligible, and std2 is by far faster than std. In this setting,
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instance method time (s) gap (%) sep (%) iter.s # feas # opt

r 25 5 3 feas
std 9, 248.69 0.00% 52.4% 1239 2207 0
std2 36, 000.00 2.22% 38.8% 1412 3036 0
mis 1, 652.23 0.00% 27.6% 214 422 0

r 20 5 4 opt
std 2, 872.06 0.00% 3.3% 339 657 1304
std2 36, 000.00 2.00% 2.3% 1008 1110 4019
mis 617.20 0.00% 33.1% 247 186 813

r 25 5 1 opt
std 10, 194.60 0.00% 6.7% 443 1255 1864
std2 36, 000.00 0.52% 8.2% 760 1970 3449
mis 1, 447.93 0.00% 58.7% 277 187 904

r 25 5 2 opt
std 5, 699.31 0.00% 5.4% 241 1365 1466
std2 36, 000.00 0.47% 4.3% 542 1857 2193
mis 327.36 0.00% 70.9% 109 159 350

r 25 5 3 opt
std 36, 000.00 1.13% 7.1% 1469 3320 3335
std2 36, 000.00 2.97% 25.1% 539 3802 3865
mis 17, 063.10 0.00% 26.7% 795 375 2794

r 25 5 4 opt
std 36, 000.00 1.36% 5.5% 590 3142 3607
std2 36, 000.00 2.73% 17.5% 511 3472 3838
mis 36, 000.00 0.71% 10.5% 1117 539 3532

r 25 5 5 opt
std 7, 651.76 0.00% 9.2% 313 917 1365
std2 36, 000.00 0.65% 13.9% 644 2286 3824
mis 937.40 0.00% 74.5% 198 230 679

Table 3 Detailed results on network design instances where at least one method reached
the 10-hour time limit.

the performance of mis is very similar to that of std2, which is an indication
that the different normalizations they use are equally effective for this class.

On the whole, the results show that our new cut selection criterion in more
robust than its competitors, in that mis is almost always the best (possibly
with ties) of the three methods under comparison, while std and std2 exhibit
a much more erratic behavior that heavily depends on the structure of the
underlying problem. As expected, mis obtains its best speedup when both
optimality and feasibility cuts are be separated, due to the fact that these
cuts are treated in a sound unified framework.
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